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Abstract. How can we plan development over an evolving schema? In
this paper, we study the history of the schema of eight open source
software projects that include relational databases and extract patterns
related to the survival or death of their tables. Our findings are mostly
summarized by a pattern, which we call ”electrolysis pattern” due to its
diagrammatic representation, stating that dead and survivor tables live
quite different lives: tables typically die shortly after birth, with short
durations and mostly no updates, whereas survivors mostly live quiet
lives with few updates — except for a small group of tables with high up-
date ratios that are characterized by high durations and survival. Based
on our findings, we recommend that development over newborn tables
should be restrained, and wherever possible, encapsulated by views to
buffer both infant mortality and high update rate of hyperactive tables.
Once a table matures, developers can rely on a typical pattern of grav-
itation to rigidity, providing less disturbances due to evolution to the
surrounding code.
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1 Introduction

The study of schema evolution in an attempt to dig out patterns and regularities
is an important endeavor in order to understand its mechanics and plan soft-
ware design and development on top of databases. However, this problem has
attracted little attention by the research community so far. To a large extent,
the possibility of actually studying schema evolution emerged from the avail-
ability of schema histories embedded in open source software projects, publicly
available via Github. So far, research efforts [6], [2], [4], [11], [5] — see Sec. 2—
have demonstrated that schemata grow over time, mostly with insertions and
updates, and are frequently out of synch with their surrounding code. However,
we are still far from a detailed understanding of how individual tables evolve and
what factors affect their evolution. In our latest work [10, 9], we have performed
a first study towards charting the relationship of factors like schema size and
version of birth to the duration and the amount of change a table undergoes.
In this paper, we continue along this line of work by answering a fundamental
question on the survival of a table that has not been answered so far: “how are
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survival, activity behavior and duration of a table interrelated?”. To the best of
our knowledge, the problem was only initially touched in [10, 9] and the insights
of this paper are completely novel in the related literature.

Following the research method of our previous work, we have performed a
large study of eight data sets with the schema history of databases included
in open source projects (see Sec. 3 for our experimental setup). Our results are
detailed in Sec. 4; here, we can give a concise summary of our findings as follows.
The antithesis of the durations between dead and survivor tables is striking: table
deletions take place shortly after birth, resulting in short durations for the dead
tables; this is to be contrasted with the large number of survivors with high (and
frequently, maximum) durations. When activity profile, duration and survival are
studied together, we observe the electrolysis pattern, named after the paradigm
of positive and negative ions in electrolysis moving towards opposite directions:
Not only dead tables cluster in short or medium durations, and practically never
at high durations, but also, with few exceptions, the less active dead tables
are, the higher the chance to reach shorter durations. In contrast, survivors are
mostly located at medium and high durations and the more active survivors are,
the stronger they are attracted towards high durations, with a significant such
inclination for the few active survivors, that cluster in very high durations.

Why is the knowledge of patterns in life and death of tables so important? We
believe that our study gives solid evidence on a phenomenon that we call gravi-
tation to rigidity' stating that despite some valiant efforts, relational schemata
suffer from the tendency of developers to minimize evolution as much as pos-
sible in order to minimize the resulting impact to the surrounding code. Sec. 5
discusses possible explanations on the relationship of the observed phenomena
with gravitation to rigidity. Equally importantly, understanding the probability
of update or removal of a table can aid the development team in avoiding to in-
vest too much effort and code to high-risk parts of the database schema. To this
end, in Sec. 5 we provide recommendations to developers, based on our findings
and also suggest roads for future work.

2 Background and Related Work

The first known case study of schema evolution, published in 1993 [6], monitored
the database of a health management system for 18 months, to report the overall
increase of schema size over time and the percentage breakdown for different
types of changes. After this study, it was only 15 years later that research was
revived on the problem. The key to this revival was the existence of open source
software repositories exposing all the code of a software project in all its history.
Software projects based on relational databases, thus, would expose the entire
history of their schema. There is a handful of works since the late ‘00s [2] [4]
[11] [5] that have assessed the evolution of databases involved in open source
software projects.

