
Common Mistakes When Using the Command Pattern and How
to Avoid Them
Apostolos V. Zarras

Department of Computer Science and Engineering, University of Ioannina, Greece
zarras@cs.uoi.gr

ABSTRACT

Command, is a behavioral pattern from the Gang of Four catalog
that allows us to structure an application with respect to primitive
actions that can be easily managed and executed. Themain idea is to
decouple the objects that invoke actions from the objects that know
how to perform them, by encapsulating everything that is needed
for executing the actions in corresponding command objects. The
application can comprise different classes of command objects that
realize different actions. The different classes of command objects
implement the same interface. Therefore, command objects can be
passed as parameters to other objects that use them to execute the
respective actions, without knowing how this is actually done.

This paper revisits the Command pattern, focusing on the con-
figuration of command objects, when the data that are needed for
the execution of the actions become available as soon as the actions
should be executed. In this case, it is not clear which class is respon-
sible for configuring the command objects and how this should be
done. The paper reports common mistakes when dealing with this
problem, as anti-patterns, observed during the project of a software
engineering course. The observed mistakes invalidate the benefits
of the Command pattern because the invoking objects are explicitly
or implicitly coupled with the concrete classes of command objects
that realize the different actions. The paper further introduces a
pattern that deals with the problem.

CCS CONCEPTS

• Software and its engineering→ Software creation andman-

agement;

KEYWORDS

Behavioral Patterns, Command

ACM Reference Format:

Apostolos V. Zarras. 2020. CommonMistakesWhenUsing the Command Pat-
tern and How to Avoid Them. In European Conference on Pattern Languages
of Programs 2020 (EuroPLoP ’20), July 1–4, 2020, Virtual Event, Germany.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3424771.3424793

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7769-0/20/07. . . $15.00
https://doi.org/10.1145/3424771.3424793

1 INTRODUCTION

Command is a well-known behavioral pattern, introduced in the
Gang of Four (GoF) catalog [6]. At a glance, the pattern decou-
ples an object that invokes an action, in the context of a particular
application, from a receiving object that knows how to perform it.

The idea for decoupling the invoking object from the receiving
object is to encapsulate all the information that is necessary to per-
form an action in a command object. The required information may
comprise input data for the action and a reference to the receiving
object that knows how to perform the action. Then, the command
object can be passed as parameter to the invoking object that exe-
cutes the encapsulated action, without knowing much about it. This
way, the invoking object can be easily reused for executing different
actions, realized by different concrete classes of command objects
that implement the same common interface. Moreover, the applica-
tion can be easily extended with more actions. The pattern further
enables the composition of command object into more complex
ones, the logging of command objects that have been performed
and the realization of undo/redo operations.

Although the intent of the Command pattern is quite clear, there
is a key point that complicates the use of the pattern in many
situations, especially when the pattern is applied by inexperienced
developers.

Often, the information that is required by a com-
mand object is only available at themomentwhen
the invoking object has to execute the respective
action. The issue in these cases is which pattern
participant will be responsible for the configura-
tion of the command object.

This paper discusses frequent mistakes when dealing with the
aforementioned problem, as anti-patterns that have been empiri-
cally observed during the project of a software engineering course.
These anti-patterns, compromise the benefits of the Command
pattern, by making the invoking object responsible for the configu-
ration of the command object. Consequently, the invoking object
is coupled with the different concrete classes of command objects
involved in the application. The paper further introduces a pattern
that deals with the configuration of command objects. According to
the pattern, the command object configures itself with the required
information, whenever there is a need to execute an action, using a
reference to an object that is aware of and provides the required
information.

The rest of this paper is structured as follows. Section 2, provides
some brief background information on patterns and anti-patterns.
Section 3, defines the context, the problem of configuring command
object dynamically, and the forces involved in this problem. Sec-
tions 4 to 6 discuss the observed anti-patterns. Section 7, reports
the pattern that provides a better solution to the problem. Section 8,

https://doi.org/10.1145/3424771.3424793
https://doi.org/10.1145/3424771.3424793

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany A. V. Zarras

provides details on the pattern mining process and the observed
uses of the anti-patterns and the pattern, in the context of the soft-
ware engineering course project. Finally, Section 9 summarizes the
contribution of this paper.

