
A Framework for Systematic
Synthesis of Transactional
Middleware

Apostolos Zarras, Valerie Issarny
INRIA/IRISA
Campus de Beaulieu, 35042 Rennes Cedex, FRANCE
email: {zarras, issarny} @irisa.fr

Abstract
Transactions are contracts that guarantee a consistent, transparent, individual system
state transition and their use is widespread in many different kinds of computing sys­
tems. Some well known standards (e.g. CORBA) include the specification of services
that provide transactional properties. In this paper, we present a formal method for
the systematic synthesis of transactional middleware based on the combination of
the aforementioned services. The synthesis of transactional middleware is based on
(0 the formal specification of transactional properties and (ii) stub code generation.

Keywords
Atomicity, Consistency, Durability, Isolation, Middleware, Transaction

1 INTRODUCTION

The construction of a large-scale distributed software system is a complex task that
involves design decisions relating to different aspects of the system's behavior. In
particular, the developer has to address the provision of the system's functional (i.e.
algorithmic aspect) and non-functional (i.e. quality of service with which the sys-

257

irisa.fr

258

tern's functions are performed) properties. While the provision of functional proper­
ties is system-specific, the one of non-functional properties appertains to the under­
lying Distributed Processing Environment (DPE) and is common to a variety of sys­
tems. The concern of improving software quality and reducing the duration of system
development has led to a number of standardization efforts that propose specification
of middleware services that are common to various systems.

In the framework of the ASTER project * at IRISA/INRIA, we are investigating
design and development methods that aid the developer to select the appropriate ser­
vices and integrate them within the system implementation (Issarny et al. 1998). In
this paper, we focus on the treatment of non-functional properties relating to trans­
actional processing, as they are among the primary concerns in building large-scale
software systems. Transactions provide the warranty for a consistent transparent, in­
dividual system state transition (Gray 1981), properties which are indispensable in
both centralized and distributed computing systems (e.g. databases, telecommunica­
tions, CAD/CAM, operating systems). However, the characteristics of those systems
vary a lot and the transaction concept had to adapt with respect to them. As a re­
sult, a variety of transaction models (Moss 1982, Pu et al. 1988) were developed
in order to deal with the newly imposed requirements (e.g. performance, coopera­
tion). Moreover, some well known processing standards (e.g. CORBA (OMG 1995),
ODP (ISO/IEC 1994)) include the specification of services that provide transactional
properties (e.g. locking, persistence, recovery). However, to ascertain whether or not
some required transactional properties are supported by existing standard services is
a tedious task. For instance, let us consider the CORBA Object Transaction Service
(OTS) which provides atomicity but whose support for the nested transaction model
is optional in the standard service specification. Then, the developer must be aware
of both the variety of standard services installed in the environment and of the par­
ticular features provided by their implementations. Furthermore, it is often the case
that the property provided by a standard service should be extended in order to meet
the current system's requirements. For example, the CORBA Concurrency Control
Service (CCS) provides locking. In order to obtain the well known two-phase lock­
ing protocol, the developer must use the service in a certain way. Finally, there are
cases where the non-functional properties provided by standard services should be
refined. For instance, the ODP Transaction Function does not define the exact cor­
rectness criterion that guarantees a (confiict-)serializable execution. Discharging the
developer from the arduous responsibility to manage such details at the low level
of implementation is our motive. Towards that goal, we are proposing a systematic
procedure that takes as input the transactional requirements for a given system and
that takes in charge the selection of corresponding middleware services and their
combination to build a middleware platform, customized to the system's needs.

This paper introduces our method for synthesizing transactional middleware from
a system description including the specification of transactional non-functional prop­
erties. Section 2 gives the core elements of the method. Our method is exemplified

*See URL: http://www.irisa.fr/solidor/work/aster.html.

http://www.irisa.fr/solidor/work/aster.html

259

System Architecture

--{ properties) -f (interfaces') -

DB of Transactional Properties

Proper t ies v , - -
Integration Roles

\ i

Selecting Procedure

Figure 1 Synthesizing transactional middleware.

in Section 3 in the CORBA framework. Finally, conclusions are given in Section 4,
summarizing our contribution and presenting a comparison with related work.

2 SYNTHESIS METHODOLOGY

The basic constituents of our method for synthesizing transactional middleware are
(see Figure 1):

• A declarative language, known as Architecture Description Language or ADL for
short (Shaw et al. 1995), for the description of systems software architectures.
The ADL allows the developer to describe the gross organization of his software
system in terms of the interconnection of functional components (i.e. computa­
tion unit or data store) defined by their interface. The ADL further supports the
specification of transactional properties either provided or required by software
components.

