
How to Test the Extract Method Refactoring
Ioannis Megas

Department of Computer Science and

Engineering, University of Ioannina,

Greece

johnybg80@gmail.com

Apostolos V. Zarras

Department of Computer Science and

Engineering, University of Ioannina,

Greece

zarras@cs.uoi.gr

Chris Karelis

Department of Computer Science and

Engineering, University of Ioannina,

Greece

chKarelis@gmail.com

ABSTRACT
Extract Method is probably the most commonly used refactoring.

Although it may seem quite simple at a first glance, there are many

cases that it can become fairly complex. Local variables and param-

eters can make this refactoring difficult to implement. The whole

procedure can also become quite error-prone. The only way to be

sure that we performed the refactoring without introducing bugs is

by means of testing. Testing, however, seems to many application

developers a very bothersome procedure. To facilitate their work

we discuss patterns that customize existing testing techniques to

the specificities of the Extract Method refactoring.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement;

KEYWORDS
Extract Method, Testing, Patterns

ACM Reference Format:
Ioannis Megas, Apostolos V. Zarras, and Chris Karelis. 2020. How to Test the

Extract Method Refactoring. In European Conference on Pattern Languages
of Programs 2020 (EuroPLoP ’20), July 1–4, 2020, Virtual Event, Germany.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3424771.3424773

1 INTRODUCTION
One of the most common [7–10, 12] and, at the same time, one of the

most interesting refactorings is Extract Method [4]. Extract Method

is probably the first refactoring that comes to mind when we decide

to clean our code. It helps usmake ourmethods smaller and our code

significantly more readable. Extract Method is frequently used to

facilitate other, more complex refactorings [4, 11, 13]. The idea is to
extract a code fragment from a source method in a new target method
and call the target method in the body of the source method. In many

cases, Extract Method is simple and straightforward. However, this

is not always true. Local variables and parameters increase the

complexity of the refactoring. There is even the possibility that the

extraction becomes so awkward that we need to resort to other

refactorings, before using Extract Method [4, 11, 13]. Themechanics

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7769-0/20/07. . . $15.00

https://doi.org/10.1145/3424771.3424773

of Extract Method are discussed in detail in Martin Fowler’s catalog

of refactorings, along with examples and hints on how to combine

Extract Method with other refactorings (ch.6 in [4]).

Nowadays, several popular IDEs provide automated support for

Extract Method. Automated tools reduce the risk of introducing

bugs in the code, while refactoring. However, several empirical

studies show that often the automated refactoring tools are under-

used [7–10, 12]. Even if we use an automated refactoring tool, it

is always possible that the tool is buggy, or that we accidentally

introduce a bug while using it. Moreover, the refactoring tools do

not always perform exactly as we expect [3].

In any case, the only way to verify that we did not introduce

bugs, while refactoring our code is to test the code after refactoring.

Consequently, the last step in the Extract Method mechanics [4]

concerns running tests. The problem, however, is that themechanics

of the pattern do not provide us with many details regarding what

to test and how. The answers to these issues are not always obvious.

In the state of the art, there are techniques, guidelines and tips for

testing code after change [1–3, 5, 6]. Choosing amongst them and

using them in the context of Extract Method refactorings, is not

straightforward, especially for inexperienced developers.

To deal with this issue, in this paper we discuss patterns that

combine existing testing techniques and explain how to use them

for testing Extract Method refactorings.

The target audience for the patterns is the developer who wants

to test his code after having applied the Extract Method refactoring.

The starting point is conventional testing techniques, which are

customized to the specificities of the Extract Method refactoring.

The patterns focus on testing the extracted method and the refac-

tored method. Concerning the testing of the refactored method,

existing tests are exploited, along with the development of new

tests to guarantee a desired level of coverage.

In Section 2, we discuss Test the Method Behavior; this is the

core pattern that allows testing whether the behavior of the code is

preserved after the Extract Method refactoring. In Section 3, we dis-

cuss Test the Modifications that complements the core pattern;

this pattern provides further guarantees that all the modifications

to the code have been covered with tests. Finally, in Section 4 we

provide a summary of our contribution and discuss future perspec-

tives.

2 TEST THE METHOD BEHAVIOR
Context
An application developer wants to refactor a method that is long

and complex. To this end, he wants to use Extract Method to ex-

tract a code fragment from sourceMethod() to a new method,

extractedMethod().

https://doi.org/10.1145/3424771.3424773
https://doi.org/10.1145/3424771.3424773

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany I. Megas et al.

Problem
The developer wants to execute tests, to make sure that he will not

break anything after the refactoring, but he does not know what to

test.