2 BACKGROUND & RELATEDWORK

The Gang of Four (GoF) design patterns [6] are a valuable con-
tribution to the software engineering community. Several studies
showed that their use is beneficial for improving software quality
[2, 7] and maintainability [11]. Explicitly documenting the use of
design patterns also facilitates software maintenance [12]. However,
the classes that implement design patterns may change during the
lifetime of a particular software [3, 4]. Changes may result in new
defects. The extent of this problem varies depending on the patterns
that the changed classes implement [13]. Another line of research,
further showed that the inappropriate use of design patterns may
create severe problems [14]. For this reason, several approaches
emerged for checking the correct use of design patterns [8].

Anti-patterns report ineffective solutions to frequently encoun-
tered problems that introduce risks, inefficiencies and other prob-
lems [9]. Anti-patterns may concern several different issues like
the software architecture, design, implementation, documentation
and so on [1, 5, 10, 15].

In this paper, we focus on issues that result from the misuse of
the Command pattern. In particular, we report anti-patterns that
concern the configuration of Command objects and a pattern that
provides a better solution to this problem.

3 CONTEXT, PROBLEM & FORCES

Context

A junior developer implements an object-oriented application. To
this end, he structures the application based on the GoF Command
pattern.

The general structure of the pattern (Figure 1) that is specified
in the GoF catalog [6] involves the following participants:

• Command defines a common interface for different classes
of objects that enable the execution of different actions. The
interface provides the execute() operation for executing an
action.

• The Command interface is implemented by different con-
crete classes likeConcreteCommandA andConcreteCom-

mandB that realize respective actions.
• ReceiverA and ReceiverB, provide methods that are used
to carry out the actions, realized by ConcreteCommandA

and ConcreteCommandB, respectively.
• Client is responsible for creating objects of a concrete class
that implements the Command interface and for configur-
ing these objects with the information that is necessary for
performing an action.

• Invoker has a Command reference that can be set to an
object of a concrete class (ConcreteCommandA or Con-
creteCommandB) that implements the Command inter-
face.

A particular execution scenario that reflects the general structure
of the pattern is given below:

Figure 2: Assignment of responsibilities to the pattern par-

ticipants.

• AClient object creates aConcreteCommandA object, sets
its ReceiverA object and the data that are needed for exe-
cuting the action.

• The Invoker object stores a reference to theConcreteCom-

mandA object.
• The Invoker object invokes the execute() method on the
referenced object to execute the respective action.

• The ConcreteCommandA object executes the action by
invoking methods on the ReceiverA object.

Figure 2 summarizes the assignment of responsibilities to the
pattern participants.

Problem

A Command object needs certain data and a receiver object to
execute an action. The required data and receiver object are

only available at the moment when the action should be ex-

ecuted. In this situation, the developer can not implement the
pattern exactly as prescribed in the GoF catalog. Specifically, the
Client object can not configure the Command object before

giving it to the Invoker object. Hence, the assignment of respon-
sibilities to participants (Figure 2) must change. The developer
should decide which object is going to be responsible for the

configuration of the Command object, instead of the Client

object.

Forces

• For extensibility and reusability reasons, the developer must
keep the Invoker class decoupled from the concrete classes
that implement the Command interface, and from the re-
ceiver classes that realize the actions.

• The developer should further ensure that the Command

interface is simple and uniform to facilitate the execution of
different kinds of actions.

4 INVOKER-DRIVEN CONFIGURATION

Anti-Pattern

The developer keeps the creation of the Command object at the
Client class, but assigns the configuration of theCommand object
to the Invoker class (Figure 5).

