
Imposin Transactional Properties on Distributed Software
Architectures

Apostolos Z A R R A S and Val6rie I S S A R N Y
{ zarras I issarny} ©irisa.fr

IRISA - Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

Abst rac t

Transactions provide the warranty for a consistent, transparent and individual system state
transition. In this paper, we describe a method for imposing transactional properties on dis-
tributed software architectures. Given the architectural description of a software system, ex-
pressed in terms of components, configuration and transactional requirements, a number of basic
services are retrieved from a software repository. Selected services are then combined with the
components of the system in a fully functioning system. Service retrieval is based on the formal
specification of transaction models and basic properties provided by the lower level services (e.g.
locking, recovery, time-stamps). Services are also associated with some integration rules, which
serve two different purposes: I) they guide a code generation procedure that integrates services
into the given configuration and, 2) they extend the basic properties provided by the services
in order to meet the required transaction model.

1 I n t r o d u c t i o n

Separation of concerns and software architecture description were identified as a possible solution
for improving software quality and productivity. More precisely, separating the design objectives
into those that are specific to a particular computing system (e.g. algorithmic aspects), and those
that might be common in many different types of computing systems, simplifies the developer's
effort. In particular, the system developer is occupied with the fulfillment of the former, while for
the latter, existing software can be reused. Architecture Description Languages (ADLs) provide a
clear way to separate concerns. Architectures are described in terms of components, services, and
configurations. Components are architecture-specific while services provide certain non-functional
properties frequently required for the development of different kinds of computing systems. Pro-
viding a systematic way to identify appropriate services that guarantee the initial requirements
further simplifies software development.

In this paper, we focus on the demand for transactional processing, because we consider trans-
actions to be among the primary concerns in building large scale distributed computing systems
(e.g. databases, telecommunications, CAD/CAM, operating systems). Several different transaction
models have been developed in order to meet the requirements of the various types of computing
systems [9, 6]. However, all of them could be realized over a common basis of reusable services
that provide some primitive properties met in all different models. Several distributed program-
ruing environments [7, 15, 4] offer services for concurrency control, failure recovery, stable storage.
Moreover, some well-known processing standards include the specification of such primitive services
[13, ii] that can be combined in order to realize some required transaction model.

025

Summarizing the discussion so far, the developer's work is to identify the system's design objec-
tives, and separate them into those that are architecture-specific and those related to the required
transaction model. Furthermore, he must select a set of primitive services that can be used for tile
realization of the model. However, selecting and using primitive services is often a tedious and com-
plicated task. Take for instance the CORBA Object Transaction Service ([11] ch.10), where support
for a nested transactional structure is optional in the service standard specification. Hence, the
developer has to be aware of both, the available services installed in his system and their particular
features. Sometimes, there is also the case where the basic property provided by the service should
be extended so as to meet the current requirements. For example, consider the CORBA Concurrency
Control service ([11] ch.7), which provides locking. In order to guarantee a serializable execution,
the locking protocol must be two-phased and well-formed. Consequently, the developer must use
the service in a certain way in order to impose the previously mentioned properties.

Dispensing the developer from such arduous responsibilities is our motive. Our objective is the
development of a framework that systematically selects services providing some primitive trans-
actional properties and integrates them into a given configuration, resulting in a fully functioning
system. Our proposal was firstly presented in [16] and an overview of the basic concepts is given
in Section 2. A more detailed description of the integration of services into a given configuration
is presented in Section 3. In Section 4, we provide a simple example that shows the use of our
framework. The example is based on services of the ARJUNA platform (a similar example based on
the CORBA platform is given in [16]). Finally, in Section 5, we point out our contribution and we
compare our framework with related work.

2 O v e r v i e w

The basic constituents of the proposed framework for the synthesis of transactional middleware are
depicted in Figure 1 and further detailed hereafter.