• A selecting procedure that takes as input a set of transactional requirements, re­
flecting the demand for a particular transactional model, and that verifies whether
the requirements are supported by existing middleware services.

• A composing procedure that combines the middleware services meeting the sys­
tem's transactional requirements with the system's functional components.

2.1 Specifying Transactional Requirements

The specification of transactional requirements relies on: (/) the description of soft­
ware architectures and (n) the formal specification of transactional properties used
for systematic selection of middleware services. We examine these two issues in turn.

Describing system architectures

Using our ADL, the software architecture of a system is described in terms of the

260

component and configuration abstractions. A component abstractly defines a unit of
computation or data store in terms of its interface, which gives the operations that are
imported and exported by the component. A configuration defines a system architec­
ture by stating interconnections among a set of of components, i.e. by binding the
imported operations to the exported ones. The description of components and con­
figurations may further embed the specification of required and/or provided transac­
tional properties. To simplify the developer's task, this specification is given in terms
of properties names corresponding to formal specifications stored in an expandable
database of transactional properties, as detailed in the next paragraph. An example
of software architecture description is given below:

COMPONENT client {
IMPORTS: VOID op();
DEFINES TRANSACTIONAL Trans:

MODEL = Tmodel;

BEGIN = t.beginO; COMMIT = t_commit(); ABORT = t_abort();
REQUIRES: op: Trans

}
COMPONENT server {
EXPORTS: VOID op(); REQUIRES: NOTHING;

}
CONFIGURATION system {

USES: client, server;
BINDS: client::op: server::op;

}
TRANSACTI0N.MODEL Tmodel {

PROPERTIES: atomic AND isolated;

}

It is a simple client/server system where the client component requires the invoca­
tion of the operation op of the server to be executed within a transaction under the
Tmodel model. Furthermore, the operations used within the client's source code to
perform significant transactional events are t_begin, t.commit, and t_abort. The
Tmodel transactional model is the conjunction of the atomic and i so l a t ed prop­
erties. These two properties may be refined into a number of more specialized ones
(e.g. rollback recovery for atomicity and serializability for isolation), and hence a
large number of middleware services are a priori eligible to meet these requirements.

Components of a configuration declare in their interface, their requirements for
transactional processing. Two components involved in a nested control flow at run­
time (e.g. a client component instance invokes the operation op of a server which
invokes another server during the execution of op) may require distinct transactional
models. In a first step, we address this issue by enforcing the requirement for a single
transactional model at the level of a configuration. Given a configuration of com­
ponents that require distinct transactional models, the developer should specify the
model that applies for all the components (although they may not be involved in

261

a nested control flow). By default, the transactional model that is enforced for a
configuration is the conjunction of the strongest transactional properties among the
specified ones. However, for the sake of flexibility, components that do not specify
any transactional requirement are handled in a different way. The selected transac­
tional model will be enforced for the operations they invoke only if the invocations
happen within a transaction whose model is specified to be distributed.

Let us notice that our synthesis method applies to static configurations and hence is
not directly suited for configurations based on dynamic bindings (e.g. using a trading
service). The treatment of dynamic configurations is an open issue for future work.

Specifying transactional properties

For the specification of transactional properties, we use a refinement approach where
each of the ACID (Atomicity, Consistency, Isolation, Durability) properties can be
gradually refined into more specialized properties. The properties of a given trans­
actional model correspond to the conjunction of one refinement of each of the ACID
properties that are enforced by this model. Additionally, the transactional property
provided by a given middleware service corresponds to one of the refinements of the
ACID properties.

Our specification of transactional properties is based on temporal logic where only
the precedence operator among predicates is used in addition to the operators of first
order logic. This allows us to keep the notations simple. The following notations are
used: A, V, and =>• denote logical and, or, and implication, respectively; a (possi­
bly primed or with subscript) denotes a system state; [a] denotes the predicate that
holds if the system is in state a, [a] -< [a1] holds if [a] is verified before [a'}*. In
addition, t (possibly primed or with subscript) denotes a transaction, pre(t) (resp.
post(t)) denotes the system's state before (resp. after) the execution of transaction t,
and a —^ a' is the specification of t. In that context, a property P refines another
property P' if P =>• P'.