Forces
• The developer may perform the refactoring manually or

automatically. Manual refactoring increases the risk of in-

troducing bugs in the code. However, automated refactoring

tools may also be buggy, or they may simply not work as

expected by the developer.

• sourceMethod() has certain responsibilities that charac-

terize the method’s behavior. Refactoring sourceMethod()

may introduce bugs that lead to unexpected behavior.

• The test base of the projectmay include test cases for sourceMethod().

• Writing and maintaining tests is a time and resource con-

suming process. Testing everything is not realistic.

Solution
The developer should run tests that check if the behavior of sourceMethod()

after the refactoring is the same as before the refactoring. To achieve

this, the developer identify in the test base of the project tests that

record the actual behavior of sourceMethod(), before the refac-

toring. Typically, these are called characterization tests. If the test
base does not include tests for sourceMethod(), the developer

should write characterization tests, before the refactoring. After

the refactoring, the developer should run the characterization tests

to check if the behavior of sourceMethod() remains unchanged.

Hints
How to develop characterization tests. The development of a charac-

terization test can be based on the application requirements or the

method documentation. However, the characterization test does

not aim at finding a bug. Its purpose is to document the actual

method behavior, no matter if this is correct or not. Therefore, a

better way to record the actual behavior of the method is to rely

on the method itself.

Specifically, a technique for developing a characterization test

(ch. 13 [3] for a method is to write an assertion that will fail for

sure. Let the failure report what the actual behavior should be and

then change the test so that it expects the behavior that the method

produces. Depending on the effects of the method, the assertion

may check a return value, the state of an instance variable of the class,
the state of an object that is passed as parameter to the method, the
value of some global variable/object that is modified by the method
[3].

Another technique for developing a characterization test (ch. 6

[2]) is to make a hypothesis about how the method behaves, encode

the hypotheses in a test and run the test to see if the hypothesis

holds. If it does the test qualifies as a characterization test.

How to find existing characterization tests in the test base. A simple

way for finding in the test base tests that concern sourceMethod(),

is to track the callers of the method, using the facilities of the IDE.

How to check if the characterization tests account for all the code mod-
ifications. A way for checking whether the existing tests cover all

the codemodifications that heve been performed in sourceMethod()

and targetMethod(), is to instrument the code of sourceMethod()

with sensing variables [3], before running the tests, to trace the

parts of the code that execute when running the tests, and remove

the sensing variables after testing. Another way for checking, is

to use use the debugger, or other IDE facilities for test coverage

calculation.

Consequences
• The pattern increases the developer’s confidence that the

behavior of sourceMethod() is preserved after the refactor-

ing, no matter if he performs it automatically, or manually.

• The pattern facilitates the reuse of existing tests and the

incremental expansion of the test base.

• The tests do not target specific statements or execution paths.

Hence, they can be reused for testing future refactorings,

even if the implementation of sourceMethod() is signifi-

cantly changed.

• Recording the actual behavior of sourceMethod() may not

be easy; the related documentation may be incomplete or

inconsistent, with respect to the actual implementation. The

implementation of the method may be hard to comprehend.

Hence, the tests may not cover all the responsibilities of

sourceMethod().

• The refactoring of sourceMethod() may involve changes

to responsibilities that are not covered by characterization

tests.

Example
To illustrate the pattern, we re-implement the triangle example

from [5] (Figure 1). TheTriangle class is used for the manipulation

of Triangle objects. The class has four instance variables: a, b, c

correspond to the sides of aTriangle object; the type of aTriangle

object can be EQUILATERAL, ISOSCELES, or SCALENE.

TheTriangle constructor is quite long with complex conditional

statements. The developer wants to refactor the constructor using

Extract Method, to make the code simpler and more readable.

To make the constructor simpler and more readable, the devel-

oper plans to extract the complex nested conditional statement that

sets type to a new method, called setType().

To make sure that the refactoring will not break anything, he

should Test the Method Behavior. The test base of the appli-

cation does not include tests for the Triangle constructor. Hence,

he starts by writing some characterization tests using the JUnit

framework. The purpose of the tests is to make sure that after the
refactoring the constructor behaves as it did before the refactoring. To
record the actual behavior of the constructor before the refactoring

the developer writes three tests that create three Triangle objects

t1, t2, t3 of different type, equilateral, isosceles and scalene, respec-

tively. The developer uses the toString() method of the Triangle

class to write the assertions of the tests that check the state of the

created objects.

In a first step, the developer writes the three tests with assertions

that would most likely fail (Figure 2). In particular, the assertions

assume that the state of the objects is an empty string. He runs

the tests before the refactoring and the tests fail. The fail traces

How to Test the Extract Method Refactoring EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Figure 1: The implementation of Triangle before the extrac-
tion of setType().

returned by JUnit report that the actual states of t1, t2, and t3, as

set by the constructor, are "10 10 10 0", "10 5 10 1", and "11 5 15 2",

respectively.

