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Abstract. In this paper we investigate the concept of designing user-centric 

transaction protocols towards achieving dependable coordination in AmI 

environments. As a proof-of-concept, we propose a protocol that takes into 

account the schedules of roaming users that move from one AmI environment 

to another, to avoid abnormal terminations of transactions when the users leave 

an environment for short, only to return later. We compare the proposed 

schedule-aware protocol against a schedule-agnostic one. Our findings show 

that the use of user-centric information in such situations is quite beneficial. 
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1. Introduction 

The rapid emergence of novel technologies in the fields of mobile computing and 

networking fostered the transition from conventional distributed systems to mobile 

computing systems that consist of fixed and mobile devices (such as PDAs, Pocket 

PCs, smart-phones), which collaborate through wireless networking infrastructures. 

Going one step further, the vision of Ambient Intelligence (AmI) investigates the 

possibility of realizing mobile computing environments that are aware and responsive 

to the presence of people [1, 2]. AmI is based on Weiser's pioneer work on ubiquitous 

computing [3], which evolved later on to the concept of pervasive computing. 

Pervasive computing aims at a digital world, consisting of interconnected electronic 

devices that support the quotidian activities of people. AmI is particularly concerned 

by the users’ experience in such a digital world. In other words, AmI puts a specific 

focus on the users and targets the development of user-centric digital environments 

that account for the users’ needs, habits and satisfaction, while offering support that 

allows them to perform their everyday activities. 

The vision of AmI motivates research towards coordination protocols that involve 

both mobile and fixed entities. In this paper, we particularly investigate the need for 

designing user-centric transaction protocols to achieve dependable coordination in 

AmI environments. User-centric information can be exploited while coordinating a 

set of transaction participants towards avoiding abnormal transaction terminations.  

In this context, we focus on the abnormal ending of a transaction that takes place 

within an AmI environment, due to the fact that one or more participating users leave 

the environment. Leaving the environment means that the users’ devices are no longer 

reachable, via the networking infrastructure that supports the transaction coordination. 
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The idea behind our approach is that if there is a certain level of knowledge behind 

the schedule of each participating user (i.e.,, the way the user moves from one 

environment to another), then we can exploit it to avoid abnormal transaction 

terminations, where a roaming user leaves the environment for short, only to return 

later. 

Taking a simple example, consider a conference that takes place in a number of 

conference rooms. Several researchers attend a technical session in conference room 

A (i.e., environment A). In this situation, a number of colleagues want to arrange a 

meeting for dinner or work after the technical session. To this end, they setup a 

private ad-hoc network using the Bluetooth capabilities of their mobile devices. One 

of them browses, using his Pocket-PC, information regarding available meeting 

places. His goal is to book a place at a certain time and insert a dinner meeting in the 

agenda applications that execute on his colleagues’ laptops or Pocket-PCs. Obviously, 

setting up the dinner meeting involves performing a distributed transaction amongst 

the mobile devices that host the agenda applications. The transaction requires each 

participant’s agenda application to execute a local transaction and verify that there are 

no other obligations of the participant at the meeting time. This task might take a 

certain amount of time to complete. Assume now that during this time period, one of 

the participants leaves the gathering before the transaction completes, because his talk 

starts at conference room B (i.e., environment B). In such a situation, typical 

transaction protocols would abort the transaction, wasting thus the energy resources 

that were spent up to this point. Nevertheless, the transaction may have a chance for 

successful completion if we consider that the colleagues shall reunite after the coffee 

break. Hence, if the transaction protocol could be enriched with such kind of user-

centric information (i.e., the users schedules) and reason with respect to this 

information, all the work that has been performed for fixing the dinner meeting would 

not be wasted.  

Based on the previous discussion, the contribution of this paper consists of 

designing a schedule-aware protocol and comparing it against a schedule-agnostic 

one. Specifically, in Section 2 we present the necessary background and state-of-the 

art for this paper. In Section 3 we detail the proposed protocol. In Section 4, we 

present our experimental results. Finally, in Section 5 we summarize our contribution 

and provide insights for future work. 

2. Related Work & Background 

The overall idea of user-centric transaction protocols and the particular protocol 

discussed in this paper fall in the general field of mobile transactions [4, 5]. Until now 

there have been various approaches for mobile transactions that can be classified with 

respect to the system model that they assume into 3 different categories [5]. In all of 

them the transaction initiator is a mobile host and the entities that comprise the data, 

processed during the transaction execution are fixed hosts. Moreover, in [5] the 

authors further identified the following more generic execution models: 

1. In the first system model, transactions are initiated by mobile hosts and they 

aim at processing data located on other mobile hosts. 
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2. The second system model is the most generic one, where the execution of 

mobile transactions is distributed amongst several mobile and fixed hosts. 