Let us first examine the specification of the basic ACID properties. A transaction
is said to be atomic (also known as the all-or-nothing property) if it appears to be
indivisible. In other words, either the execution of the transaction results in a state
transition that goes from the initial state to the final state specified for the transaction
or, the system appears as if it had never left the initial state. The following formula
captures this property:

atomic{t) = ((pre(t) = a) A (<r ->-t a')) => {(post(t) = a) V (post(t) = a'))

The consistency property guarantees that given a system in a consistent state and
a transaction that executes alone and to completion, the system passes to another
consistent state. Hence, for a transaction t and the system states before and after

*Let us also note that we have: pi <P2 < ••• < Pn =/\i=1 n_x{Pi < Pi+i)-

262

the execution oft, the corresponding system state transition must be dictated by the
transaction specification. This property is captured by the following formula:

consistentft) = ((pre(t) = a) A (post(t) = a')) => (a -^t cr')

The third basic property is the one that guarantees the isolated execution of a trans­
action, i.e., a transaction t always behaves as if it is the only one executing. Hence,
for every transaction t', t' ^ t, either t' views a system state that follows the state
produced by t or t views a system state that follows the state produced by t'. We
have:

isolated(t) = ((pre(t) = a) A (post(t) = a')) => (V f, t' + t:
((pre(t ') = cr") A (<r' -< a")) V ((post(f) = a"') A {a111 -< a)))

The final basic transactional property is the one that guarantees durability for the
results of completed transactions. This means that the system state that results from
the execution of transaction t will survive subsequent failures. We get:

durable{t) = (post(t) = a) => (Vtr' : [a] -< [cr'] => a -^-s cr')

where —*•$ denotes a system state transition that is correct with respect to the system's
specification.

Refining transactional properties

The above transactional properties should be refined to be actually helpful for the
synthesis of transactional middleware. Refined properties then serve to character­
ize the behavior of various transactional models as well as the behavior of avail­
able middleware services. Up to now, we managed to refine our basic properties
regarding several well-known models (e.g nested, split/join transactions). A detailed
description of those refinements is not given here due to the lack of space. In the
following, we focus on the refinement of properties that will be used for illustra­
tion purpose. These are the transactional properties provided by the CORBA OTS
and CCS which respectively provide support for atomicity and isolation. The refine­
ments of basic transactional properties characterize the behaviors of transactional
systems, and hence define the behavior of the operations on transactions, i.e., begin,
commit, and abort of a transaction. Furthermore, properties are given with respect to
the execution of the DPE's operations. Such executions are characterized using the
following base predicates in the case of a distributed transactional DPE:

• ExPORT(C1,C
,2,(i) holds if component instance Ci exports data d towards com­

ponent instance Ci-
• lMPORT(Ci, Ci, d) holds if component instance C2 imports data d from compo­

nent instance C\.
• FAILURE(C, a) holds if component instance C fails while the system is in state

a.
• BEGIN(C, t) holds if component instance C requires the initiation of transaction

t.

263

• COMMIT(C, t) holds if component instance C requires the commitment of trans­
action t.

• ABORT(C, t) holds if component instance C requires the abortion of transaction
t.

Let us first give a refinement of the atomic(t) property under the distributed flat
transaction model where we use the notation ac to denote the state of component
instance C. This refinement consists of refining the value specified for pre(t) and
post(t). We get the following globalAtomic property:

globalAtomic(t) ({pref{t) = a) A (a -^t a')) => ((postf(t) = a) V (postf(t) = a'))

with:
pref(t)
pre(C,t)
postf(t)
post(C,t)

and where:
begin(C, t)

UC: begin(C,t) (pre(C,t) = ac)
ac = [<Jc] A begin{C, t)

u. : post(C,t) =z ac

commit(C, t)

abort(C, t)

C:begin(C,t)
ac = ([<r'c] A commit(C, t) A ({ac\ < Wc})) V
(pre(C.t) = ffC A abort{C,t))

BEGIN(C,4)V
PC": (IMPORT(C",C,d) A (begin(C ,t) -< I M P O R T (C , C,d)) A
(]B lMPORT(C",C,d'):

(begin(C", t) -< lMPORT(C", C,d')-(. lMPORT(C, C, d))) A
(fiabort(C",t):

(begin(C", t) -< abort(C", t) -< lMPORT(C, C, d))) A
(fi commit(C",t):

