
Automating the Performance and Reliability Analysis of Enterprise Information
Systems.

Apostolos Zarras
INRIA Rocquencourt
Domaine de Voluceau

78153 Le Chesnay - France
Apostolos.Zarras@inria.fr

Valerie Issarny
INRIA Rocquencourt
Domaine de Voluceau

78153 Le Chesnay - France
Valerie.Issarny@inria.fr

Abstract

Good quality models for the analysis of complex enter-
prise information systems (EIS) are hard to build and re-
quire lots of experience and effort, which are not always
available. A possible solution to deal with the previous is-
sue is to build automated procedures for quality model gen-
eration. Such procedures shall encapsulate previous exist-
ing knowledge on quality modeling and their use shall re-
duce the cost of developing quality models. In this paper, we
concentrate on the performance and reliability of EIS and
we investigate the automatic generation of quality models
from EIS architectural descriptions comprising additional
information related to the aspects that affect the quality of
the EIS.

1. Introduction

Todays industrial organizations strongly depend on large
scale enterprise information systems (EIS) for performing
and managing their complex business processes. In conse-
quence, the quality of the EIS is of significant importance
and quality analysis is required during its whole life-cycle.

The analysis of certain quality attributes (e.g. perfor-
mance, reliability, availability) is not a new challenge. Pi-
oneer work on modeling and analyzing the quality of soft-
ware systems at the architectural level includes Attribute-
Based Architectural Styles (ABAS) proposed in [3]. In gen-
eral, an architectural style includes the specification of types
of basic architectural elements (e.g. pipe and filter) that can
be used for specifying a software architecture. Moreover, an
architectural style includes the specification of constraints
on using those basic architectural elements and patterns de-
scribing the data and control interaction among them. An
ABAS is an architectural style, which additionally provides
modeling support for the analysis of a particular quality at-

tribute (e.g. performance, reliability, availability). More
specifically, an ABAS provides support for specifying: (1)
Quality attribute measures characterizing the quality at-
tribute (e.g. the probability that the system correctly pro-
vides a service for a given duration, mean response time);
(2) Quality attribute stimuli, i.e., events affecting the quality
attribute of the system (e.g. failures, service requests); (3)
Quality attribute parameters, i.e., architectural properties
affecting the quality attribute of the system (e.g. faults, re-
dundancy, thread policy); (4) Quality attribute models, i.e.,
traditional models (e.g. Markov chains, petri-nets, queuing-
nets etc.) that formally relate the above elements.

In [2] the authors go one step further proposing a method
for architecture tradeoff analysis (ATAM) where the use of
an ABAS is coupled with the specification of a set of sce-
narios, which roughly constitutes the specification of a ser-
vice profile. In all those cases, quality attribute models
(e.g. Markov models, queuing networks etc.) are manu-
ally built given the specification of a set of scenarios and
the ABAS-based architectural description. However, in [2],
the authors recognize the complexity of the aforementioned
task. ATAM is a promising approach for doing things right.
Nowadays, however, there is a constant additional require-
ment for doing things fast and easy. Asking EIS engineers
to build performance and reliability models from scratch is
certainly a drawback towards achieving the previous. The
objective of the approach presented in this paper is to over-
come the aforementioned drawback by automating the gen-
eration of quality attribute models from architectural de-
scriptions.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the definition of a base architectural style
for specifying EIS architectures. Sections 3 and 4 introduce
the automated procedures for the generation of traditional
performance and reliability models. Finally, section 5 con-
cludes this paper with a summary of our contribution.

Proceedings of the 16th Annual International Conference on Automated Software Engineering (ASE 2001)
1527-1366/01 $17.00 © 2001 IEEE

2. A Base EIS Architectural Style

Figure 1 gives the UML definitions of the basic elements
for the specification of EIS architectural models.