Architecture Description Language

(Properties ~ Intefaces) ~vice Dambase
'

Figure 1: Synthesizing Transactional Middleware

028

T h e A r c h i t e c t u r e D e s c r i p t i o n L a n g u a g e (ADL) allows to specify the structure of a given
system in terms of components, configuration, and properties required or provided by the system's
components. A component abstractly defines a unit of computation or data store, in terms of
its interface. A component interface contains the operations provided (i.e. operations that can
be used by other" components) and 'required (i.e operations bound to operations provided by other
components) by the component. The set of bindings among provided and required operations
defines the configuration of the system. Furthermore, the system's ADL description includes the
specification of transactional properties, required or provided by the system. The ADL is further
detailed in [16] where we proposed our framework.

T h e Serv ice D a t a b a s e contains information about all the existing services installed in the
developer's environment. Every such service is connected to a set of properties, which are expressed
as formulas based on temporal logic (again more details can be found in [16]). Each property comes
along with a set of guidelines, which must be followed in order for the corresponding property
to hold, during the lifetime of a system. These guidelines basically point out how to combine
the selected services with the components of the system, so as to impose the properties that are
associated to them.

T h e S e l e c t i n g P r o c e d u r e accepts a set of transactional requirements and verifies whether they
are supported by existing services. Given that the requirements are expressed in temporal logic the
selecting procedure works just like a theorem prover. Considering the requirements, {R4}i=l,..,m as
a theorem, and the properties Ps~ of the services Sj, j < 1 < m, stored in the database, as existing
theory, the following formula must hold in order to verify that the given theorem holds:

VRi , 1 < i < n : 3 { S k } k = l C_ S I Ak=l,..,m PS~ ~ Ri

In the context of the ASTER framework [5] we implemented a tool for efficient software retrieval
of reusable services, based on the formal specification of their non-functional properties [14]. This
idea is related to the one proposed in [8] where abstract properties (e.g. isolation) are refined
into more specific ones (e.g. two-phase-locking) and the whole refinement relation is enclosed in a
lattice structure used during the selection. The current ASTER selecting tool is based on first order
predicate logic but we do not see any significant difficulties in extending it so as to support a richer
logic (i.e. temporal logic).

T h e C o m p o s i n g P r o c e d u r e takes over after the selection of the services that meet the system's
requirements so as to integrate them into a given configuration. The whole composing procedure
is based on the notion of integration rules. The integration rules abstractly define the code to be
added to the components in order for them to obtain certain features provided by the services. The
integration rules can be divided in a number of actions that must take place before and after the
execution of an operation and during the initiation and the termination of a particular transaction.
Hence, the integration rules are used to specify those actions, regarding the functionalities provided
by existing middleware services. The composing procedure generates the corresponding source code
that implements a number of predefined hooks. These hooks are used by the system developer and
hide from him any details related to the underlying middleware. Thus, the responsibility for service
integration passes from the developer to the service repository administrator who is supposed to
give the integration rules for each newly installed service.

In order to further promote service reuse, the integration rules should be expressed in a way
independent from any low level implementation details. For that reason, we decided to adopt an

027

abstract specification language for the definition of the integration rules. Hence, the rules become
reusable abstractions that can be easily interpreted while taking into account several implemen-
tation details, specific to the given computing system (e.g. implementation language, unde:(Iying
communication platform etc.). Since in our execution model, components interact only through
their interfaces, our specification language ends up to be quite simple. Its basic constieuents are:
declarations of components' interface instances, and operation calls on components' interface in-

stances.