(begin(C", t) -< commit(C", t) •< I M P O R T (C , C, d)))))
COMMIT(C,t) V
((commit(C, t) A (begin(C, t) -< commit(C, t))) A
(fi abort(c", t): (begin{C", t) -< abort{C", t) -< commit(C,«))))
ABORT(C.t) V
(FAILURE(C,ac) A (begin(C, t) -< [ac])) V
(abort(C, t) A (begin(C, t) -< abort(C', t)))

Let us notice here that providing other refinements for the atomic property consists
of defining the formulas for begin, commit, and abort according to the behavior of the
associated actions. Let us now give a refinement of the isolated property, we have:

globalIsolaled(t) = Avc-6 ' (C t) ls"la!edComponent(C', t)
LwlatedComponent(C, t) = ((fit1: begin{C, t) -< begin(C, t') -< commit(C, t)) =>

(post(C,t) = <rc))=>
(Vt": begin(C, t) -< begin{C, t") < commit(C, t)) =>

(post(C,t) = ac))

The above formulas may further be refined to distinguish between the various imple­
mentations of mechanisms providing them.

264

2.2 The Selecting Procedure

Given the proposed description of a configuration and formal specification of trans­
actional properties, selecting middleware services that will be used to enforce the
transactional model required for a configuration C, is direct. Let {Ri}i=i,...,n be the
set of transactional properties characterizing the required transactional model, and S
be the set of available middleware services Sj, j < 1 < m, such that each Sj pro­
vides the transactional property PSJ • Then, a transactional middleware can be built
for C if:

VRi,l <i<n:3{Sk}k=h..,m C S | A f c = 1 , . . , m P S f c => Ri

Selecting middleware services to enforce transactional properties becomes simpli­
fied if the developer is provided with a tool that implements systematic retrieval of
software according to the above formula. Such a tool can be based on the adequate
organization of the database of transactional properties, in a way similar to the work
presented in (Mili et al. 1994). The database is organized into a lattice structure* that
encodes the refinement relation among the formulas defining transactional proper­
ties, i.e., any descendant of a property P refines P. Systematic retrieval of middle­
ware services is then based on the following management of the database: (i) Upon
the availability of a new middleware service, the property it provides is inserted in
the database and the service is connected to it; (ii) Given the request for a transac­
tional property P, the middleware service that will be returned among those available
in the database is -if any- the one that provides a property P' that refines P such
that there is no service providing P" where P' refines P" refines P. Construction
of the database together with the selection of a middleware service with respect to
a transactional property requires a tool based on theorem proving technology. There
exist various such tools that have been exploited successfully for the retrieval of soft­
ware components with respect to functional properties expressed in first order logic
(Mili et al. 1994, Zaremski and Wing 1995, Schumann and Fischer 1997). We fur­
ther have implemented our own in the ASTER project for the retrieval of software
components providing non-functional properties, still expressed in first order logic
(Issarny et al. 1998). Up to now, we have not yet experimented the use of a tool that
deals with transactional properties based on temporal logic. However, we do not see
this as a major difficulty since this has already been addressed for richer logics such
as real-time temporal logic (Blair et al. 1997).

Following the selection of middleware services for a given configuration, a func­
tioning configuration is obtained by composing the configuration's functional com­
ponents with the selected services. This raises the issue of components and services
compatibility with respect to the underlying communication protocol (known as the
architectural matching problem (Garlan et al. 1994)). In the proposed method for
transactional middleware synthesis, architectural matching is simplified by request-

*More precisely, there is a lattice structure for each of the basic ACID properties.

265

ing the developer to specify, for each component, the middleware platform (e.;
CORBA) for which it is targeted.

2.3 The Composing Procedure

Figure 2 A client/server system configuration and its transactional middlew are.

Given a configuration description and the set of selected services for the configu­
ration, the final step of middleware synthesis is the composing procedure. The goal is
to generate stub code for both the components that initiate transactions and/or issue
requests within a transaction (referred to as client components in the following) and
the components that serve requests issued within a transaction (referred to as server
components in the following). The produced stub code integrates the configuration's
functional components and the underlying middleware services in a full functioning
system (see Figure 2). Stub code generation relies on the definition of integration
rules for each transactional middleware service. The notion of integration rule com­
pletes the definition of transactional properties provided by a service. Basically, inte­
gration rules specify the code that needs to be added to client and server components.
The integration rule for server components amounts to state the piece of code that
implements the targeted transactional feature. From the client side, the integration
rules subdivide into rules for the following actions: creation (i.e. begin rule), valida­
tion (i.e. commit rule), abortion (i.e. abort rule), and operation calls. Rules relating
to operation calls subdivide into rules that specify the code to be executed before the
call (i.e. pre-call rule), when the called is issued (i.e. opstub rule), and after the call
returns (i.e. postxall rule).

