
A UML-Based Framework for Assessing the Reliability of Software
Systems

Apostolos Zarras
INRIA

Domaine de Voluceau
Rocquencourt

78153 Le Chesnay - France
+33 1 39 63 5270

Apostolos.Zarras@inria.fr

Valerie Issarny
INRIA

Domaine de Voluceau
Rocquencourt

78153 Le Chesnay - France
+33 1 39 63 5717

Valerie.Issarny@inria.fr

ABSTRACT
Software reliability can be defined as the probability that a
software system successfully performs its designed functions
for the duration of a specific mission profile. Modeling and
assessing reliability is not a new challenge. As a matter of
fact, there exists a variety of techniques for calculating relia-
bility, which are, typically, supported by an underlying mod-
eling formalism like reliability block diagrams, fault trees,
reliability graphs, Markov chains, petri nets.

Nowadays, however, UML, has emerged as the software in-
dustry’s dominant modeling language. Given this fact, in this
paper we elaborate on the contribution of UML in model-
ing quality aspects of software, and in particular aspects that
characterize software reliability. In consequence, we pro-
pose possible extensions of the UML meta-model. Finally,
we investigate how to use a UML model to systematically
generate models that serve as input to traditional techniques
for assessing reliability. Hence, the main artifact of this pa-
per is a UML-based framework that can be coupled with ex-
isting tools, implementing traditional techniques for assess-
ing the reliability of software systems.

Keywords
Reliability, Software Architecture, Systems Design, UML.

1 INTRODUCTION
In principle, system reliability is a measure of the continu-
ous service accomplishment from a reference initial instant
[10]. The previous is often refined into more concrete def-
initions stating that reliability is the probability that a sys-
tem successfully performs its designed functions for the du-
ration of a specific mission profile [11]. Assessing reliability
is not a new challenge and several techniques for calculat-
ing it have been proposed in the past [3]. Those techniques
were used in the first place to assess the reliability of hard-
ware and they range from purely analytical ones to simu-
lation techniques. Later, reliability assessment techniques

were proved to be also useful towards the assessment of soft-
ware reliability [17]. Most of the times, the differences and
the similarities between different techniques are well-defined
and they mainly originate from the kind of systems that they
support, their ability to scale well with respect to the size
of the inspected system, the precision of the estimations re-
sulting when applying them, etc. Techniques for reliability
assessment are, typically, supported by an underlying mod-
eling formalism, which allows specifying structural and be-
havioral aspects of the inspected system that affect the sys-
tem’s reliability. Well known and widely used examples of
such formalisms are reliability block diagrams, fault trees,
reliability graphs, Markov chains, and Petri-nets.

Nowadays, UML [1] has emerged as the software industry’s
dominant modeling language. In a relatively short period of
time, UML has become a standard for modeling business,
structural and behavioral aspects of software systems [13].
However, it is still not clear how to model quality aspects of
the system and how the standard UML formalism contributes
towards this purpose. In this paper, we concentrate on soft-
ware reliability. Given that the basic aspects of software that
affect the reliability of an inspected system are more or less
known, our first objective is to investigate how UML sup-
ports modeling those aspects and how UML can be extended,
when needed, towards modeling those aspects. Our second
objective is, then, to investigate how a UML model that in-
corporates information regarding properties that affect the
reliability of the inspected system can be exploited in a sys-
tematic way towards generating models that serve as input
to traditional techniques for reliability assessment. The main
artifact of this paper is, hence, a UML framework that can be
coupled with tools implementing traditional techniques for
reliability assessment.

The rest of this paper is structured as follows. Section 2
briefly presents work related to the use of UML for mod-
eling software quality, and the systematic exploitation of
UML models towards the generation of input to tools that
implement techniques for assessing software quality. Sec-
tion 3 gives an overview of traditional techniques for assess-
ing software reliability. This section gives us a starting point
with an ensemble of properties that need to be modeled for
assessing the reliability of software. Section 4 is our main

contribution, the proposed UML framework for the assess-
ment of software reliability. More specifically, we define
extensions to the standard UML meta-model, needed so as
to model properties identified in Section 3, and we exploit
the use of extended UML models for the assessment of soft-
ware reliability using existing techniques. Section 5, that
follows, briefly presents technical details related to the pro-
totype implementation of our framework. Finally, Section 6
gives some concluding remarks.

2 RELATED WORK
Work related to modeling software qualities using UML,
is so far in a rather primitive stage. To our knowledge,
only UML-based performance modeling was addressed in
the near past. This knowledge was proved, however, use-
ful towards our approach for modeling and assessing issues
of reliability. More specifically, the road-map lecture that
was given by Rob Pooley at the ICSE 2000 conference [15],
highlighted the need for methodologies towards UML-based
performance modeling. Other interesting work co-authored
by Pooley includes a paper that gives hints on how to derive
queuing network models out of UML design models [16].
Moreover, in [7], the authors investigate the relation between
UML collaborations, UML state machines, and Petri-nets,
with the latter being widely used for assessing the perfor-
mance of software. In [5], the authors propose the direct
simulation of UML sequence diagrams. Finally, [14] pro-
poses an approach for generating stochastic process algebra
models, out of UML collaboration diagrams and state ma-
chines.

The work presented in all of the aforementioned papers
mostly exploits ways to derive models that conform to for-
malisms traditionally used for performance modeling. What
seems to be missing is at least a discussion that addresses,
how to model in UML properties of the system that af-
fect performance, and highlights the implications for the
UML meta-model. For instance, modeling properties that af-
fect performance, may impose the extension of the standard
UML semantics. The approach presented in [6], is more ma-
ture regarding the previous remarks. The authors propose
a complete framework for UML-based performance model-
ing. Following similar steps, in this paper we elaborate on
our proposal presented in [18] towards a framework for mod-
eling and assessing software reliability. Finally, let us point
here that our approach is further inspired by the work pre-
sented in [8], on attribute-based architectural styles.