3 Design
In this section we detail the basic design concepts relating to the framework's composing procedure.

3.1 C o m p o s i n g S teps

~on rules for selected services

Figure 2: Composing Procedure

Figure 2 depicts the two basic steps of the composing procedure. During the first step, the
Integration Rule Assembler assembles the rules of all the selected services and deals with problems
of interference and precedence order among them. The former issue raises in the case of using the
composing procedure in the general context of a framework, like ASTEa [5], that deals with several
different kinds of properties (e.g fault tolerance, security, transactions). The latter issue appears
often in the current case study of synthesizing transactional middleware. Take for instance the
combination of a service that provides locking with a service that provides atomicity. In this case,
held locks must be released after the validation of the results produced by the transaction. If a
service that provides time-stamps is selected instead of the locking one, timestamp validation must
take place before the validation of the results produced by the transaction. During the second step,
the Integration Rule Interpreter translates the assembled set of integration rules, resulting in the
stub code that contains the hooks, which combine the services with the components of the system.

3.2 Integration R u l e s

In the general case, we consider that integration rules are subdivided into the fi:)lt(:)wing:

028

Rules for the components that require operations (denoted by the keyword exportRules).
Export rules are further subdivided into:

Rules that define the actions that take place before issuing a request, denoted by the
preExport keyword (e.g pack a platform specific request).

Rules that define the actions that take place in order to issue a request, denoted by the
Export keyword. In the common case, this is the piece of code that calls a primitive
action provided by the underlying communication platform so as to issue a request.

Rules that define the actions that take place after a request is issued, denoted by the
postExport keyword (e.g unpack the returned results).

Rules that define the actions that take place once and only once, during the component
initialization (denoted by the initExportRules keyword).

Rules for the components that provide operations (denoted by the keyword importRules) which
are further subdivided into :

Rules that extend the interface of the components. In the common case, components'
interfaces might inherit from an interface (denoted by the inheritFrom keyword), or they
might contain an instance of an interface (denoted by the includes), provided by a mid-
dleware service. In that way, components inherit or include some basic features provided
by the services.

Rules that define the actions that take place before and after serving a request (denoted
by the prelmport, postlmport keywords respectively).

Rules that define the actions performed once and only once, during the component
initialization (denoted by the initImportRules keyword).

Rules that define the transaction model's significant actions (denoted by the transNules key-
word), which are further subdivided into initiation and termination actions (denoted by be-
9inTrans, endTrans keywords respectively).

At this point, let us notice that in the case of existing services requiring the use of other services
the integration rules can still be applied. However this is feasible only in the ideal case where the
source code of the former services is available.

4 Example

In order to exemplify our approach, we describe the synthesis of a simple software system based
on services provided by the ARJUNA [7] platform. The system follows the client/server execution
model and realizes a simple distributed appointment system. Server components provide operations
that can be used to add and remove an appointment, and an operation that returns the current
time schedule. In such a system, it is reasonable to require a set of operations to be atomic and to
further guarantee the isolated execution of clients that manipulate shared time schedules. Finally,
it would be convenient to ensure that changes made to the time schedules will survive subsequent
system failures. Hence, the system's requirements are: atomicity, isolation and durability.

The ARJUNA platform offers three basic services, namely AtomicAct±on, LockManager and
StateManager, which provide the aforementioned properties. The first service provides ways to
Begin, Commit, Abort a transaction, and upon transaction termination, it performs a two-phase-
commit protocol. In Figure 3(a), we give the integration rules for that service. Basically, the

029

i n t e g r a t i o n AtomicAction : : :
i m p o r t R u l e s : : =

x I n t e r f a c e : : nul l ;
p r e I m p o r t : : = nul l ;

I m p o r t ::~--- nu l l ;
p o s t l m p o r t : : = nu l l ;

e x p o r t R u l e s : : :
p r e E x p o r t : : : nul l ;
p o s t E x p o r t : : : nu l l ;
E x p o r t : : = nu l l ;

t r ansRu les : : =
b e g i n T r a n s begin : : =

c o m p o n e n t transaction o fmype AtomicAction;

export Begin to transaction;
endTrans commit ::m_ export Commit to transaction;
endTrans abort ::= export Abort to transaction;