! Rigidity is used in its software engineering meaning, referring to software that is
hard to evolve and maintain.
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In [2], the authors report findings on the evolution of Mediawiki, the software
that supports Wikipedia. The authors of this work, and also in the followup work
on “algebrizing” schema modification operations [3] should be accredited for the
public release of schema histories that they collected. Several works followed,
where the authors have primarily worked on (a) the schema size, which grows
over time but with progressively less rate [5], (b) the absence of total synchro-
nization between source code and database schema, as schemata evolve [4] [11],
and, (c) the impact of schema change to the surrounding code [5], which requires
a significant amount of code modifications. [5] is also presenting preliminary re-
sults on the timing of the schema modifications, reporting that the early versions
of the database included a large part of the schema growth. A study presented
in [1] verifies the observations of other works concerning the trend of increase in
schema size and the reluctance in the deletion of tables.

Our recent involvement in the area is based on the study of the history of
the schema of eight open source software projects. In [7], also presented in full
length in [8], we have worked at the macroscopic level to study how the schema
of a database evolves in terms of its size. We have found evidence that schemata
grow over time in order to satisfy new requirements, albeit not in a continuous or
linear fashion, but rather, with bursts of concentrated effort interrupting longer
periods of calmness and drops, signifying perfective maintenance.
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Fig. 1. Summary of [8] with schema growth over time (red continuous line) along with
the heartbeat of changes (spikes) for two datasets. Overlayed darker green rectangles
highlight the calmness periods, and lighter blue rectangles highlight smooth expansions.
Arrows point at periods of abrupt expansion and circles highlight drops in size.

Whereas all related work had focused on the study of schema size, in [10],
also presented in full length in [9], we have worked on the identification of fre-
quently encountered patterns on table properties (e.g., birth, duration, amount
of change). We identified four major patterns on the relationship of such prop-
erties. The I' pattern on the relationship of the schema size of a table at its
birth with its overall duration indicates that tables with large schemata tend to
have long durations and avoid removal. The Comet pattern on the relationship
of the schema size of a table at its birth with its total amount of updates indi-
cates that the tables with most updates are frequently the ones with medium
schema size. The Inverse I' pattern on the relationship of the amount of updates
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and the duration of a table indicates that tables with medium or small dura-
tions produce amounts of updates lower than expected, whereas tables with long
duration expose all sorts of update behavior. The Empty Triangle pattern on
the relationship of a table’s version of birth with its overall duration indicates
a significant absence of tables of medium or long durations that were removed
—thus, an empty triangle — signifying mainly short lives for deleted tables and
low probability of deletion for old timers.
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Fig. 2. The 4 patterns of [10], [9]: Gamma (top left), inverse Gamma (top right), comet
(bottom left) and empty triangle (bottom right).

Although insightful, the aforementioned findings have not exhausted the search
on factors affecting survival, and so, in this paper, we extend our knowledge by
exploring how survival is related to duration and activity profile. To the best of
our knowledge this is the first comprehensive study of this kind in the literature.

3 Experimental Method

In this section, we briefly present our experimental method. Here we can only
provide a self-contained, condensed description, so, we will kindly refer the in-
terested reader to [7] for a detailed description and to our Schema Biographies
website? containing links to all our results, data, code and presentations that
are made publicly available to the research community.

