
Recommending Trips in the Archipelago of
Refactorings

Theofanis Vartziotis1, Apostolos V. Zarras1, Anastasios Tsimakis1, and Panos
Vassiliadis1

Department of Computer Science and Engineering, University of Ioannina, Greece
{tvartzio, zarras, pvassil}@cs.uoi.gr, atsimakis@gmail.com

Abstract. The essence of refactoring is to improve source code quality,
in a principled, behavior preserving, one step at the time, process. To this
end, the developer has to figure out the refactoring steps, while working
on a specific source code fragment. To facilitate this task, the documenta-
tion that explains each primitive refactoring typically provides guidelines
and tips on how to combine it with further refactorings. However, the
developer has to cope with many refactorings and lots of guidelines.
To deal with this problem, we propose a graph-based model that formally
specifies refactoring guidelines and tips in terms of nodes that correspond
to refactorings and edges that denote part-of, instead-of and succession
relations. We refer to this model as the Map of the Archipelago of Refac-
torings and we use it as the premise of the Refactoring Trip Advisor,
a refactoring recommendation tool that facilitates the combination of
refactorings. A first assessment of the tool in a practical scenario that
involves 16 developers and a limited set of refactorings for composing
and moving methods brought out positive results that motivate further
studies of a larger scale and scope.

Keywords: Refactoring recommendation, Refactoring graph, Refactor-
ing combination

1 Introduction

Refactoring is a basic prerequisite for keeping our source code clean. The basic
idea is to improve source code quality, via a series of small behavior-preserving
transformations [11, 4].

”The biggest problem with Extract Method is dealing with local variables,
and temps are one of the main sources of this issue. When I’m working
on a method, I like Replace Temp with Query to get rid of any temporary
variables that I can remove. If the temp is used for many things, I use
Split Temporary Variable first to make the temp easier to replace.”

The previous quote is from Martin Fowler’s catalog of refactorings [4]. What
is interesting in this quote is that it provides certain guidelines on how to perform
the Extract Method refactoring. To make things easier, it suggests to remove

2 Theofanis Vartziotis et. al

temporary variables before the method extraction, using Replace Temp with
Query. Taking a step further, the quote suggests to use Split Temporary Variable
before Replace Temp with Query, so as to facilitate the removal of multi-purpose
temporary variables.

Observe the next quote, which suggests using Replace Method with Method
Object instead of Extract Method, in the case of very complex methods.

”Sometimes, however, the temporary variables are just too tangled to
replace. I need Replace Method with Method Object. This allows me to
break up even the most tangled method, at the cost of introducing a new
class for the job.”

Moreover, in the following quote we see part-of relations, which dictate how
to realize Extract Superclass based on more primitive refactorings like Extract
Method and Pull Up Method.

”Examine the methods left on the subclasses. See if there are common
parts, if there are you can use Extract Method followed by Pull Up Method
on the common parts.”

Hence, refactorings come along with several informal guidelines that tell us
how to combine them into more complex evolution tasks. What is the problem
with that? On the one hand, there are way too many refactorings and guidelines
in Fowler’s catalog. Specifically, the catalog consists of 68 different refactorings,
while the documentation of these refactorings includes more than 100 guidelines
and tips [16]. On the other hand, the state of the art on refactoring (two detailed
surveys can be found in [6] and [2]) does not provide means that facilitate the
effective exploitation of this knowledge.

To deal with the aforementioned issues, we propose an approach that allows
the developers to combine refactorings into more complex evolution tasks via
the following key concepts:

– The Map of the Archipelago of Refactorings, a graph-based model that speci-
fies informal guidelines and tips, found in Fowler’s catalog, in terms of nodes
that correspond to refactorings, and edges that signify part-of, instead-of
and succession relations between them. In Zarras et al. [16] we introduced a
coarse sketch of the map, while in this paper we provide its detailed formal
definition.

– The Refactoring Trip Advisor, a refactoring recommendation facility that
provides an interactive perspective of the archipelago map, which makes sug-
gestions regarding which refactoring(s) to use before, after, or instead of a
particular refactoring. The Refactoring Trip Advisor further provides guide-
lines on how to apply individual refactorings, and enables the identification
of refactoring opportunities.

We assess our approach in two steps: (1) we show that the Refactoring
Trip Advisor adheres to the basic refactoring tool principles, recommended by

Recommending Trips in the Archipelago of Refactorings 3

Fig. 1. The archipelago hyper-map.