3 TECHNIQUES AND FORMALISMS FOR MOD-
ELING AND ASSESSING RELIABILITY

In general, existing techniques for assessing reliability can be
divided into three basic categories: combinatorial, Markov-
based and simulation techniques.

Combinatorial techniques, are fast and easy to apply. The
overall system reliability is obtained through simple combi-
natorial calculations involving the reliabilities of primitive

A B

A

B

(a) Subsystems A, B connected in series

(b) Subsystems A, B connected in parallel

Figure 1: Example of an RBD.

subsystems that constitute the overall system. However, the
calculation of the overall system reliability gets more com-
plicated when the primitive parts of the system do not fail
independently. In addition to the previous drawback, com-
binatorial techniques are not quite suited for assessing the
reliability of repairable systems. Combinatorial techniques
are supported by visual modeling formalisms like Reliability
Block Diagrams (RBDs), reliability graphs, and Fault Trees
(FTs). For illustration purpose, we give more details regard-
ing RBDs. An RBD is a diagram that represents graphi-
cally a constraint for completing a mission. Hereafter, we
call such a constraint,constraint-to-succeed. More specif-
ically, an RBD depicts a structure of subsystems that need
to be operational towards mission completion. Subsystems
can be connected using serial, parallel, and possibly more
complex connections. For instance, if the completion of a
mission requires using a subsystem A and a subsystem B,
then both must be operational for the duration of the mission
profile. The aforementioned constraint can be specified as a
logical formula,A and B, consisting of the conjunction of
two predicates. PredicateA (resp.B), stands for subsystem
A (resp. B) and is true if A (resp. B) has to be operational
and false otherwise. Then the resulting RBD, shown in Fig-
ure 1(a), depicts subsystem A connected in serial with sub-
system B. The reliability in the case where A and B fail inde-
pendently is the probability that theA and B formula holds.
This probability is calculated in terms of the reliabilities of
subsystems A and B as follows:RA and B = RA � RB ,
whereRA (resp.RB) denotes the reliability of subsystem A
(resp. B). Similarly, if the completion of a mission requires
using a subsystem A, or a subsystem B, then either of them
must be operational for the duration of the mission profile.
The resulting RBD, shown in Figure 1(b), depicts subsystem
A connected in parallel with subsystem B. Reliability graphs
are, in principle, similar to RBDs. In contrast to the previous,
an FT specifies graphically a constraint, which describes un-
desired events that lead to mission failure. Undesired events
are connected with AND and OR gates.

The second category of techniques for assessing reliability
is more suitable for both non-repairable and repairable sys-
tems. Moreover techniques belonging to the second category
facilitate the modeling of dependent failures. Briefly, given

2

death state 1

death state 2

state 1

fault arrival rate for A

fault arrival rate for B

Figure 2: Example of a Markov chain.

a system, and in particular, a part of its configuration used
for completing a mission, it is necessary to model how this
configuration changes at runtime in the presence of failures
and repair actions. Furthermore, in the case of dependent
failures, there is a need to model how they spread across the
system configuration. A Markov chain of states can then
be used to model the previous issues. A state in a Markov
chain represents a possible state of the configuration. In gen-
eral, the configuration can be either in an operational state,
or in a failed state (also called a death state). In the for-
mer case, the corresponding constraint-to-succeed the mis-
sion holds, while in the latter case it does not. A transition
between Markov states that models a subsystem failure is
characterized either by the arrival rate of the fault that causes
this failure, or by the Mean Time Between Failures (MTBF).
A transition between Markov states that models a subsystem
repair action is characterized either by the repair rate, or by
the Mean Time to Repair (MTTR) the subsystem. Given a
Markov model that describes all possible transitions in cases
of failures and repair actions, a mathematical model can be
employed towards calculating the reliability of the configu-
ration. This model involves solving a system of first order
differential equations. Taking an example, if the completion
of a mission requires using a subsystem A and a subsystem
B, then the corresponding constraint-to-succeed isA and B.
The resulting Markov model is shown in Figure 2. Three
Markov states are defined in the model:state 1 , which
is the initial state where both A and B are operational and,
hence, the constraint-to-succeed holds;death state 1
where A has failed and hence the constraint-to-succeed is
false;death state 2 where B has failed and, hence, the
constraint-to-succeed is false. The transition from the ini-
tial state todeath state 1 (resp. death state 2)
is characterized by the arrival rate of the faults that cause
the failure of subsystem A (resp. B). Although Markov-
based techniques seem more powerful than combinatorial
techniques, it is a fact that the manual specification of a
Markov model is a laborious and error-prone task that re-
quires spending time and great effort.

Finally, in the last category we have simulation techniques.
Simulation techniques can be used for both repairable and
non-repairable systems but they are typically slow. In prin-
ciple, it is possible to simulate the system behavior starting
from descriptions of Markov models, RBDs and FTs.

4 A UML-BASED FRAMEWORK FOR MODELING
AND ASSESSING RELIABILITY

Assessing reliability of a target software system using tech-
niques belonging to the basic categories presented in Sec-
tion 3 mainly involves deriving a UML design model that
delineates the architecture of the target software system and
further includes the specification of a mission profile. More-
over, properties that characterize the reliability of the primi-
tive elements making up the system must be incorporated in
the design model. Furthermore, the design model must in-
clude the specification of constraints-to-succeed a mission,
and the potential runtime behavior of the target system con-
figuration, used to realize a mission, in the presence of fail-
ures and repair actions.