(a) Integration Rules for the A t o m i c A c t i o n

i n t e g r a t i o n LockManager : : :

i m p o r t R u l e s : : :
x I n t e r f a c e : : i n h e r i t s F r o m LockManager;

p r e I m p o r t : : =
c o m p o n e n t l o c k ot - l -ype Lock;

e x p o r t new t o lock;
e x p o r t s e t l o c k t o th i s w i t h l o c k ;

I m p o r t : : = nul l ;
p o s t I m p o r t : : : nu l l ;

e x p o r t R u l e s : : =
p r e E x p o r t ::~- nu l l ;
p o s t E x p o r t : : : nu l l ;
E x p o r t : : : nul l ;

t ransRu les : : =
beg inmrans beg in : : : nu l l ;

endT rans commit : : : nul l
e n d T r a n s abort ::----- nu l l ;

(b) Integration Rules for the LockManager

i n t e g r a t i o n AtomicAction : : =
i m p o r t R u l e s : : :

x l n t e r f a c e : = i n h e r i t s F r o m StateManager ;
p r e I m p o r t : : ~ nul l ;
p o s t I m p o r t : : = nul l ;

e x p o r t R u l e s : : :
p r e E x p o r t : : = nul l ;
p o s t E x p o r t : : = nul l ;
E x p o r t : : = nul l ;

t ransRu les : : :
beg inmrans ::~--- nul l ;
endT rans ; ; = nul l ;

(c) Integration Rules for the Sta teManager

Figure 3: Integration rules for the distributed appointment system

integration rules define the transaction model's initiation and termination actions. For example,
to begin a transaction, an interface instance of the component t t o m i c t c t i o n must be declared
and the Begin operation must be called on this instance. The second service provides ways to
acquire locks, using the s e t l o c k method, while it further guarantees that locks are acquired and
released in a two-phased manner. The integration rules are given in Figure 3(b). According to
them, components that export operations must inherit from the LockManager class. A component
instance (denoted by this) must call the s e t l ock operation just before serving an incoming request.
Finally, the third service ensures that the server components are recoverable. The rules are quite
simple (see Figure 3(c)), since the only guideline is that components that export operations should
inherit from the StateManager class. To integrate the system's components with the AR, JUNA

services, the P~PC communication platform should be used. The ARJUNA platform provides ways
to pack and unpack R.PC requests meaning that the corresponding actions should be included in
the integration rules (in the definition of the preExport, postExport and Export actions). However,

030

these rules are omitted due to the lack of space.

5 C o n c l u s i o n

in conclusion, let us relate our proposal with some considerable early work, in order to point
out our contribution. We begin with programming environments like VENARI/ML [10], where
the transaction concept is decomposed in a set of properties realized by object classes offered by
the environment. The developer specifies application objects to be atomic, durable etc. Objects
that adopt all the provided properties are fully transactional. The basic limitations are that the
property set is not expandable and that the application objects are statically associated with
the properties (i.e. an object of the application cannot be used both as transactional and non-
transactional, because its properties are defined at compile time). In the same spirit of decomposing
the transaction concept, we meet the RAVEN system[2] and the approach proposed in [12]. The
novelty is that properties are dynamically associated with the application objects. However, the
property set remains closed and closely related to the underlying system (RAVEN and HERMES/ST
respectively). An interesting approach that overcomes the closed property set limitation is presented
in [3]. According to that approach, the developer can require a particular transaction model,
expressed in an ACTA like language [1]. A formal framework is used to verify whether or not a
set of application objects support this model. In case the model is not supported, a Transaction
Management Mechanism (TMM) can be used to enforce the required constraints. Nevertheless, the
limitation is the non-expandable set of services. The whole framework is based on the TMM unit.
Thus, it lacks the flexibility of using primitive transactional services and exploiting the different
features they provide (e.g. optimistic vs. pessimistic concurrency control).

