
MODEL-DRIVEN RENEWAL OF LAN-BASED BUSINESS

INFORMATION SYSTEMS TOWARDS WEB-BASED

SYSTEMS

S. K. Petsios
Unit of Medical Technology and Intelligent Information Systems

Dept. of Computer Science, University of Ioannina, GR 451 10 Ioannina, Greece

stefanos@cs.uoi.gr

D. I. Fotiadis
Unit of Medical Technology and Intelligent Information Systems

Dept. of Computer Science, University of Ioannina, GR 451 10 Ioannina, Greece

fotiadis@cs.uoi.gr

A. Zarras
Dept. of Computer Science, University of Ioannina, GR 451 10 Ioannina, Greece

zarras@cs.uoi.gr

ABSTRACT

A problem that we face today with existing LAN-based business information systems (BISs) is making them

accessible over the WEB. In this paper, we propose a methodology and adequate tools that automate the

renewal of LAN-based BISs into WEB-based ones. The proposed methodology focuses in cases with lack of

documentation related to the architecture of the LAN-based BISs. Such cases are very often in practice, given

that the availability of middleware and COTS related CASE tools highly tempts passing from the

requirements acquisition phase, directly to the BIS implementation phase.

KEYWORDS

CASE tools, COTS, Model-Driven Architecture Development, Reengineering.

1. INTRODUCTION

A problem that we frequently face today with existing business information systems (BISs) is to make them

accessible over the WEB. Legacy BISs, were built using COTS like Borland Delphi, Borland C-Builder,

Borland J-Builder, Microsoft Visual Basic, etc. and LAN-based middleware platforms like CORBA1,

DCOM2, etc (hereafter, we use the term technology platforms to refer to both COTS and middleware

platforms used). The aforementioned technology platforms offer reusable software components that can be

employed for building LAN-based BISs. However, they do not provide adequate support for making those

BISs available over the WEB.

The development of a BIS involves the collection and analysis of corresponding business requirements.

The business requirements are divided into functional ones, describing the specific business processes that

should be incarnated by the BIS, and non-functional ones, referring to more general issues like performance,

reliability, availability, etc. The requirements acquisition and analysis workflow is followed by the design of

a model, which describes the BIS architecture. In a first step, this model is platform-independent, i.e. it does

not include information related to the specific technology platforms used for building the BIS. The selection

1 http://www.omg.org /technology/documents/formal/corba_iiop.htm
2 http://msdn.microsoft.com/library/default.asp?url=/library/enus/cossdk/htm/ pgservices_events_5x4j.asp

740

MODEL-DRIVEN RENEWAL OF LAN-BASED BUSINESS INFORMATION SYSTEMS TOWARDS WEB-BASED

SYSTEMS

of such platforms actually follows the specification of the Platform Independent Model (PIM). The step

following the selection of specific technology platforms consists of refining the PIM of the BIS accordingly.

Refining the PIM amounts in mapping the different types of elements that constitute it into corresponding

platform-specific types of elements. The result of this step is called a Platform Specific Model (PSM). The

overall BIS development process concludes with implementing the system based on the PSM resulting from

the refinement of the PIM. The implementation workflow relies on the use of platform-specific CASE tools,

i.e. graphical front-end tools that facilitate the selection and combination of appropriate COTS and

middleware components, in a plug-and-play fashion. The use of platform-specific CASE tools greatly

facilitates the BIS development process. It promotes software reuse and allows balancing the trade-off

between the quality of the BIS and the time-to-market. However, the provided ability to reduce the time-to-

develop the BIS is too tempting for the project managers, the designers, and the developers, involved in the

BIS development process. More specifically, the aforementioned ability provokes passing from the

requirements acquisition and analysis workflow directly to the implementation workflow in favor of

minimizing the development time and the required resources. The negative impact of such a simplification is

immediately visible when we face the problem of renewing a LAN-based BIS towards a corresponding

WEB-based BIS. The PSM prescribing the architecture of the LAN-based BIS must be extracted from the

source code of the system, which in most cases is quite large and complex to perceive. Then, we have to

abstract away from the PSM details related to the technology platforms used for building the LAN-based

BIS. The aforementioned task results in the PIM of the BIS, which further serves for producing a new PSM

describing the realization of the BIS, based on functionality provided by newly selected COTS and

middleware platforms, which allow accessing the BIS over the WEB.