Hence, our main goal is to provide a UML framework that
facilitates the construction of such a design model for assess-
ing the target system reliability. At this point let us assume,
without loss of generality, that a typical UML design model
comprises 4 distinct architectural views of the system it rep-
resents [9], namely:(a) The logical view, which addresses
the functional properties of the target software system.(b)
The process view, which addresses concurrency issues that
characterize the runtime behavior of the target software sys-
tem.(c) Theimplementation view, which addresses the orga-
nization of an implementation model that complies with the
design model described in the process and the logical views.
(d) The deployment view, which addresses the deployment
and installation of the implementation model onto a physical
execution platform.

In addition, all four views that were previously mentioned
are constrained by theuse case viewof the system. The use
case view is reflected to a use case model, which contains a
set of key scenarios, or use cases, describing abstractly user
functional, and non-functional requirements on the services
that the system is supposed to provide. In other words, the
use case model contains the specification of a set of mission
profiles, each one of which describes the functionality ex-
pected from the system and measurable quality parameters
and tolerances. The use case view of the system is typically
constructed during the requirements elicitation. However,
its construction is completed at a mature design stage, with
specifications describing the exact realization of the missions
that it includes.

In the remainder of this section, we detail our framework,
which provides a number of basic UML constructs and auto-
mated procedures, supporting reliability assessment. More-
over, the use of the framework is described using a simple
case study system. The target system consists of a Corba
server providing some services. The system further com-
prises a legacy system (e.g. IBM CICS, PDM) used by the
Corba server towards serving requests coming from exter-
nal Corba clients. Since the legacy system does not belong
to the Corba “world”, communication between the Corba
server and the legacy cannot be achieved directly. To deal

3

with the previous problem, Corba facades are used. Each
facade exports a Corba interface that matches the specifica-
tion of the legacy system. Based on this structure, the Corba
server diffuses a request to the facades which in turn call, at-
most-once, the corresponding functionality provided by the
legacy.

Supporting the Construction of the Use Case View
In UML, use case models are described with use case di-
agrams. A use case diagram comprises a number of use
cases, describing parts of the system functional behavior as
manifested to external users of the system. Users communi-
cate with use cases and constraints, regarding reliability tol-
erances required by them, can be added to this association.
Use cases may include (i.e. the functionality of a use case
includes the functionality of another one), or extend (i.e. the
functionality of a use case may be used by the extended use
case), other use cases. Again constraints regarding reliability
tolerances can be added to the aforementioned relationships.

To provide the ability to define reliability constraints re-
quired by external users, we provide a UML stereotype
calledReliabilityRequirements . The base class of
this stereotype is the binary association. The stereotype can
only be used to associate a user with a use case. Moreover,
ReliabilityRequirements extends the semantics of
the standard UML association with a property calledre-
liability that is defined for the associated use case, and
whose value represents the reliability tolerances required by
the associated user from this use case. Formally, the seman-
tics of the above stereotype are given in the following OCL
specification1:

ReliabilityRequirements:
self.baseClass.oclIsKindOf(Association) and
self.baseClass.connection->size = 2 and
self.baseClass.connection->exists(

c : AssociationEnd |
c.type.oclIsKindOf(Actor)) and

self.baseClass.connection->exists(
c : AssociationEnd |
c.type.oclIsKindOf(UseCase)) and

self.requiredTag->exists(t : TaggedValue |
t.name = ’reliability’ and
t.value.oclIsKindOf(Real) and
t.value <= 1 and t.value >= 0)

Similarly, to provide the ability to define reliability con-
straints required by use cases, from uses cases that extend
them, or uses cases included by them, we define theReli-
ablyExtends , and theReliableInclusion stereo-
types, which specialize theExtends , and theIncludes
standard stereotypes of theGeneralization relationship
respectively. Instances of theReliablyExtends , and
the ReliableInclusion stereotypes define a property,
whose value gives the reliability constraint that should be

1We do not give the precise meaning of the basic constructs used in the
OCL formulae that follow, as they are quite direct to infer; the interested
reader may refer to the UML semantics document [13] and to the OCL
specification [12]

met by, either a use case included by another use case, or a
use case that extends another use case. Formally:

ReliablyExtends:
self.baseClass.oclIsKindOf(Generalization) and
self.requiredTag->exists(t : TaggedValue |

t.name = ’reliability’ and
t.value.oclIsKindOf(Real) and
t.value <= 1 and t.value >= 0)

ReliableInclusion:
self.baseClass.oclIsKindOf(Generalization) and
self.requiredTag->exists(t : TaggedValue |

t.name = ’reliability’ and
t.value.oclIsKindOf(Real) and
t.value <= 1 and t.value >= 0)

Stereotype
icon : Geometry
baseClass : N...

ReliabilityRequirements
baseClass : Name = Associat...
reliability : Real

Extends
baseClass : Generalizat...

Includes
baseClass : Generalizat...

ReliablyExtends
reliability : R...

ReliableInclusion
reliability : R...

(up) standard UML meta classes

(down) framework meta classes

Figure 3: Framework: UML meta classes used in the speci-
fication of the use case view.

Figure 3 summarizes the basic stereotypes defined by our
framework, supporting the construction of the use case view.
Moreover, Figure 4 gives the use case view of our case study
system, mentioned at the beginning of this section. A critical
use case, calledMission Profile , is defined. This use
case includes the functionalities of theCorbaServer and
theLegacySystem use cases. Finally, a user is associated
to Mission Profile through an association that is an in-
stance of theReliabilityRequirements stereotype.
The constraint attached to this association is that the reliabil-
ity of the Mission Profile should be at least 0.90.