In a second step, the developer revises the implementation of

the tests, with respect to the JUnit fail traces, so that the tests pass

(Figure 3). At this point, the tests record the actual behavior of the

constructor.

Now the developer can perform the actual refactoring to ex-

tract the setType() method (Figure 4). After the refactoring the

developer re-executes the characterization tests to ensure that the

constructor behaves as before.

Known Uses & Techniques
The characterization testing technique is introduced by Michael

Feathers (ch. 13 [3]). Fowler also suggests to write tests that record

method responsibilities before refactoring (ch. 4 [4]) and use these

Figure 2: Failing tests for Triangle.

tests to make sure that the behavior remains unchanged after refac-

toring.

Related Patterns
Write Tests to Understand is a pattern reported by Serge De-

meyer et al. (ch. 6 [2]) to facilitate the understanding of a legacy

system. The pattern suggests to record hypotheses and conclusions

about the code in terms of executable tests. Record Business Rules

as Tests is another pattern introduced by the same authors that

suggests recording the main business rules of the legacy system

as tests and using the tests to make sure that the business rules

are still valid during and after the system re-engineering. Serge

Demeyer et al. further discuss Grow Your Test Base Incremen-

tally, a pattern that deals with the reuse of existing tests and the

incremental growth of the test base.

What Next
If the refactoring of sourceMethod() involves changes to responsi-

bilities that are not covered by characterization tests the developer

can use Test the Modifications that follows.

3 TEST THE MODIFICATIONS
Context
An application developer wants to refactor sourceMethod() that

is long and complex. To this end, he wants to use Extract Method to

extract a code fragment from sourceMethod() to a new method,

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany I. Megas et al.

Figure 3: Revised tests for Triangle.

extractedMethod(). After the refactoring the developer checks

if sourceMethod() behaves as before, using Test the Method

Behavior. However, the developer realizes that the characteriza-

tion tests that he used do not cover all the modifications that he

performed during the refactoring.

Problem
The developer wants to perform more detailed testing to verify all

the modifications that he made in the body of sourceMethod()

and extractedMethod().

Forces
• The refactoring may involve changing several statements in

the body of sourceMethod(). Specifically, the developer

must move the extracted code statements to extracted-

Method() and modify the body sourceMethod() to invoke

extractedMethod(). The developer may also have to mod-

ify the extracted code statements after moving them to ex-

tractedMethod(), so as to deal with local variables, pa-

rameters and return values that are needed to facilitate the

invocation of extractedMethod(). Modifying a code frag-

ment, be it the body of sourceMethod(), or the extracted

code fragment, is a risk for introducing bugs.

• There may be several different execution paths that pass

from the modified statements.

• Writing and maintaining tests is time and resource consum-

ing process. Testing everything is not realistic.

Figure 4: The implementation of Triangle after the extrac-
tion of setType().

Solution
The developer should run tests that pass from the all the modified

statements. For more detailed testing, he should run tests that

execute all the feasible execution paths that pass from the changed

statements.

Hints
Typically, statement and path testing relies on the concept of a
program graph (e.g., ch. 8 [5], ch. 3 [1]) that represents a method.

The program statements are the nodes and the flow of control is

depicted by the edges of the program graph. In statement testing,

the goal is to execute tests that pass from the nodes of the graph.

How to Test the Extract Method Refactoring EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

Figure 5: The implementation of Triangle before the extrac-
tion of isNotTriangle().

In path testing, the goal is to execute tests that pass from the paths

of the graph.

Consequences
• Testing all modifications provides more confidence that the

refactoring did not introduce bugs in the implementation of

sourceMethod() and extractedMethod().

• Developing the tests may not be easy if the method imple-

mentation is complex.

• The tests are code based, i.e. they target specific statements

and execution paths. Thus, they may become obsolete if the

method implementation is significantly changed.

Figure 6: The implementation of Triangle after the extrac-
tion of isNotTriangle(); the line numbers in the constructor
body correspond to node labels of the program graph given
in Figure 7.

Example
To simplify the constructor of the Triangle class, the developer

extracted setType(). To verify that the refactoring did not affect

the behavior of the constructor he developed a number of charac-

terization tests.

EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany I. Megas et al.

Figure 7: The program graph of Triangle; ; the node labels
correspond to line number of the constructor body given in
Figure 6.

However, the code of the constructor is still quite complicated

(Figure 5). The developer decides to extract another method, named

isNotTriangle() that checks if the triangle inequality holds, to

make sure that the constructor’s parameters define a valid triangle

(Figure 6).