Experimental protocol. We have collected the version histories of 8 data
sets that support open source software projects. For each dataset we gathered
as many schema versions (DDL files) as we could from their public source code

2 http://www.cs.uoi.gr/~pvassil /projects/schemaBiographies/
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Tables @ Tables @

Dataset Type Versions Lifetime Start End
ATLAS Trigger [P] 84 2Y,7M,2D 56 73
BiosQL [B] 46 10Y,6M,19D 21 28
Coppermine [C] 117 8Y,6M,2D 8 22
Ensembl [B] 528 13Y,3M,15D 17 75
MediaWiki [C] 322 8Y,10M,6D 17 50
OpenCart [C] 164 4Y,4M,3D 46 114
phpBB [C] 133 6Y,7M,10D 61 65
Typo3 [C] 97 8Y,11M,0D 10 23

Fig. 3. Datasets used in our study

repositories (cvs, svn, git). We have targeted only changes at the database part
of the project as they were integrated in the trunk of the project. The files were
collected during June 2013. For all of the projects, we focused on their release
for MySQL (except ATLAS Trigger, available only for Oracle). The files were
then processed by our tool, Hecate, that detected, in a fully automated way,
((a) changes at the table-level, i.e., which tables were inserted and deleted, and
(b) updates at the attribute-level, and specifically, attributes inserted, deleted,
having a changed data type, or participation in a changed primary key.

Reported Measures. Hecate pair-wise compared subsequent files and re-
ported the changes for each transition between subsequent versions. The details
of each particular change along with collective statistics per table, as well as
for the entire schema were also reported. An important part of the produced
measures involves information on the update profile of each table, including the
total number of changes it went through, the change rate etc. We have classified
tables in profiles concerning (a) their survival (i.e., their presence in the last
version of the schema history or not), characterizing them as survivors or dead,
(b) their activity behavior, characterizing them as rigid (if they go through zero
updates), active (if their rate of change is higher than 0.1 changes per transition)
and quiet otherwise, and, (c) by the combination of the above via their Cartesian
product, which we call LifeAndDeath profile.

Scope. Concerning the scope of the study, we would like to clarify that we
work only with changes at the logical schema level (and ignore physical-level
changes like index creation or change of storage engine). Also, the reader is
advised to avoid generalizing our findings to proprietary databases, outside the
realm of open source software.
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4 Survival and duration: how dead tables differ from
survivors

In this section, we first explore whether there is a difference in the duration
between survivor and dead tables. Then, we examine how table duration, survival
and activity behavior interrelate.

4.1 Oppositely Skewed Durations

We have studied how the duration of tables is distributed in different duration
ranges, thus creating a histogram of durations. We have discriminated between
dead and survivor tables, so we have a histogram for each of these two classes.
Fig. 4 depicts the respective histograms. We observe a phenomenon, which we
call the oppositely skewed durations or opposite skews pattern.

The oppositely skewed durations pattern. When one constructs the
histograms for the durations of dead vs survivor tables one can observe a sym-
metry in the histograms of the two classes. The dead tables are strongly biased
towards short durations (left-heavy), often with very large percentages of them
being removed very shortly after birth. In quite the opposite manner, the survivor
tables are mostly gathered at the other end of the spectrum (right-heavy), i.e., at
high (frequently: maz) durations.

Exceptions to the pattern. Exceptions to the pattern do exist, albeit
they do not significantly alter its validity. Coppermine’s single deleted table was
removed at 6 years of age. The phpBB database, which is otherwise too rigid,
has 5 deleted tables that were removed at significantly larger durations than
the typical in other data sets (in fact after 5 or 6 years of lifetime, all 5 being
removed in the same version). The typo3 database, also has a set of 9 removed
tables, again with quite high durations (7 of which had a lifetime between 4 and
8 years at the time of their removal).

Gravitation to rigidity. We attribute the tendency to short durations
for the deleted tables to the cost that deletions have for the maintenance of the
software that surrounds the database. The earlier a table is removed, the smaller
the cost of maintaining the surrounding code is. Thus, when the table has been
involved in several queries found in several places in the code, it is always a
painstaking process to locate, maintain and test the application code that uses
it. At the same time, the reluctance for removals allows tables who survive the
early stages to “remain safe”. Thus, they grow in age without being removed.
This fact, combined with the fact that the starting versions of the database
already include a large percentage of the overall population of tables, results in
a right-heavy, left-tailed distribution of survivor tables (for 6 out of 8 data sets,
survivor durations reaching the final bucket of the respective histogram exceed

45%).