CorbaServer LegacySystem

Mission Profile

<<include>> <<include>>

User
{self.reliability >= 0.90}

<<reliability-requirements>>

Figure 4: Case Study : Use case view of the target system.

Supporting the Construction of the Logical View
Typically, the logical view of a system comprises the defi-
nition of a number of classes that realize functional require-

4

ments specified in the use case view. Moreover, the logical
view includes the specification of associations and depen-
dencies among the defined classes. The logical view is usu-
ally organized into packages and subsystems. Subsystems
are units of functionality, organizing different parts of the
system, which can be designed, implemented and repaired
independently. A subsystem provides interfaces realized by
classes or subsystems contained by the subsystem. A sub-
system is primitive if its specification contains the definition
of classes.

In addition to the previous, and towards modeling and as-
sessing the system reliability, the logical view must include
for each primitive subsystem, the specification of its failure
behavior. Afailure denotes the subsystem’s inability to per-
form its desired function because of errors in the subsystem,
or its surrounding environment. Anerror is the effect of a
fault, in the state of the subsystem [10]. Since the UML
meta-model does not define elements whose semantics are
at least close to the ones mentioned above for failures, errors
and faults, we are obliged to extend it with the corresponding
stereotypes, namedFailure , Fault , Error . The base
class of those stereotypes is the UMLClassifier .

The Failure stereotype is further characterized by two
properties calleddomain andperception [10]. The for-
mer property allows distinguishing between failures affect-
ing the timing delivery of a service and failures affecting the
value of the delivered service. The latter property allows dis-
tinguishing between failures for which both the system and
the user have the same perception, and failures for which the
previous does not hold. TheFailure stereotype is special-
ized intoStoppingFailure , which in turn is specialized
into OmissionFailure , as shown in Figure 5. In OCL,
we have:

Failure:
self.baseClass.oclIsKindOf(Classifier) and
self.requiredTag->exists(

t1, t2 : TaggedValue |
t1.name = ’domain’ and
t1.value.oclIsKindOf(String) and
t2.name = ’perception’ and
t2.value.oclIsKindOf(String)

)

TheFault stereotype is characterized by three properties,
namelynature , origin , persistence [10]. The for-
mer allows, distinguishing among accidental and intentional
faults. Theorigin property allows distinguishing between
design faults, operational faults, physical faults, etc. Finally,
the persistence property allows distinguishing among perma-
nent, transient and intermittent faults, leading to the defi-
nition of the corresponding stereotypes, shown in Figure 5.
Formally, in OCL we have the following semantics:

Fault:
self.baseClass.oclIsKindOf(Classifier) and
self.requiredTag->exists(t1,t2,t3:TaggedValue|

t1.name = ’nature’ and

t1.value.oclIsKindOf(String) and
t2.name = ’origin’ and
t2.value.oclIsKindOf(String)
t3.name = ’persistence’ and
t3.value.oclIsKindOf(String))

Stereotype
icon : Geometry
baseClass : Name

Failure
baseClass : Name = Classi...
domain : String
perception : String

Fault
baseClass : Name = Classi...
nature : String
origin : String
persistence : String

Error
baseClass : Name = Classi...

Permanent
arrivalRate : R...

Transient
arrivalRate : Real
dissappearanceRate : R...

Intermittent
activeToBenignRate : R...
benignToActiveRate : R...

StoppingFailure

OmissionFailure

(up) UML standard meta classes

(down) Framework meta classes

CriticalClassifier
baseClass : Name = AssociationC...

Constraint

+constraintToSucceed

Figure 5: Framework: UML meta classes used for the spec-
ification of the failure behavior of primitive subsystems, in
the logical view.

Still, however, we have not defined a meta-level element,
that allows describing the semantic relationship between in-
stances of faults, failures, errors and primitive subsystems.
In UML, the semantic relationship among a number of model
elements is defined using UML associations. Moreover, if
the association itself has properties like attributes, opera-
tions, or methods it is said to be a class association. Given
those remarks and in order to define the semantic relation-
ship among the elements that describe the failure behavior of
primitive subsystems, we extend the UML meta-model with
a stereotype, namedCriticalClassifier , whose base
class is theAssociationClass . A CriticalClas-
sifier association is restricted to associate a failure, man-
ifesting a fault, with the fault, which in turn is associated with
the error caused in the state of a failed subsystem. Finally, an
associated failure qualifies an associated subsystem as being
either operational, or failed. This qualification is achieved
in UML through the definition of a qualifier, included in the
definition of theCriticalClassifier association. A
UML qualifier is a set of attributes whose values allow distin-
guishing between subsets of associated elements. Note that
we do not impose restrictions on the range of values of the
qualifier we define for theCriticalClassifier asso-
ciation, as it depends on the kind of faults that may be raised
by an associated subsystem. A user of the framework must,
hence, define the range of values for the qualifier, whenever
he uses an instance of theCriticalClassifier stereo-
type. The qualifier can then be used to define a constraint-to-
succeed for the instance. This constraint is associated with
theCriticalClassifier stereotype through thecon-
straintToSucceed association, as shown in Figure 5.
In OCL we have the following specification of theCriti-

5

calClassifier stereotype:

CriticalClassifier:
self.baseClass.oclIsKindOf(AssociationClass) and
self.connection->size = 4 and
self.connection->exists(

ae1, ae2, ae3, ae4 : AssociationEnd |
ae1.type.oclIsKindOf(Failure) and
ae2.type.oclIsKindOf(Fault) and
ae3.type.oclIsKindOf(Error) and
ae4.type.oclIsKindOf(SubSystem) and
ae1.qualifier->exists(a : Attribute |

a.type = Enumeration))