A few years ago, the previous execution models were considered as too ambitious 

but interesting [5]. Nowadays, these models fit perfectly to the case of AmI 

environments. Until now, some interesting approaches have been proposed for 

dealing with transactions in the context of the aforementioned execution models. In 

[6], for instance, the authors deal with mobile host disconnections in transactions that 

involve several mobile and fixed hosts by a protocol that discovers alternative mobile 

hosts that may replace the disconnected ones. In [7] the authors propose a protocol for 

transactions that span across several mobile hosts, which may move across different 

interconnected network cells. The main idea is to use participant-agents (i.e. proxies 

to participants that move to different network cells) to provide relocation transparency 

and timeouts to handle participant disconnections.  Alternatively, in [8] the authors 

propose the use of a data sharing space. In this paper, we go one step further by 

investigating the issue of using user-centric information towards designing distributed 

transaction protocols for AmI environments. 

The protocol that we investigate in this paper relies on the combination of two 

classical protocols: (a) the presume-abort 2-phase-commit protocol [9] and (b) the 

strict 2-phase-locking protocol [10].  

In general, the execution of a transaction involves (1) an entity that initiates it 

(hereafter we use the term master to refer to the transaction initiator) and (2) entities 

that comprise data, processed during the transaction execution (hereafter we use the 

term cohort to refer to these entities). Typically, the transaction execution consists of 

an initiation state, during which the master invites the cohorts to participate in the 

transaction and the cohorts accept or deny the invitation. If all goes well, the initiation 

state is followed by an executing state, during which the master processes data that 

may be of his own, or of the participating cohorts. At the time when the master 

decides to complete the transaction, the presume-abort protocol takes place amongst 

the participants. Briefly, the presume-abort protocol comprises the two phases of the 

classical 2-phase-commit protocol. During the first phase, the master of the 

transaction sends to all cohorts a PREPARE message. Upon the reception of this 

message the cohorts should respond with their votes concerning the outcome of the 

transaction. The voting messages may be either to commit or to abort the transaction. 

After the voting the transaction gets into a prepared state and the cohorts wait for the 

final decision for the outcome of the transaction. The second phase of the protocol 

starts after the reception of all votes sent by the cohorts. If a negative vote exists, the 

master decides to abort the transaction, notifies accordingly all cohorts, and releases 

all information concerning the transaction (i.e., the transaction gets into an 

aborting/aborted state). Otherwise, if all votes were positive the master decides to 

commit the transaction, notifies accordingly all cohorts and waits for their 

acknowledgment (the transaction gets into a committing state). Upon the reception of 

the acknowledgments, the master releases all information concerning the transaction 

and the transaction get into a committed state. The presume-abort protocol further 

conforms to the following basic principle: if a transaction participant tries to find out 

about whether a transaction was finally committed or aborted and there is no 

information available about this transaction, the transaction participant derives the 

conclusion that transaction was aborted.  
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The strict 2-phase-locking protocol that we assume is a variant of the classical 2-

phase-locking protocol, whose fundamental principle states that no locks can be 

released until all necessary locks have been acquired from the transaction. In the 

strict 2-phase-locking variant, all locks are released at the end of the transaction. 

3. A Schedule-Aware Protocol for AmI Environments 

In this section we discuss the issue of user-centric transactions in the context of AmI 

environments. The problem we wish to handle concerns the abnormal ending of the 

transaction due to the fact that a mobile user / transaction participant leaves the AmI 

environment where the transaction takes place. The idea behind our approach is that if 

there is a certain level of knowledge behind the schedule of the user, then we can 

exploit it to avoid the abnormal transaction termination. Based on this idea, we 

present a schedule-aware transaction protocol. Before presenting the protocol’s 

internals, in Section 3.1, we start with preliminary concepts, foundations and 

assumptions for our problem. 

3.1 Preliminaries 

In this section we provide a formal definition of the entities that participate in the AmI 

environment, along with any assumptions made for the purpose of this paper. 