Murphy-Hill and Black in [10]; (2) we validate that the Refactoring Trip Advisor
can be successfully used in a realistic re-engineering scenario, in a study that
involves 16 developers with varying profiles.

The rest of this paper is structured as follows. In Section 2, we discuss related
work. In Section 3, we detail the modus operandi of the proposed approach. In
Section 4, we concentrate on the validation of the proposed approach. Finally,
in Section 5 we summarize our contribution and point out the future directions
of this work.

2 Related Work

Opdyke introduced refactoring as a behavior preserving process that changes a
software, so as to enable other changes to be made more easily [11]. Mens and
Tourwé [6] provide an excellent survey that addresses several different aspects of
the refactoring process (e.g., refactoring activities, techniques, supporting tools).
A more recent extensive survey that focuses on techniques and tools for the
detection of refactoring opportunities is provided by Al Dallal [2].

An important result that is brought out by the empirical study of Kim et al.
[5] is the need to combine refactorings in more complex evolution tasks. To deal
with this issue, the state of the art comprises a number of interesting search-based
refactoring approaches (e.g., [9]) that apply refactorings automatically towards
maximizing the software quality improvement, with respect to a set of target

4 Theofanis Vartziotis et. al

quality indicators. Our approach follows a different direction, as the goal is to
widen the developer’s choices with recommendations derived from the proposed
graph-based refactoring model.

Our work is more closely related to approaches that concern the modeling of
refactoring relations. In particular, Mens et al. [7] model refactoring relations to
detect conflicts between refactorings. Another interesting approach that employs
refactoring relations to enable automated refactoring scheduling and conflict res-
olution is proposed by Moghadam and Cinnéide [8]. Van Der Straeten et al [15],
rely on refactoring relations to preserve program behavior. The key difference
of our approach from these efforts is that we formally model guidelines and tips
found in Fowler’s catalog of refactorings [4], in terms of an interactive model that
provides actionable recommendations for the effective combination of refactor-
ings.

When it comes to the detection of refactoring opportunities [2], the goal of
our approach is to facilitate the integration of different existing techniques under
the common umbrella of the proposed graph-based refactoring model. As a proof
of concept, we have done this in the Refactoring Trip Advisor with three different
refactoring detection techniques [12, 13, 3] that are provided by the JDeodorant
framework.

3 Refactoring Trip Advisor

In this section, we formally model the map of the archipelago of refactorings.
Then, we focus on the recommendation of refactoring trips. Finally, we illustrate
the role of our approach in a realistic re-engineering scenario.

3.1 Modelling Refactoring Relations

At a glance, the Map of the Archipelago of Refactorings models informal guide-
lines and tips in terms of different relations between refactorings. Our baseline
is Martin Fowler’s catalog of refactorings [4]. Nevertheless, the extension of the
map with further refactorings and relations is straightforward. The core concept
of the map is a graph, with nodes representing refactorings and edges represent-
ing the relations between them. As relations are of different kinds, we introduce
corresponding types of edges. More formally, we define the overall model as
follows.

Definition 1. [Archipelago Map] The map of the archipelago of refactorings
is a directed graph MR(VR,ER), s.t. the nodes VR represent refactorings, while
the edges ER denote relations that correspond to guidelines and tips, concerning
the combination of refactorings:

– [Node Properties] VR =
⋃6

i=1 V
i
R is divided into disjoint subsets, called

regions. The regions correspond to the different categories of refactorings
(Figure 1), defined in Fowler’s catalog [4].

Recommending Trips in the Archipelago of Refactorings 5

Fig. 2. The Composing Methods region map.

– [Edge Properties] The edges e(vi, vj) ∈ ER are typed, with type(e(vi, vj)) ∈
T = {succession, part of, instead of}:
• A succession relation, is represented as a solid unidirectional edge; it de-

notes that it would be useful to perform the source (resp. target) refactor-
ing vi (resp. vj), before (resp. after) the target (resp. source) refactoring
vj (resp. vi).

• A part of relation is represented as a dotted unidirectional edge between
two refactorings; it signifies that the source refactoring vi, can be used
for the realization of the target refactoring vj.

• A instead of relation, is denoted as a dashed bidirectional edge; it means
that either one of the related refactorings can be used, instead of the
other.

The archipelago map is complex, consisting of 68 nodes and 101 edges be-
tween them 1. The complexity of the map further points out the amount of infor-
mation and the effort that is required from the developer, to exploit refactorings
in an effective way. To deal with the complexity of the map, we decompose it
into a set of region maps (e.g., Composing methods region given in Figure 2). A
region map shows the refactorings of a respective region, along with important
refactorings from other regions that are related to them.