Going back to our case study example, Figure 6, gives the
part of the target system logical view, that describes the fail-
ure behavior of theCorbaServer subsystem. The sub-
system may fail, and its failures are caused by permanent
faults. Failures, faults, and errors are associated withCor-
baServer through theCriticalCorbaServer associ-
ation, which is an instance of theCriticalClassifier
stereotype. The qualifier defined for theCriticalCor-
baServer association defines an attribute that may have
two values, namelyOK and FAILED , allowing to qualify
instances of theCorbaServer subsystem as being either
operational, or failed. To succeed to a mission, instances of
CorbaServer should belong to the set of associated ele-
ments, qualified with the OK value. Hence the constraint-to-
succeed is defined in OCL as:

CorbaServer:
self.constraintToSucceed.body =

self.manifest.subsystem[OK]->includes(
self.subsystem)

CorbaServer

CorbaServerError
<<error>>

CorbaServerFault
<<permanent-fault>>

CorbaServerFailure
<<failure>>

CriticalCorbaServer
<<critical-classifier>>

1+subsystem 1

1

+effect
1

1+cause 1

subsystem : enum{FAILED, OK}

1

+manifest

1

subsystem : enum{FAILED, OK}

Subsystem

<<metaclass>>

Figure 6: Case Study : Logical view of the CorbaServer
primitive subsystem.

Supporting the Construction of the Process View
An important issue of concurrency that affects the target sys-
tem reliability is redundancy. More specifically, at a mature
design stage, it is possible to identify critical points within
the design model where some sort of redundancy is going
to be used to increase the system reliability. The identifi-
cation of those points can be done based on the values of
the properties that characterize the failure behavior of sub-
systems. In UML, redundancy can be modeled in terms of
class associations. The basic semantic relationships we need
to express regarding redundancy are:(a) Independent in-
stances of a subsystem are grouped together and they behave
as a single fault tolerant instance.(b) Not all of the group

members are absolutely necessary for the successful accom-
plishment of a mission. Hence, we define a stereotyped
class association, calledNModularRedundant , which
has the aforementioned semantics. Instances of theNMod-
ularRedundant stereotype should define a constraint-to-
succeed, which states the exact number of replicas that need
to be operational for the group to be operational. In OCL we
have the following well-formedness constraints:

NModularRedundant:
self.baseClass.oclIsKindOf(AssociationClass) and
self.connection->size = 2 and
self.connection->forall(ae : AssociationEnd |

self.connection->exists(ae’ : AssociationEnd |
ae.type = ae’.type and ae <> ae’))

Moreover, it is often the case that instances belonging
to a group can be repaired, i.e. removed, or replaced by
spare replicas, in the presence of failures. In such a case,
the repair behavior of a group must be specified. As with
the case of the failure behavior of subsystems, the repair
behavior of a group is characterized by a set of properties,
which includes the repair-rate and the Mean Time to
Repair (MTTR). Hence, to provide means for modeling the
behavior of repairable groups, we define a stereotype, called
NModularStandbyRedundant , which specializes the
NModularRedundant stereotype. In addition, it defines
properties whose values correspond to the repair-rate and
the MTTR group instances. Finally, theNModular-
StandbyRedundant association qualifies instances of
the associated classifier as being spares, or replicas. In
OCL, we have the following well-formedness constraints:

NModularStandbyRedundant:
self.requiredTag->exists(t1, t2: TaggedValue |

t1.name = ’repairRate’ and
t1.value.oclIsKindOf(Real) and
t2.name = ’MTTR’ and t2.value.oclIsKindOf(Real))

self.qualifier->exists(a : Attribute |
a.name = ’kind’ and a.type = Enumeration and
a.type.literal = fREPL, SPAREg)

Stereotype
icon : Geometry
baseClass : Name

(up) UML standard meta classes

(down) Framework meta classes

NModularStandbyRedundant
repairRate : Real
MTTR : Real

NModularStandbyWarmRedundantNModularStandbyColdRedundant

Constraint
(from Logical View)

NModularRedundant
baseClass : Name = Association...

CriticalClassifier
baseClass : Name = Association...

+constraintToSucceed

StateMachine

+runtimeBehavior

+runtimeBehavior

Figure 7: Framework: UML meta classes used in the speci-
fication of the process view.

Several specializations of theNModularStandbyRe-
dundant association can be further defined but their se-

6

mantics are not detailed here. In particular, different spe-
cializations can be defined regarding different kinds of spare
instances (e.g. cold, or warm instances), and different repair
policies confronting different kinds of faults. Figure 7 gives
an overview of the meta-classes provided by our framework
towards the construction of the process view.

Another issue of concurrency that must be specified in the
process view towards the assessment of the target system re-
liability is the way critical subsystems and replicated groups
of critical subsystems behave at runtime in the presence of
failures and repair actions. In UML, runtime behavior is typ-
ically described in terms of State Machines. Hence, as shown
in Figure 7, theCriticalClassifier stereotype and
theNModularRedundant stereotype are associated with
a StateMachine .

