
A MIDDLEWARE SERVICE FOR MANAGING TIME AND

QUALITY DEPENDENT CONTEXT

Tasos Kontogiorgis
Unit of Medical Technology and Intelligent Information Systems

 Dept. of Computer Science - University of Ioannina – P.O. BOX 1186, 45110 GR - Greece

 Dimitrios Fotiadis
Unit of Medical Technology and Intelligent Information Systems

Dept. of Computer Science - University of Ioannina – P.O. BOX 1186, 45110 GR - Greece

Apostolos Zarras
 Dept. of Computer Science - University of Ioannina – P.O. BOX 1186, 45110 GR - Greece

{tasos, fotiadis, zarras}@cs.uoi.gr

ABSTRACT

Nowadays, wearable devices, such as mobile phones, PDAs, etc. gain widespread popularity for communication and data

exchange. Consequently, several approaches investigate the problem of their interconnection and communication, under a

common middleware infrastructure enabling the development of mobile applications, which form a ubiquitous mobile

computing environment. In such an environment, changes are very often and the applications need to be highly adaptive.

In other words, the applications must be context-aware. The context of an application may be anything that influences its

execution. In this work, we propose a middleware service, which enables reasoning about changes in the context of an

application. It supports the adaptation of the services used and the application itself, according to context changes. The

proposed service relies on a method for modeling context, which is based on temporal logic, which allows reasoning

about time dependencies between context changes and adaptation actions. The reasoning procedure takes into quality

properties (e.g. inaccuracy, unreliability, insecurity), characterizing the trustworthiness of the sources, which generate

information about context changes.

KEYWORDS

Context-Aware Middleware, Trustworthiness, Ubiquitous Computing.

1. INTRODUCTION

The widespread use of wearable devices like mobile phones and PDAs dramatically changed the way of

coping with the requirements of distributed applications. Such devises enable the realization of ubiquitous

computing environments, consisting of mobile applications, which provide services to the users anywhere,

anytime. Traditional middleware infrastructures like CORBA1, J2EE2 and DCOM3 cannot deal with new

features characterizing an ubiquitous computing environment and the devises that constitute it. Typical

examples of such features are the location in space, battery-dependence, computational-power, memory,

data-storage, communication-bandwidth, etc. The values of the aforementioned features constantly change.

Consequently, the mobile applications and the middleware services used by them must adapt to those

changes. These values constitute the context of the mobile applications. By definition [Dey, A., K., 2001],

context is anything that influences the execution of a mobile application and the middleware services used.

Modeling and managing context information is a critical issue in the development of a mobile application.

The representation of context information must be lightweight, flexible, and highly expressive. Moreover, it

1 http://www.omg.org /technology/documents/formal/corba_iiop.htm
2 http://java.sun.com/j2ee/
3 http://msdn.microsoft.com/library/default.asp?url=/library/enus/cossdk/htm/ pgservices_events_5x4j.asp

 503

IADIS International Conference WWW/Internet 2004

must enable inductive and deductive reasoning, which results in triggering certain adaptation actions that

customize the application and the middleware services. In order to model context while satisfying the

previous requirements, in [Rangamathan, A. and Campbell, R. 2003] the authors have proposed the use of

first-order predicate logic. In general, first-order predicate logic is a powerful tool for representing facts,

events, actions, objects and relations between them. However, it is not expressive enough when dealing with

time dependencies between the values of context features. This is vital especially in cases of mobile

applications which handle critical situations (e.g. accidents, war situations, environmental catastrophes).

Moreover, the values of context features cannot be considered always trustful. Consequently, context

information must encompass a degree of fuzziness related to the values of the context features.

In this work we propose a middleware service, which enables managing and reasoning about changes in

the context of mobile applications. It further enables adapting the applications and the middleware services

used by them according to those changes. The proposed service is designed to be generic enough so that it

can be incorporated within any specific middleware infrastructure like CORBA, DCOM, etc. It incarnates a

context modeling and reasoning approach, which relies on temporal logic. Moreover, the proposed method

introduces certain probabilistic features in order to take into account the trustworthiness of the values of

context features.