4.2 The electrolysis pattern

What happens if we relate duration with activity? The research question that
is guiding us here is to discover whether there are patterns in the way survival,
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Fig. 4. Histograms of the durations of (a) dead, vs., (b) survivor tables.
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duration and activity behavior relate. Our analysis is a refinement of the oppo-
sitely skewed durations pattern with activity profile information. Whereas the
opposite skews pattern simply reports percentages for duration ranges, here, we
refine them by LifeAndDeath Class too. So, in the rest of this subsection, we
will group the tables according to the LifeAndDeath class, which expresses the
profile of a table with respect to the combination of survival x activity, practi-
cally composing the two domains {dead, survivor} x {rigid, quiet, active} into
their Cartesian product. Then, for each of the resulting six classes, we study the
durations of the tables that belong to it.

The essence of the pattern. We formulate our observations as a new
pattern, which we call the electrolysis pattern. Remember than in an electrolysis
experimental device, two electrodes are inserted in water: a negative electrode,
or cathode and a positive electrode, or anode. Then, negatively charged ions
move towards the positive anode and positively charged ions move towards the
negative cathode.

A somewhat similar phenomenon occurs for dead and survivor tables con-
cerning the combination of duration and survival, which we call the electrolysis
pattern. In Fig. 5, we graphically depict the phenomenon via scatter-plots that
demonstrate the LifeAndDeath x Duration space for all the studied data sets.
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Fig. 5. The Electrolysis pattern. Each point refers to a table with (a) its duration at
the x-axis and (b) its LifeAndDeath class (including both survival and activity) at
the y-axis (also its symbol). Points are semi-transparent: intense color signifies large
concentration of overlapping points.
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FElectrolysis pattern: Dead tables demonstrate much shorter lifetimes than sur-
vivor ones and can be located at short or medium durations, and practically never
at high durations. With few exceptions, the less active dead tables are the higher
the chance to reach shorter durations. Survivors expose the inverse behavior i.e.,
mostly located at medium or high durations. The more active survivors are, the
stronger they are attracted towards high durations, with a significant such incli-
nation for the few active ones that cluster in very high durations.

Fig. 5 vividly reveals the pattern’s highlights. Observe:

— The total absence of dead tables from high durations.

— The clustering of rigid dead at low durations, the spread of quiet dead tables
to low or medium durations, and the occasional presence of the few active
dead, that are found also at low or medium durations, but in a clustered
way.

— The extreme clustering of active survivors to high durations.

— The wider spread of the (quite numerous) quiet survivors to a large span of
durations with long trails of points.

— The clustering of rigid survivors, albeit not just to one, but to all kinds of
durations (frequently, not as high as quiet and active survivors).

One could possibly argue that the observed clusterings and time spans are
simply a matter of numbers: the more populated a class is, the broader its
span is. To forestall any such criticism, this is simply not the case. We give
the respective numbers in the sequel of this subsection; here, we proactively
mention a few examples to address this concern. Rigid dead tables are the most
populated group in the dead class, yet they have the shortest span of all. The
rigid survivors, who are the second most populated class of the entire population,
exhibit all kinds of behaviors; yet, in most of the cases, they are disproportionally
clustered and not spread throughout the different categories. Active survivors are
also disproportionately clustered at high durations. Overall, with the exception
of the quiet survivors that indeed span a large variance of durations, in the rest
of the categories, the time span is disproportionate to the size of the population
(number of points in the scatter plot) of the respective class.

In-depth study of durations. To understand how tables are distributed
in different durations, we have expressed table durations as percentages over
the lifetime of their schema. Then, for each LifeAndDeath value and for each
duration range of 5% of the database lifetime, we computed the percentage of
tables whose duration falls within this range. Then, we proceeded in averaging
the respective percentages of the eight data sets®.