Going back to our example, Figure 8 gives the process view
of theCorbaFacade subsystem. Instances of this subsys-
tem represent facades that mediate the interaction among the
CorbaServer and theLegacySystem . As in the case
of theCorbaServer subsystem (see Figure 6), an instance
of theCriticalClassifier stereotype, calledCrit-
icalCorbaFacade , is defined. This instance is used to
associate failures, faults, and errors with theCorbaFa-
cade subsystem. Multiple independent instances of the
CriticalCorbaFacade type form a replicated group
called CorbaFacadeGroup . The multiple independent
instances are divided into a set of active replicas and a set
of spares used to repair failed replicas. TheCorbaFa-
cadeGroup defines a qualifier, namedkind , which is used
to distinguish between the aforementioned two sets. The
constraint-to-succeed associated to the group states that at
least one replica, member of the group, must be operational
for the group to be operational. In OCL we have:

CorbaFacadeGroup:
self.constraintToSucceed.body =
self.kind[REPL].manifest.subsystem[OK]->size>=1

CorbaFacadeGroup
<<n-modular-standby-redundant>>

CriticalCorbaFacade
<<critical-subsystem>>

1..n
kind : enum{REPL, SPARE}

<<n-modular-standby-redundant>>

kind : enum{REPL, SPARE}
1..n

Figure 8: Case Study : Process view of the CorbaFacade
primitive subsystem.

Figure 9 gives the state machine that describes the run-
time behavior of theCorbaFacadeGroup in the presence
of failures and repair actions. Two states, namedOK and
Failed , are defined. The former represents all runtime
states of the group where the group is operational (i.e. the
constraint-to-succeed defined above holds), while the latter
represents all runtime states of the group where the group is
failed (i.e. the constraint-to-succeed defined above does not

OKFAILED

1

2
3

a facade
that failed
is repaired
by a spare
one...

a facade
fails and the
constraint to
succeed still
holds...

a facade fails
and the
constraint to
succeed no
longer holds...

Figure 9: Case Study : Runtime behavior of the CorbaFa-
cadeGroup.

hold). Moreover, three state transitions are defined. Tran-
sition 1 states that if a failure takes place when the number
of replicas is greater than two, the group remains operational
and the number of working replicas is reduced by one, while
the number of failed replicas is increased by one. The de-
tailed specification is the following:

1:
-- Event
CorbaFacadeFailure
-- Guard condition
self.constraintToSucceed and
self.kind[REPL].manifest.subsystem[OK]->size > 1 /
-- Actions after transition
self.kind[REPL].manifest.subsystem[OK]->size-- and
self.kind[REPL].manifest.subsystem[FAILED]->size++

Transition 2 states that if there exist at least, one failed
replica and one available spare, the failed replica is substi-
tuted by the spare. The detailed specification is the follow-
ing:

2:
-- Event
Unspecified
-- Guard condition
self.constraintToSucceed
and
self.kind[REPL].manifest.subsystem[FAILED]->size >=1
and
self.kind[SPARE].manifest.subsystem[OK]->size >= 1 /
-- Actions after transition
self.kind[REPL].manifest.subsystem[OK]->size++
and
self.kind[REPL].manifest.subsystem[FAILED]->size--
and
self.kind[SPARE].manifest.subsystem[OK]->size--

Transition3 states that the group gets into a death state if a
failure takes place, while there is only one working replica
left. The detailed specification of this transition is similar to
the one of transition1.

Supporting the Construction of the Implementation View
Typically, building the implementation view of the target
software system comprises organizing the target system im-
plementation into implementation subsystems, conforming
to the design subsystems organization provided in the rest of
the architectural views that were discussed in the previous
subsections. In principle, there is nothing additional to be

7

modeled regarding reliability and, hence, we do not further
detail this view.

Supporting Construction of the Deployment View
The deployment view describes how the target software sys-
tem implementation is deployed on top of a particular execu-
tion platform. Assessing the reliability of the target software
system regarding both software and hardware, requires spec-
ifying the failure behavior of the nodes that make up this
execution platform. Our framework, as detailed so far, pro-
vides the basic constructs allowing to accomplish the previ-
ous task.

Completing the Use Case View
The use case view of the system is completed when the de-
sign of the system has reached a mature stage, with specifi-
cations describing how use cases are realized using elements
that constitute the target system architecture. Typically, each
use case is associated with a set of collaborations, describing
how model elements interact to accomplish a corresponding
mission. Assessing the reliability of the system for a par-
ticular mission thus requires defining constraints to succeed
for the aforementioned collaborations. Moreover, assessing
reliability requires describing the behavior of each collabora-
tion in the presence of failures and repair actions. Hence, as
in the case ofCriticalClassifier stereotype, which
extends the definition of theClassifier element, we
define a stereotype, calledCriticalCollaboration ,
whose base class is the standard UMLCollaboration
meta-class. TheCriticalCollaboration meta-class
is associated withConstraint describing constraints-to-
succeed and a state machine describing the runtime behavior
of CriticalCollaboration instances in the presence
of failures and repair actions. Figure 10 shows the relation of
the CriticalCollaboration with the standard UML
meta classes.

(up) UML standard meta classes

(down) Framework meta classes

Stereotype
icon : Geometry
baseClass : N...

Constraint

CriticalCollaboration
baseClass : Name = Collabora...

+constraintToSucceed

StateMachine

+runtimeBehavior

Figure 10: Framework: UML meta classes used in the spec-
ification of use case realizations.

Going back to our example, Figure 11 gives the critical col-
laboration that realizes theMission Profile use case
shown in Figure 4. More specifically, the critical col-
laboration contains an instance of typeCriticalCor-
baServer , namedserver , an instance of typeCor-
baFacadeGroup which represents two replicas of type

CriticalCorbaFacade and a spare one, and an instance
of type CriticalLegacySystem . The interaction that
takes place among those instances is a follows. The server
instance diffuses a request to both replicas contained by the
CorbaFacadeGroup . Then, this request is transmitted by
the group instance at most once to the legacy system.

server :
CriticalCorbaServer

facades :
CorbaFacadeGroup

legacy :
CriticalLegacySystem

1: 2:

Figure 11: Case Study : Use case realization of theMis-
sion Profile .