For illustration, the following figure gives the integration rules for a service, called
lock, providing the isolation property according to the two-phase locking algorithm.

266

INTEGRATION lock :: =
SERVER RULES:

F0RALL(S: SERVER) SKELETON = S [+J (lock::LockSet lockSet); END
CLIENT RULES:

CONTEXT BEGIN() :: =

CONTEXT ctx; RETURN ctx;
C0MMIT(C0NTEXT ctx) ::=

FORALL(srv IN ctx) srv.lockSet .unlockO; END
ABORT(CONTEXT ctx) :: =

FORALL(srv IN ctx) srv. lockSet .unlockO ; END
PRE_CALL(CONTEXT ctx) ::- SKELETON srv; srv = BINDING(C, op);

srv.lockSet. lockO ; ctx. insert (srv);
POST.CALL(CONTEXT ctx) :: =

NULL
0P_STUB(..., CONTEXT ctx):: =

SKELETON srv; srv = BINDING(C, op); s r v . o p C , ctx);

In the figure, words in capital letters denote keywords of the language used for
the specification of integration rules. In particular, SERVER denotes server components
of the configuration, i.e., components that export operations which are bound in the
configuration; SKELETON denotes the skeleton to be produced for a server component;
CONTEXT denotes the data structure that characterizes the context of a transaction; and
BINDING(C, op) returns the instance of the server component that is bound to the im­
ported operation op of client component C, in the configuration that is processed. The
integration rules given for the lock service have the following meaning. The one for
server components is trivial: components import features of the service using aggre­
gation, which is specified by the symbol |+|. The rules for client components consist
of acquiring a lock on each server that is invoked within a transaction, passing the
transaction context on each call to a server, and releasing locks upon the transaction
termination.

Given the integration rules provided for middleware services, the stub code for
the components of a given configuration is generated by appending, for each type of
integration rules, all the corresponding rules of the selected services. In addition, the
execution of the stub code generated for client components must preserve possible
existing precedence constraints among middleware services (e.g. releasing locks is
done after committing the produced results). Hence, the combination of integration
rules relevant to client components is accomplished by employing a topological order
graph algorithm (Cormen et al. 1990). Possible precedence constraints are set upon
the insertion of a new service in the service repository. They are defined regarding
all possible related services. This last issue gives the impression of an intolerable
administration effort. Even so, we must consider that transactional services can be
well classified in certain categories and dependencies are only formed between dif­
ferent classes of services providing different transactional properties. For instance,
there exist three different classes of concurrency control services providing isola­
tion, namely, serializability graph testing, locking, and timestamp order preserving
services. For each one of them, there are different precedence constraints regard-

267

ing failure recovery services providing atomicity, which can also be categorized in
certain classes (e.g. undo, redo, ...).

3 EXEMPLIFYING MIDDLEWARE SYNTHESIS WITH CORBA

This section details the use of the proposed synthesis method through the example
of a software system based on CORBA. The example is the same one that goes along
with most of the CORBA transactional services implementations. It is a traditional
client/server banking system that consists of a number of distributed server compo­
nents instances (or objects using CORBA terminology) associated with a database.
Transactional clients issue request operations to the server components for reading
and updating the system's state. In order to simplify the example and without loss
of generality, we assume that each server component corresponds to a single bank
account, which provides operations for withdrawal and deposit. In such a system, it
is essential to perform compound operations (e.g. transferring an amount from one
account to another is realized as a withdrawal followed by a deposit) within a trans­
action, in order to preserve the system's consistency. Hence, the traditional ACID
properties are required for distributed transactions. The underlying database provides
durability (i.e. a recovery protocol) and local atomicity (i.e. atomic operations) Fur­
thermore guaranteeing consistency is system-specific, the remaining requirements
are those for global atomicity and isolation. The following is the ADL description of
the system's architecture:

COMPONENT BankClient {

SOURCE: xxx/BANKclient.i.cc; PLATFORM: MIDDLEWARE = CORBA; LANGUAGE = C++;
EXCEPTIONS: InsufficientFunds {};
IMPORTS: VOID deposit(IN FLOAT balance);
VOID withdraw(IN FLOAT balance) RAISES (InsufficientFunds);