To test the constructor he uses once more Test the Method

Behavior. This time, the test base of the project includes the charac-

terization tests that he implemented for the extraction of setType().

The developer runs the tests that execute successfully. The existing

characterization tests pass from the invocation of isNotTriangle().

Nevertheless, the developer wants to be sure that he tested all the

statements that have been modified and all the execution paths that

pass from these statements. To this end, he draws a simple program

graph for the constructor of the Triangle class (Figure 7). Based

on the graph, he finds two paths that pass from the invocation of

isNotTriangle(): 1, 2, 4, 6, 7, 8, 9, 10, 11, 12 and 1, 2, 4, 5. The second

path throws an exception if the triangle inequality is violated. The

developer realizes that this path is not covered by the existing tests,

as they all pass from the first path. To cover this part of the code he

develops an additional test (Figure 8). He runs the test that executes

successfully. The new test records the constructor behavior in case

Figure 8: Testing triangle inequality violations.

of invalid parameters. Hence, it can also be part of the application

test base, to be used as a characterization test for future refactorings.

Known Uses and Techniques
Statement and path testing are two well-known code based testing

techniques that can be found in almost every software engineering

text book (e.g., ch. 8 [5], ch. 3 [1]). Michael Feathers introduced the

notion of targeted testing (ch. 13 [3]). The idea is to focus statement

and path testing on the modified method statements and paths,

respectively.

4 CONCLUSION
In this paper, we introduced testing techniques in the form of pat-

terns for testing the Extract Method refactoring. The proposed

patterns customize conventional testing techniques, with respect

to the Extract Method refactoring.

Concerning the future perspectives of this work, a interesting

challenge is to provide automated support that facilitates the appli-

cation of the proposed testing patterns. Another possible research

issue is to look for further testing patterns for Extract Method, or

other popular refactorings.

ACKNOWLEDGMENTS
We would like to thank our shepherd, Uwe van Heesch and the

members of our writers workshop for their constructive comments

and suggestions, during the preparation of this paper.

REFERENCES
[1] 2014. SWEBOK v3: IEEE Software Engineering Body of Knowledge. IEEE.
[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. 2009. Object-Oriented Reengineering

Patterns. Square Bracket Associates.
[3] M. C. Feathers. 2009. Working Effectively with Legacy Code. Prentice Hall.
[4] M. Fowler. 2000. Refactoring: Improving the Design of Existing Code. Addison-

Wesley.

[5] C. P. Jorgensen. 2014. Software Testing, a Craftsmans Approach. Taylor and

Francis Group.

[6] Rafaqut Kazmi, Dayang N. A. Jawawi, Radziah Mohamad, and Imran Ghani. 2017.

Effective Regression Test Case Selection: A Systematic Literature Review. ACM
Compututing Surveys 50, 2 (2017), 29:1–29:32.

[7] M. Kim, T. Zimmermann, and N. Nagappan. 2014. An Empirical Study of Refac-

toring Challenges and Benefits at Microsoft. IEEE Transactions on Software
Engineering 40, 7 (2014), 633–649.

[8] E. Murphy-Hill, C. Parnin, and A. Black. 2009. How We Refactor, and How We

Know It. In Proceedings of the 31st International Conference on Software Engineering
(ICSE). 287–297.

[9] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle. 2013. A Multidimensional

Empirical Study on Refactoring Activity. In Proceedings of the ACM Conference of
the Center for Advanced Studies on Collaborative Research (CASCON). 132–146.

[10] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E. Johnson.

2012. Use, Disuse, and Misuse of Automated Refactorings. In Proceedings of the
34th International Conference on Software Engineering (ICSE). 233–243.

How to Test the Extract Method Refactoring EuroPLoP ’20, July 1–4, 2020, Virtual Event, Germany

[11] T. Vartziotis, A. V. Zarras, A. Tsimakis, and P. Vassiliadis. 2020. Recommending

Trips in the Archipelago of Refactorings. In Proceedings of the 46th International
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM).
to appear.

[12] Z. Xing and E. Stroulia. 2006. Refactoring Practice: How it is and How it Should be

Supported - An Eclipse Case Study. In Proceedings of the 22nd IEEE International
Conference on Software Maintenance (ICSM). 458–468.

[13] A. V. Zarras, T. Vartziotis, and P. Vassiliadis. 2015. Navigating through the

Archipelago of Refactorings. In Proceedings of the the Joint 23rd ACM SIGSOFT
Symposium on the Foundations of Software Engineering and 15th European Software
Engineering Conference (FSE/ESEC). 922–925.

	Abstract
	1 Introduction
	2 Test the Method Behavior
	3 Test the Modifications
	4 Conclusion
	Acknowledgments
	References