Both for lack of space and understanability reasons, we have to condense the
detailed data in an easily understandable format. To summarize the detailed

3 An acute reader might express the concern whether it would be better to gather
all the tables in one single set and average over them. We disagree: each data set
comes with its own requirements, development style, and idiosyncrasy and putting
all tables in a single data set, not only scandalously favors large data sets, but
integrates different things. We average the behavior of schemata, not tables here.
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data, we regrouped the data in just 3 duration ranges, presented in Fig. 6: (a)
durations lower that the 20% of the database lifetime (that attracts a large
number of dead tables, esp., the rigid ones), to which we will refer as low dura-
tions, in the sequel, (b) durations higher that the 80% of the database lifetime
(where too many survivors, esp., active ones are found), to which we will refer
as high durations, and finally, (c) the rest of the durations in between, forming
an intermediate category of medium durations.

Rigid Dead Quiet Dead Active Dead Rigid Surv Quiet Surv Active Surv

[0-20%) 8% 5% 2% 4% 3% 1% 23%
[20%-80%) 3% 3% 1% 5% 13% 0% 26%
[80%-100%] 0% 0% 1% 14% 24% 12% 51%
12% 8% 3% 23% 40% 14% 100%

Fig. 6. Indicative, average values over all datasets: for each LifeAndDeath class, per-
centage of tables per duration range over the total of the entire data set.

Atlas Rigid dead Quiet Dead Active Dead  Rigid Surv_ Quiet Surv_ Active Surv Biosql Rigid dead Quiet Dead Active Dead  Rigid Surv  Quiet Surv_ Active Surv
[0% -20%) 57% 0% 0% 9% 3% 0% [0-20%) 100% 100% 100% 0% 0% 0%
[20%-80%) 43% 100% 100% 91% 30% 12% [20%-80%) 0% 0% 0% 14% 0% 0%
[80%-100%] 0% 0% 0% 0% 68% 88% [80%-100%] 0% 0% 0% 86% 100% 100%
160% 100% 100% 100% 100% 100% 100% 100% 160% 100% 100% 100%

Copperm.  Rigiddead QuietDead ActiveDead  RigidSurv  QuietSurv Active Surv Ensembl Rigid dead Quiet Dead ActiveDead  Rigid Surv  Quiet Surv  Active Surv
[0-20%) 0% 0% 0% 0% [0-20%) 97% 65% 67% 20% 9% 9%
[20%-80%) 100% 0% 23% 0% [20%-80%) 3% 35% 33% 80% 65% 0%
[80%-100%] 0% 100% 77% 100% [80%-100%] 0% 0% 0% 0% 26% 91%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Mwiki Rigid dead Quiet Dead Active Dead  Rigid Surv  Quiet Surv  Active Surv Ocart* Rigid dead Quiet Dead Active Dead  Rigid Surv  Quiet Surv  Active Surv
[0-20%) 90% 56% 100% 50% 9% 33% [0-20%) 36% 100% 19% 13% 25%
[20%-80%) 10% 33% 0% 50% 49% 0% [20%-80%) 64% 0% 41% 38% 0%
[80%-100%] 0% 11% 0% 0% 42% 67% [80%-100%] 0% 0% 41% 50% 75%
100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

phpBB Rigid dead Quiet Dead Active Dead  RigidSurv  Quiet Surv  Active Surv typo3 Rigid dead Quiet Dead Active Dead  Rigid Surv  Quiet Surv  Active Surv
[0-20%) 0% 0% 3% 9% 25% [0-20%) 20% 50% 0% 71% 27% 20%
[20%-80%) 50% 0% 0% 14% 0% [20%-80%) 80% 50% 50% 14% 18% 0%
[80%-100%] 50% 100% 97% 77% 75% [80%-100%] 0% 0% 50% 14% 55% 80%
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Fig. 7. For each data set, for each LifeAndDeath class, percentage of tables per duration
range over the total of the LifeAndDeath class (for each data set, for each column,
percentages add up to 100%).