DEFINES TRANSACTIONAL Trans:
MODEL = BankTrans; BEGIN = t_begin(); COMMIT = t_commit(); ABORT = t_abort();

REQUIRES: withdraw, deposit : Trans; }
COMPONENT BankServer {

SOURCE: xxx/BANKserver_i.cc; PLATFORM: MIDDLEWARE = CORBA; LANGUAGE = C++;
EXCEPTIONS: InsufficientFunds {};
EXPORTS: VOID deposit(IN FLOAT balance);
VOID withdraw(IN FLOAT balance) RAISES (InsufficientFunds);

REQUIRES: NOTHING; }
CONFIGURATION BankSystem {
USES BankClient, BankServer;
BINDS BankClient::withdraw: BankServer:withdraw;

BankClient::deposit: BankServer::deposit; }
TRANSACTION.MODEL BankTrans {PROPERTIES: globalAtomic AND globallsolated; }

Clients import the deposi t () and withdrawO operations which are exported by
the server components. In addition, clients require the aforementioned operations

268

to be transactional according to the transaction model defined as the conjunction
of the globalAtomic and globallsolated properties. Finally, clients specify that the
initiation, validation and abortion of a transaction are notified in the client source
code through the t_begin(), t_commit(), and t_abort() pseudo-operations, re­
spectively. The source code for these operations is generated during the composing
procedure, together with the stub code for the deposi t () and withdrawQ opera­
tions.

Middleware Synthesis

Two standard CORBA Common Object Services can be used to synthesize a middle­
ware that conforms to the banking system requirements. The OTS service (chapter 10
in (OMG 1995)) provides the global atomicity property through a distributed com­
mitment protocol, while the CCS service (chapter 7 in (OMG 1995)) is associated
with two-phase and well-formed locking. Given the behavior of two-phase and well-
formed locking, it can be formally proved that they imply an isolated execution and
hence the isolatedConfig property. It follows that the CCS and OTS services can be
selected using our method exposed in Subsection 2.2, to meet the banking system's
transactional requirements. In order to use these services, including the appropriate
extension of the locking functionality provided by the CCS service, the correspond­
ing integration rules must be followed.

The CCS service exports the LockSet CORBA IDL interface that provides the
lockO and the unlockO operations. The former operation acquires a lock on the
corresponding LockSet. If the lock is already held in an incompatible mode by an­
other client, the current operation is blocked until the lock is dropped, using the latter
operation. The integration rules that correspond to the Ccs service are then the ones
given below:

INTEGRATION CosConcurrencyControl ::=
SERVER RULES:

F0RALL(S: SERVER)

SKELETON = S (+j (CosConcurrencyControl::LockSet lockSet); END
CLIENT RULES:

CONTEXT BEGINO ::= CONTEXT ctx; RETURN ctx;

C0MMIT(C0NTEXT ctx) ::= FORALL(srv IN ctx) srv.lockSet .unlockO; END
AB0RT(C0NTEXT ctx) ::= F0RALL(srv IN ctx) src. lockSet .unlockO; END
PRE.CALL(CONTEXT ctx) ::= SKELETON srv; srv = BINDINGCC, op);

srv.lockSet.lock(); ctx.insert(srv);
P0ST.CALL(C0NTEXT ctx) ::= NULL;
0P_STUB(..., CONTEXT ctx) :: =

SKELETON srv; srv = BINDING(C, op); s r v . o p C , ctx);

The OTS service provides the Current CORBA IDL interface that includes oper­
ations allowing a client to initiate (i.e. begin()) and complete transactions (i.e.
commit () and ro l lback ()). Moreover, for a server component to be transactional

269

(i.e. the server's ability to retrieve information about the transaction that is associ­
ated to an operation being served), it must inherit from the TransactionalObject
interface, also provided by OTS. The resulting integration rules for OTS are given
below:

INTEGRATION CosTransactions ::=
SERVER RULES:
F0RALL(S: SERVER)

SKELETON = S < CosTransactions::TransactionalObject; END
CLIENT RULES:

CONTEXT BEGINQ :: =

CONTEXT ctx; CosTransactions::Current::begin(); RETURN ctx;
COMMITCCONTEXT ctx) ::= CosTransactions::Current::commit();
AB0RT(C0NTEXT ctx) ::= CosTransactions::Current::rollback();
PRE_CALL(CONTEXT ctx) ::= NULL;
POST_CALL(CONTEXT ctx) ::= NULL;
OP-STUBC..., CONTEXT ctx) :: =

SKELETON srv; srv = BINDING(C, op); s r v . o p C , ctx);

The combination of the integration rules of CCS and OTS given for client compo­
nents further adheres to the precedence constraint that must be preserved whenever
combining a locking service with a service that provides atomicity: locks should be
released only after the results produced by a transaction become permanent. After
combination of the integration rules, the concluding step of the middleware synthe­
sis is to interpret the rules in stub code, regarding the banking system's architecture.
The tool used for achieving interpretation is platform specific and a more detailed
description of it can be found in (Zarras and Issarny 1998).