The paper is structured as follows. Section 2 presents work related with the modeling and management of

context in ubiquitous mobile computing environments. Section 3 presents the architecture of the proposed

service. Section 4 analyses the proposed context modeling method. Section 5 discusses the management of

context information and the reasoning procedure.

2. RELATED WORK

Several interesting approaches to context-aware computing have been elaborated so far. However, the issue

of reasoning about context has not gained very much attention. More specifically, in [Dey, A. K., 2001] the

author identifies requirements for supporting the development of context-aware applications and proposes a

tool. The proposed tool does not provide any reasoning capabilities towards enabling the reaction of mobile

applications into context changes. In addition, the proposed tool does not allow customizing the middleware

services used by the applications according to context changes. In [Hong, J., et al., 2001] the authors go one-

step further. Context modeling and management becomes a service that comes along with a specific

middleware infrastructure. Similarly, in [Chan, A., T., S. and Chuang, S-N, 2003] a middleware

infrastructure for context-aware applications is proposed. The infrastructure further provides services for the

application adaptation and migration. The previous are triggered based on simple logical conditions that must

hold for the values of certain context features. Time dependencies between those values are not taken into

account. In [Rangamathan, A. and Campbell, R. 2003] the authors propose a method for reasoning and

reacting to context changes. Their method is based on first-order predicate logic. Hence, it does not take into

account time dependencies.

The Solar infrastructure [Chen, G. and Kotz, D., 2002] is mainly targeted to context management.

According to this platform, the application may define a graph of operators (e.g., filters, transformers and

more complicated aggregators) manipulating context. The operators mediate the flow of context information

from the sources to the applications. A specification language is used to describe context features and

operator graphs. In [Capra, L., et al., 2003] another interesting context-aware middleware infrastructure is

proposed, which includes a micro-economic mechanism for the resolution of conflicts existing in the values

of the context features characterizing a class of mobile applications. Such conflicts may prohibit the

interoperation between them.

Much work on modeling context has been done in [Henricksen, K, et al., 2002]. They have explored the

characteristics of context information in pervasive systems and describe a set of modeling concepts (e.g.,

static, dynamic and sensed associations, dependencies between associations, etc.) designed to accommodate

these. In [Gray, P. and Salber, D. 2001] the authors also concentrate on representations for modeling context

and identify quality properties characterizing the trustworthiness of the context itself (e.g. accuracy,

timeliness, etc.). They further consider quality properties for the elements that produce the values of context

(e.g. reliability, intrusiveness, etc). However, they do not provide any systematic approach for reasoning

about the trustworthiness of the context based on the aforementioned quality properties.

 504

A MIDDLEWARE SERVICE FOR MANAGING TIME AND QUALITY DEPENDENT CONTEXT

In this paper, we built upon the previous approaches and we further contribute with a context modeling

method and a reasoning procedure, which takes into account time dependencies between context features.

Moreover, our reasoning procedure systematically considers quality properties characterizing the

trustworthiness of context information. The aforementioned concepts are realized in a generic middleware

service, which can be incorporated within existing middleware infrastructures having limited context-

reasoning support.

3. ARCHITECTURE OF THE CONTEXT-AWARE SERVICE

Figure 1 gives the overall architecture of the proposed middleware service. The grey squares represent

elements of the service, while the light-grey ones represent elements of an application. In general, we assume

that the application conforms to the architectural style imposed by the RM-ODP standard for open distributed

processing. As discussed in [Zarras, A., 2004], existing middleware infrastructures like CORBA, DCOM and

J2EE follow this style. The architecture of the proposed service is generic enough to cope with applications

built on top of any of these platforms.