We assume that an AmI environment is a set of nodes #i in an area where they can 

communicate with each other.  Therefore, we define the notion of AmI environment 

based on both an area and the available networking facilities that allow 

communication between a set of nodes. Our overall system model consists of a set of 

distinct AmI environments of nodes S={#1, #2, …, #n}. Communication between 

nodes of #i, #j, for all i, j | i ≠ j is not possible. We assume two kinds of nodes, (a) 

fixed nodes that are constantly part of their environment and (b) mobile nodes, 

corresponding to users that move over the set of AmI environments. At any given 

time point, each environment comprises its fixed nodes and a (possibly empty) set of 

mobile nodes that happen to be part of the environment at that moment. Each node n 

has (a) a unique node id and (b) a finite set of records, or variables, denoted as var(n), 

which are either read or updated in the context of a (possibly distributed) transaction. 

Moreover, each mobile node is characterized by a schedule that specifies its 

movement from one environment to another. A node’s schedule is a finite list of pairs 

of the form (environment, duration) characterizing how long the node will remain in 

each environment. In Fig. 1, we depict he schedule of a node which is going to stay 

for 20 time points in environment #1, then move to environment #2 where it will 

remain for 30 time points, then return to environment #1 for a duration of 40 time 

points and finally move to environment #3 where it will stay for 44 time points. 

All nodes issue flat distributed transactions, i.e., transactions composed of tasks 

that are executed at different nodes, with the extra assumption that each node who is 

requested to perform a task can execute this task locally without issuing another 
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(nested) transaction. Also, we assume that each transaction is executed within the 

context of a single environment1.  

Formally, each transaction is defined as the following tuple: 

T = (TID, #ID, MID, {Steps}) 

where TID is a unique identifier for the transaction, #ID is the identifier of the 

environment within which the transaction must be executed, MID is the node 

identifier for the master node of the transaction and Steps is a finite list of steps (to be 

defined right away)2. Each Step is defined as a set of actions, with each action being a 

request to read or write a cohort’s variable. An action is, thus, defined as the 

following tuple:  

A = (CID, Action, Variable) 

where CID is the node identifier of the cohort node that executes the action, Action 

belonging to the set {READ, WRITE} and Variable being the variable being read or 

written. 

 

#1 20 

#2 30 

#1 40 

#3 44 

Figure1. Exemplary schedule of a mobile node. 

3.2 The Freeze on Leave Protocol 

The main thrust of our contribution lies in the exploitation of the schedules of the 

mobile nodes. Assume that a mobile node is about to leave an environment where it 

participates as a cohort to a distributed transaction. In this case, a typical transaction 

protocol would simply abort the transaction. Following a different direction, we build 

on the idea on requiring the node to notify the transaction’s master on its intention to 

leave, instead of sending an abort message. The crux of the proposed protocol is that 

the master tries to find a rendezvous, i.e., a time point and a subsequent interval 

where all the participants of the transaction will meet again in the same environment. 

If this is feasible, then the transaction is frozen, its state is recorded at the master and 

it will be de-frozen again when the master’s clock reaches the starting point of the 

rendezvous that the master has calculated. Due to this mechanism, we call this 

protocol Freeze on Leave (FOL). 

Assume a transaction that takes place in environment #1 and involves a fixed 

master and two mobile cohorts, m1 and m2. Assume that at time point τ the master 

receives a message from cohort m1 that the latter is leaving environment #1. The 

schedules of the two cohorts at time point τ are depicted in Fig. 2. The master, can 

calculate that, according to the cohorts’ schedules, cohort m1 will be back at the 

                                                           
1 This particular assumption can be relaxed with straightforward enhancements in the proposed 

protocol. 
2 For reasons that will be apparent in the sequel, we would like to point out that it is easy to 

infer whether a node is mobile or fixed by its node id. 
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environment #1 for the time interval [51-90] and cohort m2 will also be back for the 

time interval [71-90]. The overlap of the two schedules can serve as a “rescue” 

interval for the successful completion of the transaction. 

 

#3 20  #1 30 

#2 30  #3 40 

#1 40  #1 20 

#3 44  #3 10 

Schedule for m1  Schedule for m2 

Figure 2. Schedules for mobile nodes at the time of departure of m1. 

Interestingly, the protocol does not guarantee successful completion of the 

transaction. The risks of failure are primarily two: (a) a cohort violates its schedule 

and misses the rendezvous for the frozen transaction’s defreeze, or (b) the transaction 

cannot be completed in the common time interval of the cohorts. In both of the 

aforementioned cases the protocol guarantees that the transaction shall be aborted. 