Figure 1. The structure of an EIS architectural
model

An EIS is basically the integration of a set of autonomous
subsystems, the services of which are combined using
workflows. Hence, an EIS software architecture comprises
the specification of a non empty set of EIS subsystems pro-
viding one, or more EIS services. Every EIS subsystem is
deployed on top of an EIS node. Technically, EIS subsys-
tems and services are specified textually using DARWIN-
like notations. DARWIN is among the first and most pop-
ular architecture description languages (ADLs) (for more
information see [5]). An EIS architectural description fur-
ther includes the specification of a service profile. A ser-
vice profile is defined here as a non-empty set of EIS work-
flows describing how the EIS is used. An EIS workflow is a
model that specifies the coordination dependencies among
of a set of EIS tasks. The workflow model we use is inspired
by the one proposed in [7], which has recently become an
OMG standard [6]. Tasks use basic EIS services provided
by subsystems. Hence, a task requires a set of alternative
inputs which may be either references to EIS subsystems,
or notifications from other tasks. During the execution of a
task the first available input set is used to produce a set of
outputs (references to subsystems, or notifications to other
tasks). By definition, a set of alternative sets of outputs may
be produced by a task. Technically, tasks and dependencies
among them can be specified textually using the language
detailed in [7]. Moreover, textual descriptions of tasks spec-
ify the way different alternative input sets are used to pro-
duce the corresponding alternative output sets.

To facilitate the specification and quality analysis of EIS
architectures, we developed a prototype tool. The use of
the tool for the specification and quality analysis of EIS
has been tested with a real world case study, part of which

we use here as an example. The case study consists of the
quality analysis of an EIS used for managing the Bull SA
organization. The basic EIS architecture consists of a va-
riety of autonomous and disparate subsystems. The EIS
service profile includes, among others, a workflow which
combines services provided by the EIS subsystems into a
complex billing service. The workflow consists of: The
Bill task, using services of a Log and a Department
server to produce per-customer bills; The Payment task,
taking as input a bill produced by the Bill task and a ref-
erence to the Department server, and checking whether
the bill is accepted, or not; The Transfer task, using a
Billing server to transfer money from the account of the
customer to a bank. The Claim task, using the Billing
server to cancel rejected bills. Figure 2, gives a snapshot
of the tool we developed showing the specification of the
complex billing service workflow.

Figure 2. The billing service workflow speci-
fication.

3. Automated Performance Analysis

The basic performance measures used to characterize the
execution of EIS workflows and tasks are the mean-service-
time, mean-waiting-time, mean-execution-time, and mean-
system-throughput. Moreover, the basic stimuli that cause
changes on the values of those measures is the initiation of
workflows. Hence, EIS workflows are associated with an
attribute whose values give the statistical pattern by which
workflows are initiated. Finally, EIS subsystems are char-
acterized by their thread and scheduling policies, their ca-
pacity and the work demands needed for providing the as-
sociated EIS services.

For EIS performance analysis, we use a tool-set, called

2

Proceedings of the 16th Annual International Conference on Automated Software Engineering (ASE 2001)
1527-1366/01 $17.00 © 2001 IEEE

QNAP2 1, providing a variety of both analytic and simula-
tion techniques. QNAP2 accepts as input a queuing network
model of the system that is to be analyzed. A queuing net-
work model consists of a set of stations providing services
requested by customers. A service is associated with a set of
transition rules describing what happens to a customer after
the customer is served. A station is further associated with
queues that store requesting customers. In a queuing net-
work, we may have special stations, called source stations,
whose purpose is to create new customers. Those stations
are characterized by a statistical pattern according to which
they generate customers.

Given an EIS architectural description the steps for map-
ping it to the corresponding queuing network are the fol-
lowing. First, a set of stations is generated, corresponding
to EIS nodes on top of which EIS subsystems and work-
flows are deployed. Moreover, for every workflow specified
in the EIS service profile, a source station, characterized by
the corresponding statistical pattern, is generated. Then, for
every EIS subsystem, a queue is generated and associated
with the appropriate station. Performance parameters re-
lated to the capacity and scheduling policy of the subsystem
are used to define the corresponding properties that charac-
terize the queue. In addition, a service is generated for every
EIS service provided by the subsystem. The generated ser-
vice is characterized by the work-demands required for the
corresponding EIS service.