In this paper, we propose a methodology and adequate tools that automate the aforementioned renewal

process. In Section 2, we discuss work related to the general problem of reengineering systems in the lack of

documentation that details their architecture. Based on this discussion we derive a number of requirements

for tools that automate the reengineering process in the particular case that we face here. Section 3 details the

methodology and tools we propose for the renewal of LAN-based BISs, towards corresponding WEB-based

BISs. Section 4 presents experimental results from a real world case study where we applied the proposed

methodology. Finally, Section 5 summarizes the major contributions of this work and points-out the future

directions.

2. BACKGROUND AND RELATED WORK

The renewal of a LAN-based BIS towards a WEB-based system is a particular case of legacy system

migration. Reengineering a legacy system is a challenging task raised long time ago. The basic tasks that

constitute this process comprise [Jacobson, I. and Lindstrom, F., 1991]: (1) Reverse engineering the legacy

system architecture, i.e. create a high-level model describing the structure and the behavior of the legacy BIS.

(2) Reasoning about a change in the legacy BIS architecture. (3) Forward engineering the new architecture,

i.e. perform the change by re-implementing the whole, or parts of the legacy BIS.

According to [Jacobson, I. and Lindstrom, F., 1991], there are three different categories of reengineering

scenarios frequently appearing in practice. In the first category, we aim at completely changing the

implementation technique that was used in the legacy system. More specifically, we have cases of legacy

systems built using old programming paradigms (e.g. procedural) and languages (C, COBOL, FORTRAN).

The ultimate goal is to re-implement the legacies according to the object-oriented paradigm and

programming languages (e.g. C++, Java, etc.) that conform to this paradigm. Several different techniques

have been proposed to deal with the aforementioned cases. Most of them concentrate on finding classes in

legacy code by grouping together procedures and global variables. The grouping typically relies on matching

the types of the global variables with the types of the parameters used in the procedures [Liu, S., S. and

Wilde, L., 1990], [Schwanke, R., W., 1991], [Ong, C. and Tsai, W., T., 1993], [Canfora, G. et al., 1996]. The

previous approaches are mainly targeted to systems built using strongly-typed languages (e.g. PASCAL, C

and FORTRAN). However, these approaches do not support the migration of systems built using languages

like COBOL [Cimitile, A. et al., 1999]. An approach that deals with the previous is detailed in [Newcomb, P.

and Kotik, G., 1995]. This approach aims at grouping COBOL records and portions of source code which

manipulate these records. A group that consists of a record and corresponding portions of source code

741

IADIS International Conference WWW/Internet 2004

constitutes a class. A similar approach is presented in [De Lucia, A. et al., 1997] for the case of RPG

programs. Finally, in [Van Deursen, A. and Kuipers, T., 1999] the authors propose a methodology for

migrating COBOL systems to object-oriented ones. The novelty in this case is that the authors try to split up

COBOL records into smaller pieces to improve the grouping of the COBOL source code. The authors further

compare two alternative grouping techniques, clustering and concept analysis.