Breakdown per LifeAndDeath class. Another research question concerns
the breakdown of the distribution of tables within each LifeAndDeath class. In
other words, we ask: do certain LifeAndDeath classes have high concentrations
in particular duration ranges?

If one wants to measure the percentage of tables for each value of the Life-
AndDeath Class over each duration range, we need to calculate each cell as the
percentage of the specific class (e.g., each cell in the rigid dead column should
measure the fraction of rigid dead tables that belong to its particular duration
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range).The detailed data per data set, where the value of each cell is presented
as percentage over its LifeAndDeath class are depicted in Fig. 7.

Finally, in Fig. 8 we zoom only in (a) dead tables at the lowest 20% and (b)
survivors at the highest 20% of durations. We count the number of tables, per
LifeAndDeath class, for the respective critical duration range, and we compute
the fraction of this value over the total number of tables pertaining to this Life-
AndDeath class (columns Rigid, Quiet, Active). For the Dead and Surv columns,
we divide the total number of dead/survivor tables belonging to the respective
critical duration over the total number of dead/survivor tables overall.

Pct of durations shorter than 20% of db Pct of durations longer than 80% of db
life for Dead tables over the ... life for Survivor tables over the ...
..Dead ..Rigid ..Quiet ..Active .. Surv  ..Rigid ..Quiet ..Active
atlas 27% 57% 0% 0% 64% 0% 68% 88%
biosql 100% 100% 100% 100% 96% 86% 100% 100%
coppermine 0% 0% - - 86% 100% 77% 100%
ensembl 80% 97% 65% 67% 32% 0% 26% 91%
mediawiki 76% 90% 56% 100% 42% 0% 42% 67%
opencart* 50% 36% 100% - 46% 41% 50% 75%
phpBB 0% - 0% 0% 88% 97% 77% 75%
typo3 22% 20% 50% 0% 48% 14% 55% 80%

Fig. 8. Percentages of dead tables with too short durations and survivor tables with
too long durations (red: above 50%, bold: above 75%, blue: below 20%, dash: no such
tables).

We observe that in more than half of the cells of the table in Fig. 8, the per-
centage reaches or exceeds 50%. This clearly demarcates the high concentrations
of dead tables in low durations and of survivor tables in high durations.

Observations and Findings. Now, we are ready to quantitatively support
the wording of the electrolysis pattern. We organize our discussion by LifeAnd-
Death class. Our quantitative findings for the electrolysis pattern are delineated
in the rest of this subsection.

Dead tables. We already knew from [9] that almost half the dead tables
are rigid. Here, we have a clear testimony, however, that not only are dead
tables inclined to rigidity, but they are also strongly attracted to small durations.
The less active tables are the more they are attracted to short durations. The
attraction of dead tables, especially rigid ones, to (primarily) low or (secondarily)
medium durations is significant and only few tables in the class of dead tables
escape this rule. Interestingly, in all our datasets, the only dead tables that escape
the barrier of low and medium durations are a single table in mediawiki, another
one in typo3 and the 4 of the 5 tables that are simultaneously deleted in phpBB.

— Rigid dead tables, which is the most populated category of dead tables, strongly
cluster in the area of low durations (lower than the 20% of the database life-
time) with percentages of 90% — 100% in 3 of the 6 data sets (Fig. 8). Atlas
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follows with a large percentage of 57% in this range. Two exceptions exist:
opencart and typo3, having most of their dead tables in the medium range.
There are also two exceptions of minor importance: coppermine with a single
deleted table and phpBB with a focused deletion of 5 tables at a single time
point.