Definition 2. [Region Map] For every region V i
R of VR, the region map M i

RG(V i
RG, E

i
RG)

is an induced sub-graph of MR, s.t. V i
RG consists of the refactorings V i

R and re-
lated refactorings from other regions, i.e., (V i

RG ⊃ V i
R)∧(∀vj ∈ V i

RG−V i
R, ∃vi ∈

V i
R s.t. (e(vi, vj) ∈ ER ∨ e(vj , vi) ∈ ER)).

1
The map can be found at: www.cs.uoi.gr/˜zarras/RefactoringsArchipelagoWEB/ArchipelagoOfRefactorings.html

6 Theofanis Vartziotis et. al

At a higher-level of abstraction the region maps are organized with respect
to a hyper-map (Figure 1). In a sense, the archipelago hyper-map provides a
summary of the full-fledged archipelago map.

Definition 3. [Archipelago Hyper-map] The archipelago hyper-map HR(VH,EH),
is a directed graph, s.t. the nodes of the graph represent the regions V 1

R, V
1
R, . . . V

6
R

of the archipelago map and the edges of the hyper-map are produced with respect
to the archipelago map MR(VR,ER), as follows: ∀e(vi, vj) ∈ ER, ∃e(V i

R, V
j
R) ∈

EH if and only if (vi ∈ V i
R ∧ vj ∈ V j

R ∧ V i
R 6= V j

R).

3.2 Recommending Refactoring Trips

To facilitate the refactoring process, the archipelago map must go live to provide
actionable recommendations to the developer towards the effective combination
of refactorings. Moreover, the developer needs contextualization for each refac-
toring, in the form of guidelines concerning how to apply it. Finally, the developer
needs assistance for the identification of refactoring opportunities in the specific
module (package, class, method, etc.) that he/she is working with.

To deal with the aforementioned issues we developed the Refactoring Trip
Advisor as an Eclipse plugin 2. At a glance, a refactoring trip begins with the
developer selecting a particular refactoring region from the archipelago hyper-
map (e.g., the Composing method region given in Figure 1). As a result, the
Refactoring Trip Advisor provides to the developer the map of the selected
region. The developer selects the particular refactoring (e.g., Extract Method
in Figure 2) that he/she wants to apply. Then, the Refactoring Trip Advisor
highlights in the map the selected refactoring and other related refactorings,
which can be used before, after, as part of, or instead of the selected refactoring,
with the respective nodes colored in yellow, pink, cyan, purple and tan.

Each refactoring is related with slideware that provides guidelines on how
to apply it. The slideware consists of three parts: the first part explains the
problem solved by the refactoring; the second part, gives a simple example on
how to apply the refactoring; the last part, allows the developer to execute
available refactoring detectors that identify refactoring opportunities in the code.
To perform the recommended refactorings the developer can exploit the available
IDE refactoring facilities (see the related discussion in Section 4.1).

Regarding the refactoring detectors, one of the primary concerns of our ap-
proach is extensibility. Specifically, our goal is to ease the integration of the tool
with (a) in-house refactoring detectors, developed specifically for our approach
and (b) external refactoring detectors, provided by third-party developers. To
achieve this goal, we rely on the Three-Steps Refactoring Detector pattern that
we introduced in Tsimakis et al. [14]. The pattern facilitates the development
of refactoring detectors via a polymorphic hierarchy of template classes that
realize a general three-step refactoring detection process. In the Refactoring
Trip Advisor we used the pattern for the development of eight in-house refac-
toring detectors. Moreover, we used the pattern to facilitate the integration of

2
The plugin source code can be downloaded from github.com/AnastasiosHJW/RefactoringTripAdvisor

Recommending Trips in the Archipelago of Refactorings 7

the Refactoring Trip Advisor with three external refactoring detectors that are
provided by the JDeodorant refactoring framework [12, 13, 3]. More details con-
cerning the usage of the pattern in the Refactoring Trip Advisor can be found
in Tsimakis et al. [14].

To discuss the involvement of the Refactoring Trip Advisor in the refactoring
process we employ a typical re-engineering scenario that concerns data contain-
ers and misplaced responsibilities. Specifically, we focus on an application that
analyzes the evolution of Amazon Web Services (AWS) [17]. The heart of the
application is the History class, a data container that keeps the evolution data
of subsequent Web service versions. Around the History class there are several
client classes that manipulate the evolution data. The code of the client methods
is typically long and complicated. Certain parts of the client methods are mis-
placed, as the History class should have been responsible for the manipulation
of the evolution data.