The scenarios falling in the first category are the ones that were the most frequent so far. However, in the

near future legacy BISs built using languages like COBOL, C and FORTRAN are going to be rare. Most of

the BISs built nowadays rely on the object-oriented paradigm and technology platforms that promote this

paradigm. Hence, the future cases of reengineering fall in the second of the categories identified by

[Jacobson, I. and Lindstrom, F., 1991]. In this category, we aim at partially changing the implementation

technique used in the legacy system. More specifically, the ultimate goal nowadays and in the near future is

to migrate legacy systems relying on the object-oriented paradigm and conventional technology platforms

like CORBA, DCOM, etc., into systems still relying on the same paradigm and are built based on more

powerful and flexible technologies like CCM3, .NET4, J2EE5, JSP6, PHP7, etc. The renewal of LAN-based

BISs is exactly such a case. Currently, there is not much work or experience on reengineering scenarios,

falling in the second category. In particular, in [Cordy, R., J., et al.] the authors present an approach for

migrating PERL systems to JSP/Java systems. Similarly, in [Ping, Y., et al, 2003] a technique is proposed for

reengineering systems relying on the IBM Net.Data COTS to systems based on JSP. In both such cases, the

authors rely on COTS-specific tools to reverse-engineer legacy systems. Moreover, they forward-engineer

the new systems, using JSP-specific code generation tools.

As opposed to the aforementioned approaches, our methodology and tools are general purpose. More

specifically, our methodology and tools are as independent as possible from the technology platforms used in

both the legacy and the target systems. To achieve it we rely on platform-specific reverse-engineering

patterns serving as input to our platform-independent reverse-engineering tools. The tools seek for those

patterns in the legacy code and extract the overall architecture of the legacy. Moreover, we use platform-

specific refinement and code generation patterns as input to our platform-independent forward-engineering

tools. Based on these patterns, the tools generate platform-specific models of the target system and platform-

dependent source code.

3. METHODOLOGY AND TOOLS

reverse engineering workflow forward engineering workflow

Establish the objectives (select new

COTS and middleware tachnologies)

extract a legacy PSM

from legacy code

abstract a PIM from

the legacy PSM

refine PIM into a new

PSM

generate implementation

according to the new PSM

Figure 1. The renewal process of LAN-based BISs into WEB-based BISs

3 http://www.omg.org/technology/documents /formal/components.htm
4 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/coss dk/htm/pgcontexts_1p0z.asp
5 http://java.sun.com/j2ee/
6 http://java.sun.com/products/jsp/
7 http://www.php.net/

742

MODEL-DRIVEN RENEWAL OF LAN-BASED BUSINESS INFORMATION SYSTEMS TOWARDS WEB-BASED

SYSTEMS

The overall process we propose for renewing a LAN-based BIS into a corresponding WEB-based BIS relies

on a general-purpose Model-Driven Architecture (MDA) development process, which was recently proposed

by OMG [Soley R. and the OMG Staff Strategy Group, 2000]. Our renewal process is an instance of the

MDA process. It consists of a reverse engineering and a forward engineering workflow (Figure 1). The

reverse engineering workflow starts with the establishment of the objectives of the overall renewal process.

Roughly, during this initial activity, the new technology platforms that are going to be used are selected.

Then, we extract from the source code of the LAN-based BIS a PSM, which details the basic elements that

constitute the BIS and the way those elements are implemented using functionality provided by the

technology platforms that we have to change. Next, we abstract away from the PSM details that refer to the

old technology platforms. The outcome of the previous activity is the PIM of the BIS. The aforementioned

PIM serves as input to the forward engineering workflow, which comprises refining the PIM into a PSM

describing the realization of the BIS, using the new technology platforms. Finally, the new PSM is used to

generate a partial implementation of the BIS.