— Quiet dead tables, which is a category including few tables, are mostly ori-
ented towards low durations. Specifically, there are 5 data sets with a high
concentration of tables in the area of low durations (Fig. 8); for the rest of
the data sets, the majority of quiet dead tables lie elsewhere: atlas has 100%
in the medium range and phpBB is split in half between medium and large
durations.

— Finally, for the very few active dead, which is a category where only six of
the eight data sets have even a single table, there are two of them with 100%
concentration and another one in 67% of its population in the low durations
(Fig. 8). For the rest, atlas has 100% of its active dead in the medium range,
phpBB 100% of the active dead in the long range (remember that phpBB has
an exceptional behavior) and typo3 is split in half between low and medium
durations (Fig. 7).

Survivors. Survivors have the opposite tendency of clustering compared to
the dead ones. So, there are quite a few cases where survivor tables reach very
high concentrations in high durations, and, interestingly, the more active the
tables are, the higher their clustering in high durations.

— Rigid survivors demonstrate a large variety of behaviors. Rigid survivors
are the second most populated category of tables after quiet survivors and
demonstrate too many profiles of clustering (Fig. 7): one data set comes with
a low-heavy profile, another 3 with a high-heavy profile, another two with a
medium-heavy profile, and there is one data set split in half between early
and medium durations and another one with an orientation of medium-to-
high durations.

— Quiet survivors, being the (sometimes vast) majority of survivor tables, are
mostly gravitated towards large durations, and secondarily to medium ones.
In 6 out of 8 data sets, the percentage of quiet survivors that exceed 80% of db
lifetime surpasses 50% (Fig. 7). In the two exceptions, medium durations is
the largest subgroup of quiet survivors. Still, quiet survivors also demonstrate
short durations too (Fig. 7), so overall, their span of possible durations is
large. Notably, in all data sets, there are quiet survivors reaching maximum
duration.

— It is extremely surprising that the vast majority of active survivors exceed
80% of the database lifetime in all datasets (Fig. 8). With the exception of
three data sets in the range of 67%-75%, the percentage of active survivors
that exceed 80% of the db lifetime exceeds 80% and even attains totality in 2
cases. Active survivor tables are not too many; however, it is their clustering
to high durations (implying early birth) that is amazing. If one looks into
the detailed data and in synch with the empty triangle pattern of [9], the top
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changers are very often of mazimum duration, i.e., early born and survivors
(Fig. 5).

Absence of evolution. Although the majority of survivor tables are in the
quiet class, we can quite emphatically say that it is the absence of evolution that
dominates. Survivors vastly outnumber removed tables. Similarly, rigid tables
outnumber the active ones, both in the survival and, in particular, in the dead
class. Active tables are few and are mainly born in the early phases of the
database lifetime.

5 Discussion, Take up and Future Work

Why do we see what we see. We believe that this study strengthens our
theory that schema evolution antagonizes a powerful gravitation to rigidity. The
“dependency magnet” nature of databases, where all the application code relies
on them but not vice versa, leads to this phenomenon, as avoiding the adaptation
and maintenance of application code is a strong driver towards avoiding the
frequent evolution of the database. Some explanations around the individual
phenomena that we have observed can be attributed to the gravitation to rigidity:

— Dead tables die shortly after their birth and quite often, rigid: this setting
provides as little as possible exposure to application development for tables
to be removed.

— As dead tables do not attain high durations, it appears that after a certain
period, practically within 10%-20% of the databases’ lifetime, tables begin
to be “safe”. The significant amount of tables that stand the chance to attain
maximum durations can be explained if we combine this observation with
the fact that large percentages of tables are created at the first version of
the database.

— Rigid tables find it hard to attain high durations (unless found in an en-
vironment of low change activity). This difficulty can be explained by two
reasons. First, shortly after they are born, rigid tables are in the high-risk
group of being removed. Second, rigid tables are also a class of tables with
the highest migration probability. Even if their duration surpasses the criti-
cal 10% of databases lifetime where the mass of the deleted tables lies, they
are candidates for being updated and migrating to the quiet class.