The method we introduced in this paper, aims to overcome the limitations of the aforementioned
approaches. Our goal is the synthesis of a transactional middleware platform based on an open
service repository associated to an expandable set of properties, that serves as the basic formal
proving theory. Our method is based on: 1) the formal specification of transactional properties, 2)
pure logical reasoning and 3) stub code generation.

Our work is part of ASTER l, a framework that deals with the specification and automated
composition of software systems, regarding their requirements for quality of service (e.g. security,
availability, transactions). The use of such a framework promotes software reuse, makes the ver-
ification of the resulted system a straightforward task, and finally eases the way to handle the
system's evolution over time. In this work, we contribute by providing the basis for dealing with
transactional non-functional properties.

A c k n o w l e d g m e n t s . We would like to thank Petr Tuma for his remarks and his contribution to
the realization of the framework prototype.

References

[1] P.K. Chrysanthis and K. Ramamritham. Synthesis of Extended Transaction Models Using
ACTA. A C M Transactions on Database Systems, 19(3):450-491, September 1994.

I ASTER URL: http ://www. irisa, fr/solidor/work/aster, html

03i

[2] D. Finkelstein, D. Acton, T. Coatta, N. Hutchinson, and G. Neufeld. Object Properties in the
RAVEN System. In Proceedings of the I~th Conference on Distributed Computing Systems,

pages 502-509. IEEE, June 1994.

[3] D. Georgakopoulos and M. Hornick. Customizing Transaction Models and Mechanisms in a
Programmable Environment Supporting Reliable Workflow Automation. IEEE Transactions
on Knowledge and Data Engineering, 8(4):630-649, August 1996.

[4] IONA. Orbiz Advanced Programers Manual. IONA Technologies Ltd, 1 edition, July 1995.

[5] Val6rie Issarny, Christophe Bidan, and Titos Saridakis. Achieving Middleware Customization
in a Configuration-Based Development Environment: Experience with the ASTER Prototype.
In Proceedings o/the #th International Conference on ConfigurabIe Distributed Systems. IEEE,

May 1998.

[6] A. K. Elmagarmid. Database Transaction Models for Advanced Applications. Morgan Kauf-
mann, San Mateo, California, 1992.

[7] S.K. Shrivastava, G. N. Dixon, and G. D. Parrington. An Overview of the ARJUNA Distributed
Programming System. IEEE Software, pages 66-73, January 1991.

[8] A. Mili, R. Mill, and R. Mittermeir. Storing and retrieving software components: A refinement
based system. In Proceedings of the 16th International Conference on Software Engineering,
pages 91-100, 1994.

[9] E. Moss. Nested Transactions and Reliable Distributed Computing. In Proceedings o/ the
International Conference on Reliability in Distributed Software and Database Systems, pages
33-39. IEEE, July 1982.

[10] S. Nettles and J.M. Wing. Persistence + Undoability = Transactions. Technical Report
CMU-CS-91-173, School of Computer Science, Carnegie Mellon University, August 1991.

[11] OMG. CORBAservices: Common Object Services Specification. Technical report, Object
Management Group, November 1995.

[12] R.D. Ranson. Less-Than-Transactional Semantics for TINA. In 6th Telecommunications In-
formation Networking Architecture Conference (TINA 95), volume 2, pages 243-257, 1995.

[13] RM-ODP. Reference Model of Open Distributed Processing. Technical Report 10746, ISO/IEC
Document, 1994.

[14] Titos Saridakis, Christophe Bidan, Val6rie Issarny. Using Nonfunctional Execution Properties
to Classify Software for Reuse. In Franco-Japanese Workshop on Object-Based Parallel and
Distributed Computing 1997 (OBPDC'97), 1997.

[15] TRANSARC. Encina Toolkit Server Core Programmer's Reference, 1997.

[16] Apostolos Zarras and Val6rie Issarny. A Framework for Systematic Synthesis of Transactional
Middleware. In Proceedings of Middleware'98. IFIP, Chapman-Hall, Sept 1998.

032