At this point, let us highlight the fact that in the architec-
tural views detailed so far, the user of our framework is
supposed to define the runtime behavior and constraints-
to-succeed, for primitive subsystems making up a system.
Moreover, as noted, a typical collaboration describes the in-
teraction among instances of those primitive subsystems, or
subsystems made out of those primitive subsystems. Conse-
quently, the constraints-to-succeed and the runtime behavior,
defined for the collaboration, are expressed in terms of the
constraints-to-succeed and the state machines, defined for
the primitive subsystems. Given the previous remarks, our
framework provides systematic procedures that automate the
construction of constraints-to-succeed and of state machines,
for critical collaborations, using information spread all over
the different views described so far.

Deriving constraints-to-succeed
In the UML meta-model, a collaboration is associated with
a set of interactions taking place through the elements used
within the collaboration. Hence, a constraint-to-succeed, de-
fined for a collaboration, must state that each interaction
needs to be successful for the collaboration to be success-
ful. Consequently, the constraint-to-succeed is the conjunc-
tion of a set of constraints-to-succeed, each one of which
corresponds to an interaction. The following OCL formula
specifies how to navigate through the UML meta-model as-
sociations to construct the constraint-to-succeed:

CriticalCollaboration:
self.interaction->forall(i : Interaction |

self.constraintToSucceed.body.stm->includes(
getConstraintInter(i))

Still, in the UML meta-model, an interaction is associated
to a collection of messages sent through the interaction. A
message is associated to an action that takes place upon the
reception of the message. It is often the case that an action
is guarded by a boolean condition, whose value determines
whether an action is performed, or not, and consequently
whether a message needs to be sent for the completion of
a mission, or not. Hence, a constraint-to-succeed, for an in-

8

teraction, is the conjunction of a set of conditional expres-
sions, each one of which corresponds to a message. Each
such expression should state that if a message needs to be
sent, then it has to be successful, for the overall interaction
to be successful. The OCL formula that follows specifies the
way to navigate through the UML meta-model associations
to systematically derive the constraint-to-succeed for an in-
teraction:

CriticalCollaboration:
getConstraintInter(i : Interaction): Expression
post:
i.message->forall(m : Message |

(if(m.action.recurrence.oclIsKindOf(
BooleanExpression)) then

Res.body.cond->includes(m.action.recurrence)
endif) and
Res.body.stm->includes(getConstraintMess(m))

A message in the UML meta-model is associated to a re-
ceiver and a sender, which in our case are instances of crit-
ical classifiers. Furthermore, a message is associated to a
set of messages whose completion precedes the execution of
the current message. Finally, a message is associated to the
message that activated it. Hence, the constraint-to-succeed,
for a message simply states that if preceding messages and
the activating message were successful, both the sender and
the receiver of the messages need to be operational, for the
message to be successful. Moreover, the critical nodes on
top of which the sender and the receiver execute need to be
operational. In OCL we have the following formula, describ-
ing how to build systematically a constraint-to-succeed for a
message:

CriticalCollaboration:
getConstraintMess(m :Message) : Expression
post:

m.predecessor->forall(p : Message |
Res.body.cond->includes(

getConstraintMess(p))) and
Res.body.cond->includes(

getConstraintMess(m.activator)) and
Res.body.stm->includes(

m.sender.base.constraintToSucceed.body) and
Res.body.stm->includes(

m.receiver.base.constraintToSucceed.body) and
Res.body.stm->includes(

getConstraintNodes(m.sender)) and
Res.body.stm->includes(

getConstraintNodes(m.receiver))

getConstraintNodes(cr : ClassifierRole)

: Expression
post:

cr.implementation->forall(c : Component |
component.deployment.forall(n : Node |

Res.body.stm->includes(
n.constraintToSucceed.body)))

Applying the previous procedure in the collaboration shown
in Figure 11, results in parsing message1, 2. Given that
messages are not guarded, we have:

MissionProfileRealization:
self.constraintToSucceed.body =

server.base.constraintToSucceed.body and
facades.base.constraintToSucceed.body and
legacy.base.constraintToSucceed.body)

After building a constraint-to-succeed for a particular col-
laboration, and given the values of reliability for the indi-
vidual elements used within it, it is possible to assess reli-
ability, based on a simple combinatorial technique. More
specifically, the reliability would be the probability that the
constraint-to-succeed holds.

Deriving state machines
A state machine that describes the runtime behavior of a col-
laboration, is simply a combination of independent state ma-
chines that specify the runtime behavior of the elements used
within a collaboration. Hence, the process that generates
such a state machine simply iterates through all the different
types of elements used within a collaboration, and for each
one of them, creates a new state and associates this state with
the state machine that describes the runtime behavior of the
element. The precise way to navigate through UML meta-
model associations towards performing the previous task is
described by the following OCL specification:

CriticalCollaboration:
self.interaction.message->iterate(

m: Message; acc : Set(Classifier) |
acc->includes(receiver.base) and
acc->includes(sender.base)

) -> forall (c: Classifier |
self.runtimeBehavior.top.substate->includes(
state : StateVertex |
state.oclIsKindOf(SubMachineState) and
state.submachine = c.runtimeBehavior))

After assembling the state machines, a complete Markov
chain model can be generated using the algorithm described
in [4]. Briefly, the algorithm takes as input an initial Markov
state. In our case, the initial state consists of a set of ele-
ments used within a collaboration, which are modeled as be-
ing either operational, or failed. Then the algorithm applies
recursively a set of rules describing how this state changes
in the presence of failures and repair actions. In our case,
those rules are given by the state machine generated accord-
ing to the process that was previously described. During a
recursive step, the algorithm produces a transition to a state
derived from the initial one. Depending on the rule that is
applied, in the resulting state, one or more elements are mod-
eled as being failed, or repaired, while in the initial state they
were modeled as being operational or failed, respectively. If
the resulting state is a death state the recursion ends.