In detail, the Client object creates a Command object that be-
longs to a particular concrete class (Figure 3). The Invoker object
stores a reference to the Command object. To execute an action,
the Invoker object determines the concrete class (ConcreteCom-

mandA or ConcreteCommandB) of the referenced Command

Common Mistakes When Using the Command Pattern and How to Avoid Them EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Figure 1: The structure of the Command pattern.

Figure 3: Invoker-Driven Configuration.

Figure 5: Invoker-Driven Configuration - Responsibili-

ties.

object. Following, it down-casts the Command object reference
to a concrete class reference. Using the concrete reference, the

Invoker object configures theCommand object with the appropri-
ate data and receiver object by calling setter methods, provided by
the concrete class. Finally, the Invoker object uses the Command

object reference to execute the action, by invoking the execute()
method.

Consequences

• The Invoker class is coupled with the concrete classes (Con-
creteCommandA,ConcreteCommandB) that implement
the Command interface. In particular, the Invoker object
uses the setter methods of these classes to configure the
referenced Command object with the required data and
receiver object. The Invoker class is further coupled with
the receiver classes.

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany A. V. Zarras

Figure 4: Invoker-Driven Creation and Configuration.

Figure 6: Invoker-Driven Creation and Configuration

- Responsibilities.

• This solution does not introduce any additional complexity
to the Command interface.

5 INVOKER-DRIVEN CREATION AND

CONFIGURATION

Anti-Pattern

The developer moves the creation and the configuration of the
Command object from the Client class to the Invoker class (Fig-
ure 6).

Specifically, when there is a need to execute a particular action
the Invoker object determines the concrete class (ConcreteCom-

mandA or ConcreteCommandB) that corresponds to the action
(Figure 4). Then, the Invoker object creates an object of the con-
crete class, using a parameterized constructor that is provided by
the class. To configure the Command object, the Invoker object
passes as parameters to the constructor a receiver object and the
data that are needed for the execution of the action. Finally, the
Invoker object invokes the execute()method on the newly created
Command object to execute the action.

Consequences

• The decoupling of the Invoker class from the concrete classes
that implement the Command interface is not possible. In

Figure 9: Invoker-Driven Parameterized Invocation -

Responsibilities.

particular, the Invoker class uses the parameterized construc-
tors of the concrete classes that implement the Command

interface. Moreover, the Invoker class depends on the classes
of the receiver objects.

• The Command interface remains simple and uniform for
the different kinds of actions.

6 INVOKER-DRIVEN PARAMETERIZED

INVOCATION

Anti-Pattern

The developer blends the configuration and the invocation of the
Command object in a single responsibility that is assigned to the
Invoker class (Figure 9).

In detail, the data and the receiver objects, required by the con-
crete classes that implement the Command interface are passed
as parameters to the execute() method. Parameter passing can be
implemented in different ways.

• One possible variant (Figure 7) is to add a parameter list to
the execute() method that consists of the union of all the
data and receiver objects that are needed by the concrete
classes. In this variant, the Client object creates a Com-

mand object of a concrete class that implements the Com-

mand interface. The Invoker object stores a reference to

Common Mistakes When Using the Command Pattern and How to Avoid Them EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Figure 7: Invoker-Driven Parameterized Invocation - Long parameter list.

Figure 8: Invoker-Driven Parameterized Invocation - Single generic parameter.

theCommand object. To execute an action, the Invoker ob-
ject determines the concrete class (ConcreteCommandA

orConcreteCommandB) of the referencedCommand ob-
ject. Then, the Invoker object invokes the execute()method
on the Command object. The Invoker object passes as pa-
rameters to the execute() method the data and the receiver
object that correspond to the concrete class of the referenced
Command object. The remaining parameters are set to null,

or to some other default value, depending on the types of
the parameters.