PIMPresentationComponent

BIS

1..n1..n

PIMEvent

1..n

1

1..n

1

PIMDataComponent

1..n1..n

PIMActivity

1..n

1

1..n

1

1

1

1

1

0..n1 0..n1

PIMDataSource PIMDataField

PIMPresentationComponent

PIMPrimitivePresComp PIMCompositePresComp

1

0..n

1

0..n

0..n 10..n 1

(a) The general structure of a BIS (b) Stereotypes for primitive and composite

presentation components

PIMPrimitivePresComp

PIMButtonPIMMenuItem PIMToolBarPIMProgressBar

PIMMemo PIMEditField PIMLabel PIMComboBox PIMListBox

PIMRadioGroup

PIMTable

(c) Stereotypes for different types of primitive presentation components

(d) Stereotypes for different types of composite presentation components

PIMEvent

PIMOnClick PIMOnDragDrop PIMOnDragOver

PIMOnKeyPress PIMOnMouseDown PIMOnMouseUp PIMOnEnter

PIMOnExit

(e) Stereotypes for different types of events

PIMCompositePresComp

PIMForm PIMPanel PIMMenu

PIMStaticMenu PIMPopUpMenu

Figure 2. A UML Profile for the specification of BIS PIMs

743

IADIS International Conference WWW/Internet 2004

In order to specify the m PSM), which result from

the

 of the LAN-based BIS involves using a tool accepting as

ain artifacts (i.e. the legacy PSM, the PIM and the new

activities constituting the reverse and the forward engineering workflows, we use UML8. UML is an

emerging standard modeling notation providing basic modeling constructs, which allow the specification of

the structure and the behavior of software. However, the semantics of the basic UML modeling constructs are

quite generic. The previous is reasonable since UML is becoming a base for the development of a family of

notations, called UML profiles, which serve different modeling purposes8. A UML profile comprises the

definition of a number of stereotypes. A stereotype consists of a set of constraints and a set of properties that

enhance the definition of a standard class of UML model elements (a UML meta-model element). Applying

the stereotype on a particular UML model element of the class (an instance of the UML meta-model element)

implies that the element conforms to the enhanced definition instead of the standard one.

Hence, to enable the specification of PIMs we define a platform-independent representation (PIR)9,

consisting of stereotypes, which correspond to different types of elements typically used to build a BIS. More

specifically, a BIS consists of a presentation tier, a business tier, and a data tier. The presentation tier

comprises presentation components (specified using the PIMPresentationComponent stereotype), allowing

the users to interact with the BIS. A presentation component may be primitive (e.g. button, text-box, etc.), or

composite (e.g. form, panel, menu, etc.), specified using the PIMPrimitivePresComp and the

PIMCompositePresComp stereotypes, respectively. Each particular type of presentation components is

associated with different types of events (specified using the PIMEvent stereotype) generated by the users.

Upon the occurrence of an event, a corresponding event-handler performs a particular activity (specified

using the PIMActivity stereotype), which manipulates data previously provided by the user as input to the

presentation component. The activities executing upon the occurrence of events constitute the business tier of

the BIS. An activity may possibly access a database using components (specified using specializations of the

PIMDataComponent stereotype) directly associated with certain database elements. The aforementioned

components form the data tier of the BIS. Figure 2 gives an overview of the PIR10.

Similarly, to enable the specification of PSMs, we define platform-specific representations (PSRs),

consisting of stereotypes, which correspond to the different types of platform-specific elements that can be

used for the realization of corresponding types of PIM elements. A BIS built using Borland Delphi and

DCOM, for instance, consists of primitive presentation components (e.g. DelphiButton, DelphiTextBox, etc.)

and containers (e.g. DelphiForm, DelphiPanel, DelphiGroupBox, etc.) that are associated with different types

of DelphiEvent elements (e.g. by pushing an instance of a DelphiButton component the user generates an

instance of the DelphiOnClick event). Each type of DelphiEvent elements is associated with a Delphi

EventHandler element, which executes on the occurrence of the corresponding runtime event and performs a

Delphi procedure. The procedure manipulates the data provided by the user of the BIS and may further

access a database, using ADOTable, ADOQuery, ADODataSet components etc.

The basic concepts of the tools proposed for accomplishing the activities of the BIS renewal process are

detailed in the sequel. As we have discussed, the main requirement for these tools is to keep them as

independent as possible from both the legacy and the new technology platforms used.