1 public ChartPanel [] visualizeGrowth () {
2 ChartPanel [] panels = new ChartPanel [2];
3 ArrayList <VersionInfo > versionsList = history.getVersions ();
4
5 DefaultCategoryDataset operationsGrowth =new DefaultCategoryDataset ();
6 for (int i = 0; i < versionsList.size(); i++) {
7 double opers = versionsList.get(i).getOperationGrowth ();
8 String xAxis = versionsList.get(i).getId();
9 operationsGrowth.setValue(opers , "Operations", xAxis);
10 }
11
12 JFreeChart opersGrowthChart = ChartFactory.createLineChart(
13 "Growth Rate Line Chart", "Version ID",
14 "Growth Rate", operationsGrowth ,
15 true , true , false
16);
17 panels [0] = new ChartPanel(opersGrowthChart);
18
19 //
20 return panels;
21 }

Listing 1. Code snippet from visualizeGrowth(), before refactoring.

1 public ChartPanel [] visualizeGrowth () {
2 ChartPanel [] panels = new ChartPanel [2];
3
4 DefaultCategoryDataset operationsGrowth = history.getOpersGrowth ();
5
6 JFreeChart opersGrowthChart = ChartFactory.createLineChart(
7 "Growth Rate Line Chart",
8 "Version ID", "Growth Rate",
9 operationsGrowth , true , true , false
10);
11 panels [0] = new ChartPanel(opersGrowthChart);
12
13 //
14 return panels;
15 }

Listing 2. Code snippet from visualizeGrowth(), after refactoring.

For instance, GrowthVisualizer is a client class that visualizes the Web
services’ growth, in terms of the number of provided operations and data struc-
tures. Listing 1 gives a code snippet from the visualizeGrowth() method of

8 Theofanis Vartziotis et. al

GrowthVisualizer. Our goal is to make this snippet smaller and simpler. To
this end, we begin from the archipelago hyper-map (Figure 1), which gives gen-
eral recommendations on how to combine refactorings from different regions. To
reorganize the code of the method, we can use refactorings from the Compos-
ing Methods region. These refactorings typically result in the extraction of new
methods. Therefore, the hyper-map suggests that afterwards it may be useful
to consider refactorings from the Moving Features region, to potentially move
extracted methods and related fields.

Table 1. Developers profiles (colours highlight boundary values).

Suppose that we select Extract Method (yellow node in Figure 2) from the
Composing Methods region. The respective refactoring detector [13] suggests
to extract a new method for the loop (Listing 1, lines 6-10) that prepares the
evolution data-sets for the visualization of the Web service growth. Before the
method extraction, the Composing Methods map recommends the use of refac-
torings like Inline Temp and Replace Temp with Query (pink nodes in Figure 2)
for the removal of local variables. These refactorings shall make the method
extraction easier (see first quote in Section 1). The Inline Temp detector [14]
identifies several such variables (e.g., versionList, opers, xAxis) After the
method extraction, the map suggests to consider Move Method (cyan node in
Figure 2) to place the extracted methods (getOpesGrowth()) close to the data
that it manipulates, while the Move Method detector [12] identifies History

as the appropriate target class. Overall, the refactored code snippet is given in
Listing 2.

4 Validation

To validate the Refactoring Trip Advisor we consider two main issues. First, we
assess whether it adheres to the basic refactoring tool principles, introduced by
Murphy-Hill and Black [10]. Then, we examine what do the developers actually
think about the tool.

Recommending Trips in the Archipelago of Refactorings 9

4.1 Fitness for purpose

Murphy-Hill and Black introduced five principles for refactoring tools [10]. Specif-
ically, a refactoring tool should allow the programmer to: (R1) Choose the de-
sired refactoring quickly; (R2) switch seamlessly between program editing and
refactoring; (R3) view and navigate the program code while using the tool; (R4)
avoid providing explicit configuration information; (R5) access all the other tools
normally while using the tool.