• Another possible variant is to add a single parameter to the
execute() method (Figure 8). In this variant, the parameter
is a generic data structure that can store an arbitrary number
of elements of different types. The Client object creates a
Command object of a concrete class that implements the
Command interface. The Invoker object stores a reference
to the Command object. To execute an action, the Invoker

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany A. V. Zarras

Figure 11: Command Self Configuration - Responsibili-

ties.

object identifies the concrete class (ConcreteCommandA

orConcreteCommandB) of the referencedCommand ob-
ject. Then, the Invoker object stores the data and the re-
ceiver object that correspond to the concrete class of the
referenced Command object to the generic data structure.
Finally, the Invoker object calls the execute() method on
the Command object with the generic data structure as
parameter.

Consequences

• The Invoker class is not explicitly coupled with the concrete
classes (ConcreteCommandA,ConcreteCommandB) that
implement theCommand interface, in the sense that it does
not refer to the concrete classes. However, in both variants
of this anti-pattern the Invoker class is implicitly coupled
with the concrete classes that implement the Command

interface for the following reasons:
– In the first variant of the anti-pattern, the parameters of
the execute()method depend on the data and the receiver
object required by each concrete class. The Invoker ob-
ject provides values for the parameters of the execute()
method.

– In the second variant of the anti-pattern, the Invoker class
is implicitly coupled with the concrete classes that imple-
ment the Command interface because it prepares the
contents of the generic data structure that is given as pa-
rameter to execute(), which are specific to the concrete
classes.

• The Command interface becomes more complex.
– In the first variant of the anti-pattern, the parameter list
can become very long. The parameter list depends on the
different concrete classes that implement the Command

interface. Moreover, not all of the parameters are useful
for each action.

– In the second variant of the anti-pattern, the parameter
list consists of a single parameter. However, the fact that
this parameter is a generic data structure that can store
any number of elements of any possible type is an issue
concerning type safety and the readability of the code.

7 COMMAND SELF CONFIGURATION

Pattern

The developer moves the configuration of the Command object
from the Client class to the concrete classes that implements the
Command interface (Figure 11).

The idea is to let a Command object configure itself with the
appropriate input data and receiver object at the moment when
the action should be executed. To this end, the Command object
should have references to certain objects that (1) are available at the
moment when the Command object is created and (2) can be used
by theCommand object to obtain the data and receiver object that
are needed, at the moment when the action should be executed.

According to this idea, in the solution that is sketched in Figure 10
the Client object creates a Command object and configures it
with a reference to an Informant object that is available when
the Client object creates the Command object and can provide
to the Command object the data and the receiver object that are
needed, at the moment when the action should be executed. Note
that in many cases the role of the Invoker can be played by the
Client participant. When the Invoker object calls the execute()
method on the Command object, the latter uses the reference
to the Informant object to configure itself with the data and the
receiver object that are needed for the execution of the action.

Example

Figure 12 depicts the design of a simple document editor for La-
tex users. Latex is a well known document preparation markup
language. It provides a large variety of styles and commands that
enable advanced document formatting. The design of the Latex
editor relies on the Command pattern. The editor allows the user to
create, save, or load a Latex document. The user can automatically
add Latex macros to the document and edit its contents. The editor
allows the user to edit multiple documents concurrently.

The GUI provides different menus for the file management and
the editing actions of the editor. The provided actions correspond
to respective menu items. The menus are objects of the LatexEd-
itorMenu class, while their constituent items are objects of the
LatexEditorMenuItem class. Concerning the Command pattern
structure, the LatexEditorMenu class plays the role of theClient.
On the other hand, the LatexEditorMenuItem class plays the
role of the Invoker. Hence, the LatexEditorMenuItem class has
a reference to a Command object.

The actions that are provided by the editor are implemented
as concrete classes that implement the Command interface. For
example, the LoadCommand class implements the action that
loads an existing Latex document from disk. The required data
for this action is a filename. The loading is done with the help of
a DocumentManager object that plays the role of the receiver.
Specifically, the DocumentManager object serves for creating a
new Document object that holds the contents of the Latex doc-
ument. The DocumentManager object that plays the role of the
receiver is created when the editor starts running and remains the
same throughout the execution of the editor. However, the required
filename is specified by the user right before the execution of the
loading action.