Another issue that should be mentioned concerns the protocol’s requirement that 

master nodes are aware of the schedules of mobile cohorts. This particular 

requirement raises an issue of privacy, which should be handled by the middleware 

that would actually realize the protocol on behalf of the transaction participants. 

Further details concerning this issue are out of the scope of this paper.     

In the rest of this section, we organize the discussion of the internals of the Freeze 

On Leave protocol in two parts: first we assume that the master is fixed and following 

we examine the case where the master is mobile. In both cases, the reaction of the 

master is also dependent upon the state in which it is in. 

 

If the master of the transaction is fixed, then it does not need to worry about its 

own schedule, since it will continuously be present at the environment where the 

transaction takes place. As already mentioned, we are particularly interested in the 

case where a mobile cohort sends a message LEAVE to the master, signifying the 

cohort’s intention to leave the environment. Whenever the master receives such a 

message it checks its state. If the master is in any state before executing, then it 

assumes that no work has actually been done (and therefore worth saving) and aborts 

the transaction. On the other hand, if the master is in an executing or prepared state, it 

understands that there is a chance of salvaging the work that has been performed so 

far. The actions of the master depend upon its state.  

 

A cohort leaves and the master is in executing state: In this case, when the master 

receives the LEAVE message from the cohort, it initiates the procedure for finding a 

rendezvous, i.e., a common time point and a subsequent interval where all the mobile 

cohorts will be back in the environment again. In case there is no such interval, the 

transaction is aborted as usually. If, on the other hand, such an interval exists, the 

master proceeds as following: 

− First, the master checks whether there are steps that can be executed without 

the leaving cohort. If the next step requires the departing cohort, then the 

master node proceeds as follows: 
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− it notifies all cohorts about the rendezvous by sending to them a FREEZE 

message; 

− if the master has received acknowledgements from the last step (i.e., read 

or write actions), it assumes a hung up state – else it assumes an ack hung 

up state until all acknowledgements arrive; 

− If there are steps that can be executed without the departing cohort, then the 

master proceeds as follows: 

− it notifies the departing cohort about the rendezvous by sending to it a 

FREEZE message; 

− it assumes a temp executing state; 

− it waits for a step that requires the presence of an absent cohort to signal a 

FREEZE message to all the cohorts and moves to a state of hung up or 

ack hung up. 

At the same time, when a cohort receives a FREEZE message, it moves to a hung 

up state. 

The execution of the transaction continues interactively. Whenever a participating 

cohort returns to the environment, the master node tries to execute the next step of the 

transaction. If the execution of the next step is possible the master passes in a temp 

executing state and keeps up with the execution of the transaction until a step that 

requires a missing node; otherwise it remains in its previous state.  

The overall defreeze of the transaction takes place when the rendezvous point 

arrives. At this point, the master checks if every cohort is present. If the rendezvous is 

missed, the master aborts the transaction and notifies all cohorts that are present 

accordingly. The cohorts that missed the rendezvous are aware of this situation; when 

the rendezvous is missed each one of them considers the transaction aborted.  

 

A cohort leaves and the master is in prepared state: If the master receives a 

LEAVE message when it is in prepared state, it also needs to check whether it is 

possible to find a rendezvous. If such a rendezvous can not be found the transaction is 

aborted. Otherwise, the master (a) sends a FREEZE message to the cohort leaving the 

environment and (b) assumes a vote hung up state, waiting for the remaining cohorts’ 

votes. When the master can reach a decision for the transaction, there are two cases: 

− If the transaction is to be aborted, the master notifies all cohorts that are 

present about the decision and assumes a partially abort state, until the 

rendezvous point. At this point, the master sends an ABORT message to the 

returning cohorts and moves to an aborted state. Note that some cohorts may 

miss the rendezvous. These cohorts can not be notified by the master about the 

outcome of the transaction. However, since they are aware of the missed 

rendezvous, they shall abort the transaction by themselves.  

− If the transaction is to be committed, the master moves to the partially commit 

state, until the rendezvous. At this point, the master checks if every cohort is 

present. If the rendezvous is missed, the master assumes an aborted state. As 

previously, the cohorts that missed the rendezvous abort the transaction by 

themselves. If the rendezvous is met by all cohorts the master assumes a 

committing state.  
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If the master of the transaction is mobile, the overall behavior of the protocol is 

quite similar with what has been discussed for the case where the master is fixed. 