The Refactoring Trip Advisor facilitates the selection of refactorings (R1)
based on two concepts: (1) it provides the region maps that hide from the devel-
oper the complexity of the entire archipelago map; (2) it provides the archipelago
hyper-map that summarizes the contents of the archipelago map. The basic
functionalities of the tool are provided via a separate frame (Figures 1, 2). The
developer can activate this frame and switch back to the main IDE frame, at
any point, to edit/view/navigate the program code (R2, R3), and use any other
tool that is available through the IDE (R5). The recommendation of refactorings
based on the region maps does not require any configuration information. On
the other hand, certain detectors of refactoring opportunities do. Typically, the
required information concerns thresholds that customize the detectors’ modus
operandi. Nevertheless, the developer can avoid setting these thresholds (R4),
as the proposed tool assumes default values for them.

4.2 The developers’ opinions

The goal of this study is to let the developers use the Refactoring Trip Advi-
sor and get their feedback concerning the overall approach. To familiarize the
developers with the Refactoring Trip Advisor we employed the re-engineering
scenario introduced in Section 3. Specifically, we asked the developers to sim-
plify the visualizeGrowth() method (a code snippet of the method is given in
Listing 1) with the help of the tool. As a starting point, we prompted the devel-
opers to focus on refactorings from the Composing Methods region. After this
experience, we asked them to perform an overall review of the the Refactoring
Trip Advisor, by rating the usefulness of the refactoring relations, slideware, and
detection facilities, based on a typical 5-level likert scale. The developers could
provide further comments, remarks, and suggestions, concerning our approach.

Our study involves a sample of 16 developers from industry and academia
(students and staff members). The selection was based on purposive sampling
of heterogeneous instances [1]; the developers were chosen deliberately to reflect
diversity on (a) development experience, (b) knowledge about refactoring, (c)
frequency of refactoring, and (d) usage of refactoring tools. The detailed profiles
of the developers are provided in Table 1.

Key findings. Table 2 summarizes the results that we obtained. The results
are provided in three parts: the first part (Table 2 - left) gives the statistical break-
down of the refactorings that have been performed by the developers; the second
part (Table 2 - middle) analyzes the exploitation of the recommendations that
have been provided by the Refactoring Trip Advisor, in terms of the percentage

10 Theofanis Vartziotis et. al

Table 2. Refactorings & tool feature ratings (colours highlight boundary values).

of recommended refactorings that have been performed by the developers, and
the percentage of performed refactorings that have been recommended; finally,
the third part (Table 2 - right) details the assessment of the tool’s features.

Overall, the developers managed to use the Refactoring Trip Advisor in the
context of a realistic task. Nevertheless, the exploitation of the provided recom-
mendations by the developers varies, along with the quality of the results that
they produced. In particular, two developers (3 and 9) just removed local vari-
ables from visualizeGrowth(), via Inline Temp. Five developers (2, 5, 7, 8, 9)
simplified visualizeGrowth() even more, using Extract Method. Finally, nine
developers (1, 4, 6, 10, 11, 12, 13, 15, 16) solved the problem of misplaced re-
sponsibilities, by moving the extracted methods to the History class, via Move
Method.

The percentage of recommended refactorings that have been performed by
the developers varies from 18.18% to 100%. However, most of the developers
applied a large percentage of the recommended refactorings; twelve developers
performed more than 60% of the recommended refactorings, while the average
percentage of refactorings that have been performed is 74.43% with a standard
deviation of 26.60%. On the other hand, the percentage of performed refactorings
that have been recommended is 100% for all the developers, except one, who
extracted a method that was not included in the suggestions.

Concerning the assessment of the overall approach, the developers provided
quite high ratings, with the refactoring relations and slides being the most appre-
ciated features, followed by the refactoring detection facilities. Regarding further
comments and remarks, several developers pointed out that the proposed ap-
proach helped them to learn more about refactoring. Moreover, they mentioned

Recommending Trips in the Archipelago of Refactorings 11

that the proposed approach could be considered both for development and educa-
tion purposes. The developers’ suggestions ranged from concrete improvements
(e.g., to reduce the number of pop-up windows and make the slideware resizable),
to broader ideas like making the representation of the map more interactive, al-
lowing the developer to customize it by adding/removing/changing refactorings
and relations, adding more slides on the relations between refactorings, comple-
menting the slideware with audio/video, and so on.

Threats to Validity. Two factors that threaten the internal validity of one
group experiments are history and maturation; the longer the time of the exper-
iment, the more likely are these threats [1]. In our study, the overall duration
of the tests was reasonably short, ranging from 15 to 65 mins. Another threat
to internal validity is the social desirability bias, in the sense that the develop-
ers simply agreed with the tool recommendations. To deal with this threat, we
used anonymous questionnaires. Our assessment relies on a single scenario that
focuses on a subset of refactorings for composing and moving methods. These
are threats to external validity. We further asked from the developers an overall
review, concerning the proposed approach as a whole. Nevertheless, to be able
to generalize the results further studies should be performed, involving more
developers, subject systems and refactorings.