4 CONCLUSION

This paper has presented a method for the systematic synthesis of transactional mid­
dleware based on the use of existing standardized services. The main contribution of
our work comes from combining the following two points:

(0 Synthesis of transactional middleware based on an open repository of standard
services associated to an expandable set of properties.

(ii) The whole procedure is systematic and adapts the primitive properties provided
by the standard services.

Let us further point out our contribution through a comparison with related work.
The VENARl/ML (Nettles and Wing 1991) environment decomposes the transaction
concept in a set of properties realized by object classes offered by the environment.
The developer specifies application objects to be atomic, durable etc. However, the

270

limitations existing in such kinds of environments are: the non-expandable property
set and the static association between objects implementations and properties (i.e. an
object cannot be used both as transactional and non-transactional, because its proper­
ties are defined at compile time). Additionally, there is no automation in composing
an application that conforms to certain transactional requirements.

In the same spirit of decomposing the transaction concept, we meet the RAVEN
system (Finkelstein et al. 1994) and the approach proposed in (Ranson 1995) for the
TINA architecture. The novelty is that properties are dynamically associated with the
objects. In RAVEN, this is done through inheritance and object migration while in the
other proposal, the properties are part of the request message issued to a particular
object.

An approach that overcomes the closed property set limitation is the combination
of ACTA (Chrysanthis and Ramamritham 1994) and ASSET (Biliris et al. 1994).
ACTA is a formal method for the specification of transaction models and ASSET is a
programming library that realizes the features provided by the former (e.g. provides
routines to create dependencies between transactions). Nevertheless, implementing
a model that is specified in ACTA, through the use of ASSET is up to the developer.

An approach that overcomes the closed property set limitation and also provides
automation in building the actual transaction model, is presented in (Georgakopoulos
and Hornick 1996). According to that, the developer can require a particular trans­
action model, expressed in an ACTA-like language. A formal framework is used to
verify whether or not a set of application objects support this model. In case the
model is not supported, a Transaction Management Mechanism (TMM) can be used
to enforce the required constraints. Nevertheless the limitation is the non-expandable
set of services. The whole framework is based on the TMM unit. Thus, it lacks the.
flexibility of using primitive transactional services and exploiting the different fea­
tures they provide (e.g. optimistic vs. pessimistic concurrency control).

The synthesis method presented in this paper aims at overcoming the limitations
of the aforementioned approaches. Our goal is the synthesis of transactional middle­
ware based on an open service repository associated to an expandable set of proper­
ties, that serves as the basic formal proving theory. Finally let us point out the benefit
of our method from the standpoint of software correctness due to the use of formal
specification, and from the standpoint of software reuse. In order to better point out
the applicability of our framework we plan to examine various case studies including
different transaction models and services that come with different distributed pro­
gramming environments. Finally in the context of our work we wish to provide the
specification and implementation of flexible services that can easily adapt to various
transaction models.

We are currently working on the integration of the proposed synthesis method in
the ASTER development environment based on the software architecture paradigm
(Issarny et al. 1998). The current version of the ASTER environment supports sys­
tematic customization of the ORBIX ORB for enforcing basic non-functional prop­
erties, which may be specified using first order logic. Integration of our synthesis
method in ASTER requires to address selection of middleware components with re-

271

spect to properties specified in temporal logic. Another enrichment to be made re­
lates to the automated generation of stub code using integration rules. The current
ASTER environment realizes component integration by requiring middleware ser­
vices to implement a given set of appropriate operations for their combination with
other components. On the other hand, the procedure for the combination of services
defined by our method provides a way to remove these constraints, and may further
be exploited for the synthesis of middleware providing non-functional properties
other than transactional. Our final goal would be to provide a uniform approach for
building middleware regarding the needs for several kinds of properties. Hence we
intend to explore the combination of services that provide different types of proper­
ties (e.g transactional, fault tolerance, security) and identify ways to deal with cases
where those properties interfere.