1

Container

Channel Object

1..n

1

1..n

1

0..n 10..n 1

ChannelSensor

1

1

1

1

ObjectSensor

1

1

1

1

CPUSensor StorageSensor MemorySensor

Sensor

ContextRule

ContextManager

0..n

1

0..n

1

1..n1..n 1..n1..n 1..n1..n 1..n1..n

0..n1

+external devises

0..n1

1..n

1

1..n

1

BatterySensor

1..n

1

1..n

1

Application

1..n1 1..n1

1

1

1

1

Node

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

111

Figure 1. The overall architecture of the context-aware service

QualityProperty Sensor
1..n 11..n 1

ObjectProperty

ObjectSensor

1..n

1

1..n

1

MemoryProperty

MemorySensor

1..n

1

1..n

1

CPUProperty

CPUSensor

1..n

1

1..n

1

StorageProperty

StorageSensor

1..n

1

1..n

1

+provides

+provides +provides +provides +provides

BatterySensor

BatteryProperty

1..n

1

+provides 1..n

1

ChannelSensor

ChannelProperty

1..n

1

+provides 1..n

1

ContextProperty

Figure 2. Classification of sensors and context features

 505

IADIS International Conference WWW/Internet 2004

The application consists of a set of containers, sharing the same processing and storage resources. A node

on top of which the application executes provides those resources. A container comprises objects that form a

single unit for the purpose of deactivation, reactivation, checkpoint, and recovery. Objects provide operations

which can be used by others for assessing and modifying the objects’ state. Objects belonging to different

applications communicate through middleware channels. A channel further consists of proxy, skeleton,

binder, and protocol objects. Moreover, we distinguish between different types of channels supporting point-

to-point communication, multicast, and broadcast. The aforementioned elements are associated with different

kinds of sensors shown in Figure 2. In particular, an object is associated with an object sensor, which

provides information about the values of a number of context features characterizing the object. Table 1 gives

a set of features we consider for objects. More specifically, an object may be persistent. Moreover, the object

may actually represent a fault tolerant unit, i.e. it may consist of a number of replicated objects, which are

coordinated according to three replication policies, namely: active, passive, and semi-active. The object can

be transactional supporting the execution of either flat or nested transactions.

A node is associated with four different sensors. The CPU sensor provides information regarding context

features like the CPU clock rate, and load (Table 1). Similarly, the memory sensor provides information

regarding features like the total memory size and the memory size that is currently available for use. The

storage sensor provides information related to the total size of stable storage provided by the node and the

size that is currently available for use. Finally, the battery sensor provides information about maximum

battery operation time and the remaining battery operation time. Moreover, it allows setting the operation of

the node either in economy mode, or in normal mode.

A channel is associated with a channel sensor, which provides information about the delay, the data rate,

the drop rate, and the security mode of the channel (Table 1). The latter may be set to high, low, or medium.

Table 1. Context features

Architectural Element Context Property Type Produced By

CPURate Float

CPULoad Float
CPUSensor

MemTotal Int

MemAvail Int
MemorySensor

StorTotal Int

StorAvail Int
StorageSensor

BattTotalTime Int

BattAvailTime Int

Node

Mode enum{economy, normal}

BatterySensor

ChanDelay Int

ChanDropRate Int Channel

ChanSecurity enum{high, low, med}

ChannelSensor

Persistence enum{ON, OFF}

Transactions enum{FLAT, NESTED, OFF}

Replication enum{OFF, PASS, ACT, SEMI}
Object

NumOfRepl Int

ObjectSensor

Unreliability 0..1

Inaccuracy 0..1 Sensor

Insecurity 0..1

Sensor

Depending on the application, there may be also a number of external sensors, which are used, for

instance, for tracking location, environmental temperature, etc. As shown in Figure 2 all sensors derive from

a basic sensor element, which is associated with a number of context features (Table 1), characterizing the

quality of the provided information. More specifically, the sensor is characterized by the unreliability

property, i.e. the probability that a sensor provides incorrect values due to accidental faults. Moreover, the

sensor is characterized by the insecurity property, i.e. the probability that a sensor provides incorrect values
due to intentional/malicious faults. Finally, we consider the accuracy property,

i.e. ! valueactualvalueactualvaluesensoraccuracy "# . As it is described in [Gray, P. and Salber, D. 2001]

several other quality properties may be considered.