3.1 Reverse Engineering Workflow

Extracting the legacy PSM from the source code

input a description of the particular PSR, defined based on the technology platform used for the BIS. Each

PSR stereotype X is associated with a reverse engineering pattern. This pattern specifies syntactical source

code conventions, used in the implementation of X stereotyped architectural elements. The tool parses the

source code of the LAN-based BIS and tracks-down presentation components, events, activities and data

components, following the provided patterns. For every such component, a corresponding UML element is

created in the legacy PSM. The element is characterized by the stereotype associated with the pattern used to

discover the element. The tool further creates UML associations between presentation components and

8 e.g. Real-time systems, Enterprise Distributed Computing (EDOC) systems, etc.

http://www.omg.org/technology/ documents/modeling_spec _catalog. htm
9 We use the term “representation” in place of the term “profile”, whenever it is necessary to distinguish between proposed UML

extensions and extensions that are actually adopted by OMG.
10 A detailed specification of the stereotypes (i.e. base classes, properties, and constraints) is avoided due to space limitations.

744

MODEL-DRIVEN RENEWAL OF LAN-BASED BUSINESS INFORMATION SYSTEMS TOWARDS WEB-BASED

SYSTEMS

related events and activities. Moreover, the tool creates UML aggregation relations between the composite

presentation components of the PSM and their constituents.

Abstracting a PIM from the resulting legacy PSM involves using a tool, which accepts as input the legacy

PSM and an abstraction pattern, consisting of a set of abstraction dependencies (Figure 3). Each one of them

maps a PSR stereotype X into a PIR stereotype Y. An abstraction dependency states that a particular type of

X stereotyped PSM elements was used for the realization of Y stereotyped PIM elements (Figure 4(a)).

Furthermore, an abstraction dependency may be associated with a set of constraints, which state that the

realization of Y stereotyped elements also involved associating the corresponding X stereotyped PSM

elements with other PSM elements (e.g. see the dl2pimDBGrid and the dl2pimDBCombo dependencies in

Figure 4(a)). Based on such a refinement dependency, the tool seeks X stereotyped elements in the PSM. For

every one of them it creates the corresponding Y stereotyped element in the PIM of the BIS.

PIR PSRPIRStereotype

1..n 11..n 1

RenewalDependency

1

1

1

+abstract 1

RenewalPattern

1..n

1

1..n

1

PSRStereotype1..n1 1..n1

1

1

1

+concrete 1

Constraint

1..n1 1..n

+additional associations

1 1

1

1

1

RefinementPattern AbstractionPattern

Figure 3. The structure of abstraction and refinement patterns

3.2 Forward Engineering Workflow

In order to refine the PIM resulting from the reverse engineering workflow into a new PSM relying on the

new technology platform we have selected at the beginning of the renewal process, we use a tool that is

similar with the one that performs the abstraction activity (see Section 3.1).

PIMForm

PIMActivity

PIMEvent

DelphiForm

DelphiEvent

DelphiProcedure

DelphiDBGrid

DelphiDBLookup

ComboBox

dl2pimEvent

PIMDataSource

PSR Element PIM Element Additional Associations

PIMDataSource

PIMDataField

PIMComboBox

11 11

1

1

1

1

dl2pimActivity

dl2pimDBCombo

dl2pimForm

PIMTable
11 11

dl2pimDBGrid

PIMDataField

1..n

11

1..nDelphiGrid PIMTabledl2pimTable

PIMForm

PIMActivity

PIMEvent

PIMTable

PIM Element

PIMComboBox

PHP Element

PHPBodypim2phpForm

PHPJumpMenu

PHPEventpim2phpEvent

PHPActivitypim2phpActivity

pim2phpComboBox

PHPTable
pim2phpCheckBox

(a) Delphi to PIM abstraction dependencies (b) PIM to PHP refinement dependencies

Figure 4. Examples of abstraction and refinement dependencies

More specifically, the tool accepts as input the PIM and a refinement pattern, which comprises a set of

refinement dependencies (Figure 3). Each dependency corresponds to a particular type of stereotyped PIM

elements and describes how to realize this type of elements using platform-specific elements (Figure 4(b)).