REFERENCES

Blair G.S., Blair L. and Stefani J. (1997) A specification architecture for multime­
dia systems in open distributed processing. Computer Networks and ISDN
Systems, 29.

Biliris A., Dar S., Gehani N., Jagadish H. V. and Ramamritham K. (1994) ASSET: A
System Supporting Extended Transactions. Proceedings of ACM-SIGMOD
International Conference on Management of Data, 44-54.

Cormen T., Leiserson C. and Rivest R. (1990) Introduction to Algorithms, MIT Press.
Chrysanthis RK. and Ramamritham K. (1994) Synthesis of Extended Transaction

Models Using ACTA. ACM Transactions on Database Systems, 19(3), 450-
491.

Finkelstein D., Acton D., Coatta T., Hutchinson N. and Neufeld G. (1994) Object
Properties in the RAVEN System. Proceedings of the 14th International
Conference on Distributed Computing Systems, 502-509.

Garlan D., Allen R. and Ocklerbloom J. (1994) Architectural Mismatch: Why Reuse
Is So Hard. IEEE Software, 17-26.

Georgakopoulos D. and Hornick M. (1996) Customizing Transaction Models and
Mechanisms in a Programmable Environment Supporting Reliable Workflow
Automation. IEEE Transactions on Knowledge and Data Engineering, 8(4),
630-649.

Gray J. (1981) The Transaction Concept: Virtues and Limitations. Proceedings of
the 7th International Conference in VLDB, 144-154.

Issarny V, Bidan C. and Saridakis T. (1998) Achieving Middleware Customization
in a Configuration-based Development Environment: Experience with the
ASTER Prototype. Proceedings of the International Conference on Config­
urable Distributed Systems, 207-214.

ISO/IEC (1994) Reference Model of Open Distributed Processing. ISO/IEC Docu­
ment 10746.

Mili A., Mili R. and Mittermeir R. (1994) Storing and Retrieving Software Compo-

272

nents: A Refinement Based System. Proceedings of the 16th International
Conference on Software Engineering, 91-100.

Moss E. (1982) Nested Transactions and Reliable Distributed Computing. Proceed­
ings of the International Conference on Reliability in Distributed Software
and Database Systems, 33-39.

Nettles S. and Wing J.M. (1991) Persistence + Undoability = Transactions, School
of Computer Science, Carnegie Mellon University, CMU-CS-91-173.

OMG (1995) CORBAservices : Common Object Services Specification. OMG Doc­
ument.

Pu C, Kaiser G. and Hutchinson N. (1988) Split-Transactions for Open-Ended Ac­
tivities. Proceedings of the 14th International Conference in VLDB, 26-37.

Ranson R.D. (1995) Less-Than-Transactional Semantics for TINA. Proceedings of
TINA'95, 2, 243-257.

Schumann J. and Fischer B. (1997) NORA/HAMMR: Making Deduction-based Soft­
ware Component Retrieval Practical. Proceedings of the International Con­
ference on Automated Software Engineering, 246-254.

Shaw M., DeLine R., Klein D., Ross T., Young D. and Zelesnik G. (1995) Abstrac­
tions for Software Architecture and Tools to Support Them. IEEE Transac­
tions on Software Engineering, 21(4), 314-335.

Zaremski A.M. and Wing J.M. (1995) Specification Matching of Software Com­
ponents. Proceedings of the ACM SIGSOFT Symposium on Foundations of
Software Engineering, 6-17.

Zarras A. and Issarny V. (1998) Automated Synthesis of Middleware for Distributed
Transactional Applications. Proceedings of the ACM SIGOPS European
Workshop.

5 BIOGRAPHY

Apostolos Zarras was born at Ioannina, Greece. He received his B.Sc. and M.Sc.
degrees from the University of Crete, Hellas in 1994 and 1996 respectively. He is
currently working at IRISA/INRIA (ASTER project), while pursuing a Ph.D. at the
University of Rennes I. His current research interests include, software architectures,
computer aided software engineering and computer architectures.
Valerie Issarny is an INRIA Researcher at IRISA (Rennes, France) since 1993. She
obtained her Ph.D. thesis from the University of Rennes I in 1991, on concurrent ex­
ception handling. She spent a one-year post-doctoral at the University of Washington
in 1992 where she worked on the design of a single address space operating system.
She is in charge of the ASTER research project that addresses the construction of
distributed systems using the software architecture paradigm,

istributed systems using the software architecture paradigm.