In the next step, for every workflow in the service profile
and for every task t into this workflow, a queue, tQueue,
is generated and associated with the corresponding station.
The generated queue is used to synchronize the execution of
tasks that depend on t. The queue stores customers sent by
tasks that depend on t, requesting its activation. Moreover,
the service tService provided to customers queued in
tQueue is generated and associated with the correspond-
ing station. The code of tService follows the pattern
described below: (1) The initiation of the workflow causes
the creation of customers initc sent to the queue of each
task t. (2) Serving initc causes the generation of new
sets of customers, one per alternative input set required by
task t. Each new set of customers is sent to the stations
that host queues of the tasks providing the corresponding
outputs. (3) initc waits until one of the new customer
sets is served. Then, another set of customers is created and
sent to the queues that correspond to the EIS subsystems
used by t. The exact code generated here depends on the
way tasks use EIS services provided by EIS subsystems. (4)
initc remains blocked until all of the created customers
are served by the EIS subsystems. Then, an output set is
produced and customers waiting on stations for this partic-
ular output set are unblocked. Finally, customer initc is
unblocked and destroyed. Technically, the Darwin and the

1www.simulog.com

workflow parsers are used to parse the EIS architectural de-
scriptions and to generate the above information.

Getting back to our example, the three application
servers used by the tasks of the BillingServiceWork-
flow are multi-threaded and are modeled to have an un-
limited capacity. The policy according to which they serve
requests is FIFO. Finally, the work demands for providing
the EIS services associated with them are constant (we do
not provide further details here due to the lack of space). A
queuing network for QNAP2 is then generated simply, us-
ing the tool functionality, and according to the mapping de-
fined above. In particular, the following elements are gener-
ated: 3 stations and the corresponding queues representing
the application servers; 4 stations hosting queues used for
the synchronization of tasks; a source station whose statis-
tical pattern equals to the one of the BillingService-
Workflow. To give an idea of the complexity of the re-
sulting model, its total size is 490 lines. More details in
[8].

4. Automated Reliability Analysis

The basic reliability measure for EIS is the probability
that a workflow successfully completes during the lifetime
of the EIS. Getting to the reliability parameters, EIS sub-
systems, tasks and nodes may fail because of faults causing
errors in their state. The manifestations of errors are fail-
ures [4]. Hence, faults are the basic parameters that affect
the reliability of an EIS, while failures are the stimuli caus-
ing changes in the value of the reliability quality. Faults and
failures are further characterized by properties proposed in
[8].

Reliability analysis techniques are typically based on
state space models. The specification of large state-space
models is often too complex and error-prone. The approach
proposed in [1] alleviates this problem. In particular, in-
stead of specifying all possible state transitions, the authors
propose to specify the state range of the system, a death
state constraint, and transition rules between sets of states
of the system. In a transition rule, the source and the target
set of states are identified by constraints on the state range
(e.g. if the system is in a state where more than 2 subsys-
tems are operational, then the system may get into a state
where the number of subsystems is reduced by one). Given
the previous information, a complete state space model can
be generated using the algorithm described in [1]. Briefly,
the algorithm takes as input an initial state and recursively
applies the set of the transition rules. During a recursive
step, the algorithm produces a transition to a state derived
from the initial one. If the death state constraint holds for
the resulting state, the recursion stops.

Based on the above, in the remainder we detail how
to exploit the EIS architectural description to generate the

3

Proceedings of the 16th Annual International Conference on Automated Software Engineering (ASE 2001)
1527-1366/01 $17.00 © 2001 IEEE

information needed for the generation of a corresponding
complete state space model. The first step towards that goal
is to generate a state range definition for each workflow be-
longing to a given service profile. The state of a workflow is
composed of the states of the tasks making up the workflow
and the states of the nodes on top of which tasks and subsys-
tems used by tasks execute. The state of a task consists of
a state representing the situation of the task itself and states
representing the situations of the task’s alternative input and
output sets. The situation of a task depends on the kinds of
faults that characterize it. For instance, if the task may fail
due to permanent faults, its state may be Waiting, Busy,
Complete, or Failed. The state of an input (resp. out-
put) set, ioset, is composed of the states of the individual
inputs io (resp. outputs) included in the set.