Common Mistakes When Using the Command Pattern and How to Avoid Them EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Figure 10: Command Self Configuration.

Figure 12: Command Self Configuration in the Latex editor example.

The AddLatexCommand implements the action that adds a
Latex macro to the contents of the current Latex document that the
user is editing. The required data for this action are an identifier of
the Latex macro that should be added to the current document, row
and column numbers that specify the position where the macro
should be added, and a Document object that holds the contents

of the current Latex document. Regarding the pattern structure, the
Document object plays the role of the receiver for this action. The
required data and the receiver object are determined right before
the execution of the action.

In the Latex editor project the role of the Informant is played
by the LatexEditorView object, which also plays the role of the

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany A. V. Zarras

Client. Hence, the LatexEditorView object creates a Command

object and configures the object with a reference to itself (LatexEd-
itorView object). Then, the LatexEditorView object configures a
LatexEditorMenuItem object with a reference to theCommand

object.
To execute an action, the LatexEditorMenuItem object calls

the execute() method on the referenced Command object. The
Command object uses the reference to the LatexEditorView ob-
ject to configure itself with the data and the receiver object that
are needed for the execution of the action, at the moment when
the action should be executed. For instance, if the Command ob-
ject belongs to the AddLatexCommand class, it obtains from the
LatexEditorView object the Latex macro that should be added
to the document, the row and the column numbers that identify
the position where the macro should be added, and a Document

object that plays the role of the receiver object.

Consequences

• The Invoker class is decoupled from the concrete classes
that implement the Command interface.

• The Command interface remains simple and uniform for
the different kinds of actions.

• In some cases, the identification of the appropriate Infor-
mant object may not be obvious (e.g., it may be an object
that knows an object, which refers to another object that can
provide the information for the action execution).

• The use of the Informant object introduces an additional
level of indirection towards obtaining the information for
the action execution.

8 EMPIRICAL EVIDENCE

Pattern Mining Method

The anti-patterns and the pattern discussed in the paper came up
during the project of a software engineering course that took place
in the second semester of 2018-2019. The goal of the project was to
develop a simple Latex editor. The students of the course formed 61
different development groups consisting of 2-3 people. Each group
developed its own project. The overall duration of the case study
was 10 weeks.

44 out of the 61 development groups used the Command pattern
to structure the editor, with respect to commands that correspond
to the required functionalities. The groups used the pattern sim-
ilarly. However, the groups used different ways for configuring
the Command objects with the appropriate data. Some of these
solutions are inline with the observed anti-patterns, while some
others conform with the observed pattern; specific percentages are
reported later in the detailed discussion of the anti-patterns and
the pattern.

Anti-Patterns and Pattern Uses

Figure 13, summarizes the anti-patterns and pattern uses in the
context of the software engineering project. Most of the groups
used the Command Self Configuration pattern. In particular,
22 groups used the pattern. Overall, that is 36% of the groups that
enrolled in the software engineering course and 50% of the groups
that used the Command pattern in the context of the project. The

Figure 13: Anti-patterns and pattern uses in the software en-

gineering course project.

most frequent anti-pattern is Invoker-Driven Parameterized
Invocation. Specifically, 14 groups used this anti-pattern, i.e., 21%
of the groups that enrolled in the software engineering course and
31% of the groups that used the Command pattern in the context of
the project. The Invoker-Driven Creation and Configuration
and the Invoker-Driven Configuration come next with 7 and 2
uses, respectively.

9 CONCLUSION

This paper revisited the GoF Command pattern, concentrating on
the configuration of Command objects in the case where the re-
quired data become available as soon as the respective actions
should be executed. The paper discussed frequent mistakes when
dealing with this problem in the form of anti-patterns. As an alter-
native to the anti-patterns, the paper introduced a pattern that deals
with the problem. The anti-patterns and the pattern came up during
the project of a software engineering course. A interesting future
research direction would be to look for anti-patterns and pattern
uses in the context of open-source projects. Another interesting
research direction is to investigate common pitfalls and mistakes
in the use of other popular patterns.