— Tables with high durations (i.e., early born) that survive spend their lives
mostly quietly (i.e., with the few occasional maintenance changes) — again
minimizing the impact to the surrounding code.

— The high concentration of the few active tables to very high durations and
survival (which is of course related to early births) is also related to the
gravitation to rigidity: the early phases of the database lifetime typically
include more table births and, at the same time, gravitation to rigidity says
that after the development of a substantial amount of code, too high rate
of updates becomes harder; this results in very low numbers of active tables
being born later. So, the pattern should not be read so much as “active
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tables are born early”, but rather as “we do not see so many active tables
being born in late phases of the database life”.

Prediction of a table’s life and recommendations for developers.
How is a table going to live its life? Tables typically die shortly after their birth
and quite often, rigid, i.e., without having experienced any update before. So,
young rigid tables are the high risk group for being removed.

Typically, if a table surpasses infant mortality, it will likely survive to live a
rigid or, more commonly, a quiet live. There is a small group of active tables,
going through significant updates. Look for them in the early born survivors,
as later phases of the database life do not seem to generate tables that are too
active.

Overall, after a table is born, the development of code that depends on it
should be kept as restrained as possible — preferably encapsulated via views
that will hide the changes from the application code. After the period of infant
mortality, it is fairly safe to say that unless the table shows signs of significant
update activity, gravitation to rigidity enters the stage and the table’s evolution
will be low.

Threats to validity. It is always necessary to approach one’s study with
a critical eye for its validity. With respect to the measurement validity of our
work, we have tested (i) our automatic extraction tool, Hecate, for the accuracy
of its automatic extraction of delta’s and measures, and (ii) our human-made
calculations. With respect to the scope of the study, as already mentioned, we
frame our investigation to schemata that belong to open-source projects. This
has to do with the decentralized nature of the development process in an open
source environment. Databases in closed organizational environments have dif-
ferent administration protocols, their surrounding applications are possibly de-
veloped under strict software house regulations and also suffer from the inertia
that their evolution might incur, due to the need to migrate large data volumes.
So, we warn the reader not to overgeneralize our results to this area. Another
warning to the reader is that we have worked only with changes at the logical
and not the physical layer. Having said that, we should mention, however, that
the external validity of our study is supported by several strong statements: we
have chosen data sets with (a) fairly long histories of versions, (b) a variety of
domains (CMS’s and scientific systems), (¢) a variety in the number of their com-
mits (from 46 to 528), and, (d) a variety of schema sizes (from 23 to 114 at the
end of the study); kindly refer to Fig. 3 for all these properties. We have also been
steadily attentive to work only with phenomena that are common to all the data
sets. We warn the reader not to interpret our findings as laws (that would need
confirmation of our results by other research groups), but rather as patterns.
Favorably, some very recent anecdotal evidence, in fact coming from the indus-
trial world, is corroborating in favor of our gravitation to rigidity theory (see the
blog entry by Stonebraker et al., at http://cacm.acm.org/blogs/blog-cacm/
208958-database-decay-and-what-to-do-about-it/fulltext). Based on the
above, we are confident for the validity of our findings within the aforementioned
scope.
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Future work. Related literature suggests that database evolution cools
down after the first versions. This has been studied for the slowdown of the
birth rate, however a precise, deep investigation of the timing of the heartbeat
of the database schema with all its births, deaths and updates is still pending.
To our view, this practically marks the limits of analyses based on descriptive
statistics. The next challenge for the research community lies in going all the
way down to the posted comments and the expressed user requirements at the
public repositories and try to figure out why change is happening the way it
does. Automating this effort is a very ambitious goal in this context. Finally,
the validation of existing research results with more studies from other groups,
different software tools, hopefully extending the set of studied data sets, is im-
perative to allow us progressively to move towards ‘laws’ rather than ‘patterns’
of change in the field of understanding schema evolution.
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