The context manager is the central unit of the proposed middleware service. The manager searches for

changes in the context of the application and adapts the application and the middleware services it uses,

 506

A MIDDLEWARE SERVICE FOR MANAGING TIME AND QUALITY DEPENDENT CONTEXT

according to those changes. To achieve the previous, the manager is associated with the set of application-

related sensors. The changed values of context features are encapsulated into events sent by the sensors in the

context manager. The way that the middleware and the application adapt in response to context changes is

determined by a set of context rules, given as input to the context manager during the initialization of the

application. Roughly, a context rule specifies adaptation actions that are triggered by a number of context
values, which where reported to the manager by temporally related events. An action may comprise setting a

new value of a context property (in which case a corresponding sensor generates another event, which may

trigger a second context rule and so on), or calling a particular operation provided by the application objects.

An alternative design option for the context manager would be querying the sensors for information

regarding changes in the context of the application. This approach, however, immediately implies delaying

the actions that must take place towards adapting the middleware and the application according to the

changes, until the time that the manager discovers them. The previous is certainly a drawback, especially in

cases of critical applications that must adapt as fast as possible to the current environmental conditions.

supplies : Supplies

ammunition :

Ammunition

 : ObjectSensor

food_supplies :

FoodSupplies

 : ObjectSensor

organizer : Organizer

map : Map orders :

Orders

mission :

Mission

 : ObjectSensor : ObjectSensor : ObjectSensor

 : ContextManager : ChannelSensor

location :

LocationTracker

 : CPUSensor : BatterySensor : StorageSensor : MemorySensor

Figure 3. An application

Figure 3 gives an example of a mobile application relying on the proposed middleware service. The

purpose of the application is to support the members of a military group that patrol across a hostile territory.

Each soldier of the group has a mobile PC on top of which the application executes. The application

comprises two main containers. The supplies container consists of two objects, namely ammunition and

food_supplies, for managing the personal supplies of the soldier. The organizer container encapsulates three

objects. The map object provides operations for accessing information about the route followed by the group

and the position of the campus that hosts the group’s members. The orders object contains guidelines from

the group member which is the immediate superior of the soldier. Finally, the mission object provides

operations for accessing information related to the main objectives of the group. All the aforementioned

objects are persistent and fault tolerant. The objects, the portable PC and the channels used for

communication4 between the members of the group are associated with corresponding sensors. The overall

application further uses an external location sensor, which reports to the context manager the current position

of the soldier.

4 Note that the communication channels are not given in the figure to avoid increasing the figure’s complexity.

 507

IADIS International Conference WWW/Internet 2004

4. CONTEXT RULES SPECIFICATION

As we discussed in Section 1, we use temporal logic to model the context rules which serve as input to the

context manager, enabling modeling time dependencies between changes in context features. As we further

discuss in Section 5, using temporal logic facilitates managing the context information provided by the

sensors to the context manager.

Table 2. Temporal operators for the specification of context rules

Operators Semantics

logical operators $%&' ,,, Denote the logical and, or, not and implication, respectively.

Quantifiers (), Denote the universal and existential quantifiers, respectively.

*
Denotes the previous operator.

 states that P held at the previous moment in time. P

+
Denotes the once operator.

P+ states that P held at some time in the past.
past operators

,
Denotes the has always been operator.

P, states that P held until this time.

-
Denotes the next operator.

P- states that P held at some time in the past.

.
Denotes the eventually operator.

P. states that P holds at some time in the future.
future operators

Denotes the henceforth operator.

P states that P holds from this time on.

A context rule is a temporal logic formula, which consists of conditional parts and action parts. A

conditional part is defined using the values of certain context features, reported to the manager by temporally

related events. The conditional part is related with an action part by a logical implication. The action part

describes a number of temporally related actions that must take place when the conditional part holds. An

action may result in changing the value of a particular context property or calling an operation on an

application object. Both the conditional and the action parts consist of logical expressions, defined using the

traditional temporal logic operators [Manna, Z. and Pnueli, A., 1992] denoted by the symbols given in Table

25.