Nevertheless, below we summarize the main differences that exist in the case of the 

mobile master: 

− Whenever the master tries to calculate a rendezvous, it takes into account its 

own schedule along with the schedules of the participating cohorts. 

− If the master has to leave the environment while being in the executing or in 

the prepared state, there is nothing particularly different from the case of a 

mobile cohort leaving the environment. Nevertheless, due to the fact that the 

master needs to organize its departure and calculate the rendezvous, the master 

arranges to send a LEAVE message to itself somewhat earlier than its 

departure.  

4. Experiments 

To assess the idea of designing user-centric transaction protocols for AmI 

environments we implemented a simulator and performed a number of experiments. 

The goal of our experimental evaluation was to compare the FOL protocol we 

proposed in Section 3 against a schedule-agnostic protocol. The schedule-agnostic 

protocol relies on the following principle: whenever the designated time interval for 

the staying of a mobile node at a certain environment expires, the node (a) sends a 

message that aborts all the transactions to which it participates, and (b) leaves the 

environment (possibly to join the next environment in its schedule). The main metrics 

for our study were the percentages of aborted and committed transactions in the case 

of each protocol.  

Concerning our experimental setup, we assumed 3 different AmI environments, 

each one of which comprised 30 fixed nodes. Given these environments we 

performed 4 different sets of experiments where the number of mobile nodes varied as 

follows: 10, 15, 20 and 25 mobile nodes. The overall number of variables for the 

fixed nodes was 640, while the overall number of variables for the mobile nodes was 

320. The variables were equally distributed among the fixed and the mobile nodes.  

The schedule of each mobile node was randomly generated with respect to the 

overall simulation time which was set to 1000 time units. The average visiting time of 

each node in a particular environment was 50 time units (i.e., it was randomly 

generated in the range [40, 60]). Therefore, each mobile node performed on average 

25 visits in the 3 AmI environments.  

The set of transactions used in our experiments was also randomly generated. In 

particular the number of steps of each transaction varied in the range of [1, 20]. 

Hence, on average every transaction comprised 10.5 steps. The average number of 

actions performed on each step was 2. Each action had a probability of 0.5 to be 

performed on a variable that belonged to a randomly selected mobile node. In each 

one of the 4 different sets of experiments that we performed we varied the percentage 

of read actions over the total number of actions from 10% to 100%. The percentage of 

read operations influences the contention for locks within each node, since read 

operations can read-lock the same variable simultaneously, whereas write operations 
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lock the variables exclusively. Finally, in all our experiments, transactions were 

initiated in the AmI environments according to a Poisson distribution; on average, 2 

transactions were initiated every 10 time units.  

Fig. 3 summarizes the results we obtained. More specifically, Fig. 3 gives the 

percentages of aborted transactions resulted by the use of the two protocols in the 4 

different configurations of our environments. In all cases, we can observe that the 

schedule-aware protocol exhibits a much better behavior; the percentages of aborted 

transactions in the case of the schedule-agnostic protocol are much higher than the 

percentages of aborted transactions in the case of the schedule-aware protocol. 

Nevertheless, as we increase the number of mobile nodes involved in the 3 AmI 

environments the difference between the two protocols decreases given that the 

probability of finding rendezvous decreases.  

Concerning the percentages of committed transactions, (detailed results are not 

provided due to the lack of space) our main observation was that the schedule-aware 

protocol performs better than the schedule-agnostic one as the percentage of read 

operations increased. Moreover, the difference between the two protocols became 

clearer as we increased the number of mobile nodes involved in the environments.  
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Figure 3. FOL vs. a schedule-agnostic protocol: Percentage of aborted transactions. 
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5. Conclusions and future work 

In this paper we discussed our general position that concerns the need for designing 

user-centric transaction protocols towards achieving dependable coordination in AmI 

environments. We proposed such a protocol that takes into account the schedules of 

roaming users that move from one AmI environment to another, to avoid abnormal 

terminations of transactions when the users leave an environment for short, only to 

return later. We compared the proposed schedule-aware protocol against a schedule-

agnostic one. Our findings showed that the use of user-centric information in such 

situations is quite beneficial. Our results motivate further investigation of the issue of 

user-centric transaction protocols. Currently we focus on more stochastic approaches 

for defining and exploiting user centric information. Privacy is also an interesting 

issue involved. Moreover, our research is oriented towards the design of customizable 

protocols where the outcome of transactions shall be decided with respect to user-

defined context rules. Finally, we envision the provisioning of middleware support for 

user-centric transaction protocols.  
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