5 Conclusion

In this paper, we proposed an approach that provides actionable recommen-
dations for the effective combination of refactorings. The recommendations are
based on an interactive model that formally specifies respective informal refactor-
ing guidelines. The proposed approach is inline with the fundamental refactoring
tool principles. To further assess the approach, we conducted a study that in-
volved 16 developers and a limited set of refactorings for composing and movings
methods. The developers found the overall approach useful. The positive results
that we obtained encourage follow up studies of a broader scale and scope.

Our approach is currently based on knowledge that is ”hidden” in Fowler’s
catalog. Other sources of information, views and notations can be considered to-
wards its extension. Making the refactoring detection techniques more developer-
intuitive and easy to use is also an issue that should be further investigated. In
the future, it would also be interesting to investigate the relation between the
proposed approach and the issue of technical debt prioritization.

Acknowledgements We would like to thank the anonymous reviewers for their
feedback on the paper.

References

1. Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design and Analysis Issues
for Field Settings. Houghton Mifflin Company (1979)

12 Theofanis Vartziotis et. al

2. Dallal, J.A.: Identifying Refactoring Opportunities in Object-Oriented Code: A
Systematic Literature Review. Information and Software Technology 58(0), 231 –
249 (2015)

3. Fokaefs, M., Tsantalis, N., Stroulia, E., Chatzigeorgiou, A.: Identification and Ap-
plication of Extract Class Refactorings in Object-Oriented Systems. Journal of
Systems and Software 85(10), 2241–2260 (2012)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(2000)

5. Kim, M., Zimmermann, T., Nagappan, N.: An Empirical Study of Refactoring
Challenges and Benefits at Microsoft. IEEE Transactions on Software Engineering
40(7), 633–649 (2014)

6. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Transactions on
Software Engineering 30(2), 126–139 (2004)

7. Mens, T., Taentzer, G., Runge, O.: Analysing Refactoring Dependencies Using
Graph Transformation. Software and System Modeling 6(3), 269–285 (2007)

8. Moghadam, I.H., Cinnéide, M.Ó.: Resolving Conflict and Dependency in Refactor-
ing to a Desired Design. e-Informatica 9(1), 37–56 (2015)

9. Morales, R., Chicano, F., Khomh, F., Antoniol, G.: Efficient Refactoring Scheduling
Based on Partial Order Reduction. Journal of Systems and Software 145, 25–51
(2018)

10. Murphy-Hill, E.R., Black, A.P.: Refactoring Tools: Fitness for Purpose. IEEE Soft-
ware 25(5), 38–44 (2008)

11. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, Univ. of
Illinois - Urbana Champaign (1992)

12. Tsantalis, N., Chatzigeorgiou, A.: Identification of Move Method Refactoring Op-
portunities. IEEE Transactions on Software Engineering 99(3), 347–367 (2009)

13. Tsantalis, N., Chatzigeorgiou, A.: Identification of Extract Method Refactoring
Opportunities for the Decomposition of Methods. Journal of Systems and Software
84(10), 1757–1782 (2011)

14. Tsimakis, A., Zarras, A.V., Vassiliadis, P.: The Three-Step Refactor-
ing Detector Pattern. In: Proceedings of the 24th European Conference
on Pattern Languages of Programs (EuroPLoP). p. to appear (2019),
www.cs.uoi.gr/˜zarras/papers/C36.pdf

15. Van Der Straeten, R., Jonckers, V., Mens, T.: A Formal Approach to Model Refac-
toring and Model Refinement. Software and System Modeling 6(2), 139–162 (2007)

16. Zarras, A.V., Vartziotis, T., Vassiliadis, P.: Navigating through the Archipelago of
Refactorings. In: Proceedings of the the Joint 23rd ACM SIGSOFT Symposium on
the Foundations of Software Engineering and 15th European Software Engineering
Conference (FSE/ESEC). pp. 922–925 (2015)

17. Zarras, A.V., Vassiliadis, P., Dinos, I.: Keep Calm and Wait for the Spike! Insights
on the Evolution of Amazon Services. In: Proceedings of the 28th International
Conference on Advanced Information Systems Engineering (CAiSE). pp. 444–458
(2016)