Hence, a refinement dependency maps a PIR stereotype X into a PSR stereotype Y. Moreover, the refinement

745

IADIS International Conference WWW/Internet 2004

dependency may be associated with additional constraints, which state that the Y stereotyped elements must

be further associated with other platform-specific elements. Given such a dependency, the tool seeks in the

PIM of the BIS for X stereotyped elements. For each one of them it creates a corresponding Y stereotyped

element in the new PSM. Based on the additional constraints that may be associated with the refinement

dependency, the tool creates further PSM elements and associates them with the Y stereotyped element as

prescribed by the constraints.

Generating parts of the new BIS implementation involves using a tool, which accepts as input the new

PSM of the BIS and a code generation pattern. The code generation pattern is divided into different parts.

Each part corresponds to a particular type of Y stereotyped PSM elements and describes the skeleton code

that must be generated for this type of elements. The code generation tool parses the PSM model and for

every Y stereotyped PSM element it generates a specific skeleton code, based on the aforementioned part of

the code generation pattern.

4. CASE STUDY

The methodology and the early prototypes of the tools were used towards the renewal of a real-world LAN-

based BIS, which is currently used by a well-known Greek bank. The business purpose of the BIS is to

support the loan applications of the bank’s customers and to evaluate the customers’ projects. The legacy BIS

has been developed by the Unit of Medical Technology & Intelligent Information Systems11 at the University

of Ioannina. Regarding the architecture of the legacy BIS we had almost no documentation and few

information was gathered by personal communication with some of the remaining members of the

development team that still work in the Unit. The development team actually proceeded directly to the

implementation of the legacy BIS, which relies on Borland Delphi, DCOM and a MySQL database12. The

main objective of the renewal process was to migrate the LAN-based BIS into a WEB-based BIS that relies

on PHP and JavaScript. The overall size of the LAN-based BIS is 27.000 lines of source code.

Total ; 27000

Platform

Independent

Code; 12000

Platform

Dependent

Code; 15000

0

5000

10000

15000

20000

25000

30000

#
 l

in
e
s

o
f

so
u

r
c
e
 c

o
d

e

0

500

1000

1500

2000

2500

3000

3500

4000

Presentation

Components

Activities Data

Components

Total

#
 o

f
m

o
d

e
l

e
le

m
e
n

ts

Delphi PSM PIM PHP PSM

(a) Platform-independent code vs. platform-dependent code (b) Complexity of the BIS models

Figure 5. Experimental results from the renewal of the case study BIS

During the reverse engineering workflow, we extracted the Dephi PSM of the BIS, which includes 3.138

elements. 35% of the elements are business activities, 21% of the elements are data components and 44% of

the elements are presentation components. Figure 5(a) gives the percentage of the platform-independent

source code realizing the actual business process of the legacy BIS. During the extraction of the PSM we

further isolate the aforementioned source code from the platform-dependent source code which is generated

automatically by Borland Delphi. The platform-independent code can be reused in the Web-based BIS with

small modifications. After the extraction of the Delphi PSM, we abstracted the PIM of the legacy BIS. In

Figure 5(b), we compare the complexity, the number of presentation components, activities and data

components, of the PIM with the complexity of the Delphi PSM. An interesting remark is that the PIM model

is more complex as it contains more presentation and data components. This is because Borland Delphi

provides ready-to-use presentation components (e.g. the DelphiDBLookupComboBox and DelphiDBGrid,

elements in Figure 4(a)), which allow the users to insert (resp. retrieve) data to (resp. from) the database.

11 http://medlab.cs.uoi.gr/
12 http://www.mysql.com/

746

MODEL-DRIVEN RENEWAL OF LAN-BASED BUSINESS INFORMATION SYSTEMS TOWARDS WEB-BASED

SYSTEMS

Such types of composite presentation components are not available in other COTS like PHP, JSP, etc.