5 Framework Prototype
The basic concepts of the framework detailed in the previ-
ous section are realized in a prototype implementation. Our
prototype makes use of the Rational Rose tool2. Rose is
a commercial tool that provides means of specifying and

2http://www.rational.com

9

organizing UML design models. Moreover, Rose supports
a script language, which enables users to extend the basic
GUI provided by the tool. A more important feature of
the script language is that it allows navigating within the
contents of a design model. Navigation is realized through
standard meta-model associations/dependencies, or through
associations/dependencies defined within a particular user-
defined design model. In our particular case, we used to
script language to extend the Rose GUI with, per archi-
tectural view, widgets that facilitate the definition of the
stereotypes detailed in the previous section. Moreover, the
script language proved extremely helpful for implementing
the procedures that automate the derivation of state machines
and the construction of constraints-to-succeed, for collabo-
rations that realize mission critical use cases. Finally, we
used the script language to integrate the Rose tool with the
SURE/ASSIST[2, 4] tool. The SURE tool provides Markov
and semi-Markov techniques for reliability assessment. AS-
SIST facilitates the generation of a Markov model, starting
from abstract specifications of rules describing the failure
and repair behavior of systems. Using the script language
we managed to generate such descriptions from UML state
machines describing the failure and repair behavior of col-
laborations that realize mission critical use cases.

6 Conclusion
This paper proposed a UML-based framework for assessing
the reliability of software systems. The main contributions
are summarized in the following two points:

� The identification and definition of basic constructs that
need to be incorporated within the standard UML meta-
model, towards the specification of aspects that affect
the reliability of software systems.

� The specification and realization of systematic proce-
dures that facilitate the reliability assessment of soft-
ware systems, whose UML design models incorporate
the specification of aspects that affect their reliability.

Still, however, we believe that certain refinements are needed
both at the design and the implementation of the proposed
framework. Currently, we are mostly working on enhancing
the implementation of the prototype and we seek other tools
implementing traditional methods for reliability assessment,
which can be integrated with our prototype.

REFERENCES

[1] UML in Action. Communications of the ACM,
42(10):26–70, 1999.

[2] R. Butler and W. Ricky. The SURE Approach to Re-
liability Analysis. IEEE Transactions on Reliability,
41(2):210–218, June 1992.

[3] R. Geist and K. Trivedi. Reliability Estimation of Fault
Tolerant Systems : Tools and Techniques.IEEE Com-
puter, 23(7):52–61, July 1990.

[4] S. C. Johnson. Reliability Analysis of Large Com-
plex Systems Using ASSIST. InProceedings of the 8th
Digital Avionics Systems Conference, pages 227–234.
AIAA/IEEE, 1988.

[5] C. Kabajunga and R. Pooley. Simulating UML Se-
quence Diagrams. InProceedings of the 14th UK Per-
formance Engineering Workshop, July 1998.

[6] P. Kahkipuro. A UML Based Performance Modeling
Framework for Object Oriented Distributed Systems.
In Proceedings of UML’99, Oct. 1999.

[7] P. King and R. Pooley. Using UML to Derive Stochastic
Petri-net Models. InProceedings of the 15th UK Per-
formance Engineering Workshop, pages 45–56, 1999.

[8] M. H. Klein, R. Kazman, L. Bass, J. Carriere, M. Bar-
bacci, and H. Lipson. Attribute-Based Architecture
Styles. InProceedings of the 1st Working Conference
on Software Architecture (WICSA 99), pages 225–243.
IFIP, February 1999.

[9] P. B. Kruchten. The 4+1 view model of software archi-
tecture.IEEE Software, 12(6):42–50, 1995.

[10] J.-C. Laprie. Dependable Computing and Fault Tol-
erance : Concepts and Terminology. InProceedings
of the 15th International Symposium on Fault-Tolerant
Computing (FTCS-15), pages 2–11, 1985.

[11] V. P. Nelson. Fault-Tolerant Computing Fundamental
Concepts.IEEE Computer, 23(7):19–25, July 1990.

[12] OMG. Object Constraint Language Specification, 1.1
edition, Sept 1997.

[13] OMG. UML Semantics, 1.1 edition, Sept 1997.

[14] R. Pooley. Using UML to Derive Stochastic Process
Algebra Models. InProceedings of the 15th UK Per-
formance Engineering Workshop, 1999.

[15] R. Pooley. Software Engineering and Performance :
A Road-map. InProceedings of the 22 International
Conference on Software Engineering (ICSE 2000)- The
Future of Software Engineering, pages 189–200. ACM
- IEEE - SIGSOFT, June 2000.

[16] R. Pooley and P. King. The Unified Modeling Lan-
guage and Performance Engineering.IEE Software,
146(1):2–10, 1999.

[17] M. Shooman. Software Engineering - De-
sign/Reliability/Management. McGraw-Hill, 1983.

[18] A. Zarras and V. Issarny. Assessing Software Reliabil-
ity at the Architectural Level. InProceedings of the 4th
International Software Architecture Workshop (ISAW-
4), pages 11–16. ACM - IEEE - SIGSOFT, June 2000.

10