 ! /
/
/

0

1

2
2
2

3

4

//
0

1
22
3

4
#-

'#
-

'#

5)

$6.#

economynode.Mode

OFFncec.Persiste

OFFionc.Replicat

suppliesc

60vailTimenode.BattA1R

 !
 !

 !lowcuritychannel.Senapplicatiochannel

512ailnode.MemAv

2adnode.CPULo

INCAMPUSionnode.Locat

2

#5)

$

6.

&7.

'#

#

/
/
/

0

1

2
2
2

3

4

//
0

1
22
3

4R

(a) (b)

Figure 4. Examples of context rules

Figure 4(a) gives an example of a context rule based on our example scenario. The conditional part of the

rule holds if eventually the battery available time drops below 60 minutes and the corresponding actions

comprise setting off the persistence and the replication properties of all the objects included in the supplies

container. Moreover, the operation property of the node is set to the economy mode. That way less battery is

spent. Note that in the action part of the rule, first we disable the persistence property. Next, we set off the

replication property. Performing the previous actions in the reverse order may cause a fatal error in the

execution of the application if the fault tolerance service of the middleware relies on the persistency service.

5 Font limitations force us not to use the standard symbols for some of the operators (e.g. once, henceforth, etc.).

 508

A MIDDLEWARE SERVICE FOR MANAGING TIME AND QUALITY DEPENDENT CONTEXT

Thus, even in this simple example we can understand the necessity of using temporal operators in the

specification of context rules.

Figure 4(b) gives another example of a context rule. The conditional part holds if the node is in the

campus that hosts the military group and eventually either the CPU load increases or the available memory

drops. In that case, the security mode of every channel of the application is set to low.

5. CONTEXT MANAGEMENT AND REASONING

The context manager of the proposed service consists of three separate parts (Figure 5). The RulesParser

performs syntactic and type checks on the context rules given as input by the application. Based on the

provided rules it constructs a history table, to store information regarding changes in the values of the context

features specified in the rules. These values are encapsulated in the events generated by the sensors.

ContextManager

Figure 5. The main parts of the context manager

The EventListener part is responsible for the collection of the values. Moreover, it further determines

which values need to be kept in the history table, depending on the context rules. For instance, a value related

to a context property, involved in a logical expression, which contains a past operator, is kept in the history

table. If the aforementioned operator is * , the value is kept only until the arrival of another event from any

of the sensors. If, on the other hand, the operator is , , the value is kept until the arrival of an event from the

sensor that reported the value, reports a new value. Finally, if the operator is + , the value should be kept in

the history for the lifetime of the application. However, the resources of mobile devices are limited and, the

context manager periodically clears from the history values such the one above, based on a timeout set by the

application.

The RulesEvaluator part evaluates the truth of the context rules based on the events’ arrival. More

specifically, for every event encapsulating a value, which refers to a particular context property, the

RulesEvaluator looks for rules whose conditional part contains this property. If the conditional part of such a

rule holds with respect to the reported value and the values of other context features which are possibly

involved in it (the history table is used at this point), the action part of the rule is triggered.

However, the triggering of the action part is preceded by the assessment of the trustworthiness of the

sensors which produced the values of the context features involved in this rule. More specifically, a value

included in an event generated by a sensor is associated with three probabilities, corresponding to the

inaccuracy, the unreliability, and the insecurity properties of the sensor (Table 1). Based on the probabilities

of all the values involved in the rule, the RulesEvaluator calculates the total inaccuracy, unreliability and

insecurity for this rule. The total values are compared against corresponding thresholds associated with the

context rule. If none of the values is greater than a corresponding threshold, the action part of the rule is

triggered. For the rule given in Figure 4(b), the total insecurity is calculated as follows:

RulesParser
1 1

RulesEvaluator

11

1..n

1 1

1..n+checks

1..n

+assesses/evaluates

1..n

EventsListener

11

11

11

History ContextRule

+creates 1
+stores context values

1

 509

IADIS International Conference WWW/Internet 2004

 location

) (location)(location R1

Insecurity*InsecurityInsecurityInsecurityInsecurity

InsecurityInsecurityInsecurityInsecurity

(*

 *

MemSensorCPUSensorMemSensorCPUSensor

MemSensorCPUSensorMemSensorCPUSensor

"8

&&'

6. CONCLUSIONS

We propose a middleware service for managing and reasoning about the constantly changing context of

mobile applications. The proposed service facilitates the adaptation of the middleware services used by the

application and the application itself, according to context changes. More specifically the main contributions

of the proposed approach are summarized in the following:

, Context information is modeled using temporal logic. As demonstrated in Section 4, the proposed

modeling method is far more expressive, compared to other previously proposed ones, which simply use

first-order logic [Rangamathan, A. and Campbell, R. 2003]. It allows modeling time dependencies

between changes in context information. It further enables specifying the order of the adaptation actions

that must take place upon those changes. Moreover, Section 5 highlighted that the proposed modeling

method allows the efficient management of context information, which is important considering the

limited resources and processing capabilities of mobile devises.

, Reasoning about context changes and adaptation actions is performed while taking into account

properties characterizing the quality of the sensors, which produce context information. Such properties

were identified in previously proposed approaches [Gray, P. and Salber, D. 2001]. However, their impact

was not incorporated in a systematic way within the reasoning process.

The aforementioned features of the proposed approach are crucial for context-aware applications aimed at

handling critical situations (e.g. environmental crises, accidents, war situations, etc.). Currently, we further

investigate such cases. Moreover, we examine the applicability of more advanced methods of inexact

reasoning in the proposed approach (e.g. certainty factor models, necessity models, fuzzy logic, etc.

[Panayiotopoulos, T. and Papakonstantinou, G., 1991]).

REFERENCES

Capra, L., et al., 2003. CARISMA: Context – Aware Reflective Middleware System for Mobile Applications. In the

IEEE Transactions on Software Engineering, Vol. 29, No. 10, pp. 929-945.

Chan, A., T., S. and Chuang, S-N, 2003. MobiPADS: A Reflective Middleware for Context-Aware Mobile Computing.

In the IEEE Transactions on Software Engineering, Vol. 29, No. 10, pp. 1072-1085.

Chen, G. and Kotz, D., 2002. Solar: An Open Platform for Context -Aware Mobile Applications. Modeling Context

Information in Pervasive Computing Systems. In Proceedings of the 1st International Conference on Pervasive

Computing, pp. 41-47.

Dey, A., K., 2001. A Understanding and Using Context. In the Personal and Ubiquitous Computing Journal , Vol. 5, No.

1, pp. 4-7.

Gray, P. and Salber, D. 2001. Modelling and Using Sensed Context Information in the Design of Interactive

Applications. In Proceedings of the 8th IFIP Conference on Engineering for Human Computer InteractionEHCI,

pages 317–335.

Henricksen, K, et al., 2002. Modelling Context Information in Pervasive Computing Systems. In Proceedings of the 1st

International Conference on Pervasive Computing, pages 167–180.

Hong, J., I., et al., 2001. An Infrastructure Approach to Context-Aware Computing. In the special issue on context aware

computing of the Human Computer Interaction Journal, Vol. 16, No. 2-4, pp. 287-303.

Manna, Z. and Pnueli, A., 1992. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag.

Panayiotopoulos, T. and Papakonstantinou, G., 1991. Predicate Logic and Inexact Reasoning. Engineering Systems with

Intelligence. Kluwer Academic Publishers, pp. 65-71.

Rangamathan, A. and Campbell, R. 2003. An Infrastructure for Context-Awareness Based on First Order Logic. In the

Personal and Ubiquitous Computing Journal, Vol. 7 , No. 6, pp. 353 – 364 .

Zarras, A., 2004. A Comparison Framework for Middleware Infrastructures. In the Journal of Object Technology, Vol. 3,

No. 5, pp. 103-123.

 510