Consequently the PIR, we assume for specifying PIMs, does not provide such types of components. The

Delphi components providing direct access to the database consist of primitive Delphi presentation and data

components. For this reason, we map in the PIM these Delphi components into corresponding combinations

of PIM presentation and data components (see the dl2pimDBGrid and dl2pimDBCombo dependencies in

Figure 4(a)). In Figure 5(b), we further compare the complexity of the PHP PSM we generate, during the

forward engineering workflow, with the complexity of the PIM and the complexity of the Delphi PSM. The

PHP and the PIM are of the same complexity since the mapping of the PIM elements into corresponding PHP

elements is one-to-one (see the refinement dependencies in Figure 4(b)).

5. CONCLUSIONS

In this paper, we examined the general problem of migrating legacy BISs that were built using technology

platforms not permitting the use of the BISs over the WEB, into WEB-based BISs. The major contributions

of this paper are a methodology and adequate tools for the aforementioned migration. The proposed

methodology comprises a reverse engineering workflow that aims at the automated extraction of a platform-

independent architectural model of the LAN-based BIS from the source code of the BIS. The architectural

model is automatically refined according to a new technology platform, which we select at the very

beginning of the renewal process. The resulting platform-specific architectural model serves for generating a

partial implementation of the WEB-based BIS. The methodology and the tools proposed in this paper are

independent from both the legacy and the new technology platforms. This is a distinctive feature of our

approach compared to other works proposed in the literature.

REFERENCES

Canfora, G. et al., 1996. An Improved Algorithm for Identifying Objects in Code. In Software Practice and Experience,

Vol. 26, No. 1, pp. 25-48.

Cimitile, A. et al., 1999. Identifying Objects in Legacy Systems Using Design Metrics. In Journal of Systems and

Software, Vol. 44, No. 3, pp. 199-211.

Cordy, R., J. et al. The Whole Website Understanding Project. http://www.cs.queensu.ca/~stl/stg/

De Lucia, A. et al., 1997. Migrating Legacy Systems Towards Object-Oriented Platforms. In Proceedings if the IEEE

Conference on Software Maintenance (ICSM’97), pp. 222-229.

Jacobson, J. and Lindstrom, F., 1991. Reengineering of Old Systems to an Object-Oriented Architecture. In Proceedings

of the ACM Conference on Object-Oriented Programming Systems, Languages, and Applications(OOPSLA’91), pp.

340-350.

Liu, S., S. and Wilde, N., 1990. Identifying Objects in a Conventional Procedural Language: An Example of Data Design

Recovery. In Proceedings if the IEEE Conference on Software Maintenance (ICSM’90), pp. 266-271.

Newcomb, P. and Kotik, G., 1995. Reengineering Procedural into Object-Oriented Systems. In Proceedings of the 2nd

IEEE Working Conference on Reverse Engineering (WCRE’95), pp. 237-249.

Ong, C. and Tsai, W., T., 1993. Class and Object Extraction from Imperative Code. In Journal of Object Oriented

Programming, Vol. 6, No. 1, pp. 58-68.

Ping, Y. et al., 2003. Migration of Legacy Web Applications to Enterprise Java Environments – Net.Data to JSP

Transformation. In Proceedings of the ACM Conference Centre for Advanced Studies Conference on Collaborative

Research, pp. 223-237.

Soley R. and the OMG Staff Strategy Group, 2000, Model-Driven Architecture. White Paper, Object Management

Group.

Schwanke, R., W., 1991. An Intelligent Tool for Reengineering Software Modularity. In Proceedings of the 13th IEEE-

ACM-SIGSOFT International Conference on Software Engineering (ICSE’91), pp. 83-92.

Van Deursen, A. and Kuipers, T., 1999. Identifying Objects Using Cluster and Concept Analysis. In Proceedings of the

21st IEEE-ACM-SIGSOFT International Conference on Software Engineering (ICSE’99), pp. 246-255.

747