After generating the state range definition for a workflow
wf, the step that follows comprises the generation of tran-
sition rules for every task t of wf and for the EIS nodes.
Those rules depend on the kind of faults that may occur.
For permanent faults, the rules for task t follow the pattern
below:

If wf is in a state where t is Waiting then: (1) If an al-
ternative input set ioset is available then wf may get into
a state where t is Busy; (2) If none of the alternative input
sets ioset may eventually become available then wf may
get into a state where all tasks depending on t are aware
about the fact that its output sets will never be available.
The previous are, typically, fast transitions, i.e. the proba-
bility that they take place is close to 1.

If wf is in a state where t is Busy due to the avail-
ability of ioset then wf may get into a state where:
(1) t is Complete; (2) t is Failed and all tasks de-
pending on t are aware about the fact that its output
sets will never be available; (the rate of getting into this
state equals to the arrival rate of the fault that caused
the failure of t); (3) t is Waiting, io belonging to
ioset is Failed and all EIS references io’ used by
other tasks of wf, for which io’.eisSubsystem =
io.eisSubsystem holds, get into a Failed state (the
rate of this transition equals to the arrival rate of the fault
that caused the failure of io).

The rules for a node n are more obvious, and are not
given here due to the lack of space. Finally, a death state
constraint must be generated. In general, wf is in a death
state if none of its output sets may eventually become avail-
able due to the unsuccessful termination of the tasks provid-
ing the corresponding outputs. Technically, the generation
of the information discussed in this section requires using
both the parser of the workflow specification language and
the parser of Darwin specifications. Getting back to our ex-
ample, from the workflow specification given in Figure 2 we
can generate the necessary information that serves as input
to the algorithm presented in [1]. The state of the workflow

is composed of the states of the Bill, Payment, Trans-
fer, and Claim tasks, and the states of the nodes used for
the execution of the tasks and subsystems. The overall size
of the model used as input for the algorithm [1], is 325 lines
of code. The generated complete Markov model contains
616 states. 282 out the 616 are death states. Finally, the
model contains 2092 transitions. More details in [8].

5. Conclusion

In this paper, we presented an approach for automating
the performance and reliability analysis of EIS. The benefits
of the proposed approach are both qualitative and quantita-
tive. In particular, the quality of traditional performance
and reliability models is assured since the required experi-
ence for building them is encapsulated in automated model
generation procedures. Moreover, the cost of performing
performance and reliability analysis is reduced since the
development of the corresponding models is achieved au-
tomatically. Finally, the proposed approach renders the use
of formal methods for quality assessment more tractable to
industrial people.

Acknowledgments. This work is partially funded by the
IST C3DS and DSoS projects.

References

[1] S. C. Johnson. Reliability Analysis of Large Complex Sys-
tems Using ASSIST. In Proceedings of the 8th Digital Avion-
ics Systems Conference, pages 227–234. AIAA/IEEE, 1988.

[2] R. Kazman, S. J. Carriere, and S. G. Woods. Toward a disci-
pline of scenario-based architectural engineering. Annals of
Software Engineering, 9:5–33, 2000.

[3] M. Klein, R. Kazman, L. Bass, S. J. C. M. Barbacci, and
H. Lipson. Attribute-Based Architectural Styles. In Proceed-
ings of the First Working Conference on Software Architecture
(WICSA1), pages 225–243. IFIP, Feb 1999.

[4] J.-C. Laprie. Dependable Computing and Fault Tolerance :
Concepts and Terminology. In Proceedings of the 15th In-
ternational Symposium on Fault-Tolerant Computing (FTCS-
15), pages 2–11, 1985.

[5] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specify-
ing Distributed Software Architectures. In Proceedings of the
5th European Software Engineering Conference (ESEC’95),
number 989 in LNCS, pages 137–153. Springer Verag, 1995.

[6] OMG. UML Profile for Enterprise Distributed Object Com-
puting. Technical report, OMG, 2000.

[7] S. Wheater, S. Shrivastava, and F. Ranno. A CORBA Com-
pliant Transactional Workflow System for Internet Applica-
tions. In Proceedings of MIDDLEWARE’98, pages 3–18.
IFIP, September 1998.

[8] A. Zarras and V. Issarny. Quality Assessment of Complex
Services. Technical Report C3DS/WPB/T1.5, C3DS Esprit
24962, 2000.

4

Proceedings of the 16th Annual International Conference on Automated Software Engineering (ASE 2001)
1527-1366/01 $17.00 © 2001 IEEE