ACKNOWLEDGMENTS

Many thanks to the shepherd of the paper, Mouna Abidi, and to the
members of the writers workshop for their valuable comments.

REFERENCES

[1] Mouna Abidi, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2019. Anti-Patterns for
Multi-Language Systems. In Proceedings of the 24th ACM European Conference on
Pattern Languages of Programs (EuroPLoP). 42:1–42:14.

[2] Apostolos Ampatzoglou and Alexander Chatzigeorgiou. 2007. Evaluation of
Object-Oriented Design Patterns in GameDevelopment. Information and Software
Technology 49, 5 (2007), 445–454.

[3] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and
Massimiliano Di Penta. 2007. An Empirical Study on the Evolution of Design
Patterns. In Proceedings of the 6th Joint European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC-FSE). 385–394.

[4] James M. Bieman, Greg Straw, Huxia Wang, Willard P. Munger, and Roger T.
Alexander. 2003. Design Patterns and Change Proneness: An Examination of
Five Evolving Systems. In Proceedings of the 9th IEEE International Symposium
on Software Metrics (METRICS). IEEE Computer Society, Washington, DC, USA,
40–50.

Common Mistakes When Using the Command Pattern and How to Avoid Them EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

[5] William Brown, Raphael Malveau, Hays McCormick, and ThomasMowbray. 1998.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns - Elements
of Reusable Object-Oriented Software. Addison-Wesley.

[7] Brian Huston. 2001. The Effects of Design Pattern Application on Metric Scores.
Journal of Systems and Software 58, 3 (2001), 261–269.

[8] Salman Khwaja and Mohammad Alshayeb. 2016. Survey On Software Design-
Pattern Specification Languages. ACM Compututing Surveys 49, 1 (2016), 21:1–
21:35.

[9] Andrew Koenig. 1995. Patterns and Antipatterns. Journal of Object Oriented
Programming (JOOP) 8, 1 (1995), 46–48.

[10] Ralf Laue. 2017. Anti-Patterns in End-User Documentation. In Proceedings of the
22nd ACM European Conference on Pattern Languages of Programs (EuroPLoP).
ACM, 20:1–20:11.

[11] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta. 2001. A Controlled
Experiment in Maintenance Comparing Design Patterns to Simpler Solutions.
IEEE Transactions on Software Engineering 27, 12 (2001), 1134–1144.

[12] Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, andWalter F. Tichy.
2002. Two Controlled Experiments Assessing the Usefulness of Design Pattern
Documentation in Program Maintenance. IEEE Transactions on Software Engi-
neering 28, 6 (2002), 595–606.

[13] Marek Vokac. 2004. Defect Frequency and Design Patterns: An Empirical Study of
Industrial Code. IEEE Transactions on Software Engineering 30, 12 (2004), 904–917.

[14] Peter Wendorff. 2001. Assessment of Design Patterns during Software Reengi-
neering: Lessons Learned from a Large Commercial Project. In Proceedings of the
IEEE European Conference on Software Maintenance and Reengineering (CSMR).
77–87.

[15] Apostolos V. Zarras, Georgios Mamalis, Aggelos Papamichail, Panagiotis Kollias,
and Panos Vassiliadis. 2018. And the Tool Created a GUI That was Impure and
Without Form: Anti-Patterns in Automatically Generated GUIs. In Proceedings of
the 23rd ACM European Conference on Pattern Languages of Programs (EuroPLoP).
24:1–24:8.

	Abstract
	1 Introduction
	2 Background & Related Work
	3 Context, Problem & Forces
	4 Invoker-Driven Configuration
	5 Invoker-Driven Creation and Configuration
	6 Invoker-Driven Parameterized Invocation
	7 Command Self Configuration
	8 Empirical Evidence
	9 Conclusion
	Acknowledgments
	References

