A Dynamic Reconfiguration Service for CORBA

Christophe Bidan, Valérie Issarny, Titos Saridakis, Apostolos Zarras
IRISA/ INRIA
Campus de Beaulieu, 35042 Rennes CédBRNEE
{issarny, bidan, saridaki, zarfg@irisa.fr

Abstract in the nature of these reconfiguration classes, the primitive

operations that should be provided by the reconfiguration
Providing software qualities such as availability, adapt- service are the same in both cases: creation and removal
ability and maintenability to long-running distributed ap- of components, creation and removal of links, and state
plications, forms a major challenge for the configuration transfer among components. In addition, two requirements
management of a software system. Modifications of sys-are placed on the use of these primitives to perform a re-
tem’s structure are expected to happen on-the-fly, to causeconfiguration: to preserve some well-defined consistency
minimum execution disruption, and to be effected in a way constraints and at the same time to introduce a minimal

that preserves a consistent state of the participating enti- disruption to the length of time of the system’s operation.

ties. This paper presents a novel algorithm for performing | order to accommodate an application independent dy-
consistent dynamic reconfiguration of CORBA applications, namic reconfiguration service, the functional concerns of
where consistency refers to RPC integrity. The novelty ofthe gpplication components should be separated from the
the algorithm is that it passivates the links affected by the giyyctural configuration concerns, and only the latter should
reconfiguration, which causes the node activities that usepe considered in reconfigurations. This allows to build a
them to block, but does not result in blocking the entire system level service that supports configuration changes in-
node. The consequent execution disruption is minimal, agependently from application specifications, and to incorpo-
fact that is practically verified by a performance evaluation e it into programming environments aimed at developing
done in a number of different reconfiguration scenarios. distributed applications. CORBA compliant programming
environments allow a clean separation of application func-
Keywords: Consistency, CORBA application, Dynamic tional and structural concerns, where an application consists
Reconfiguration, Execution disruption, RPC integrity. of a number of objects that communicate over an ORB,
which offers RPC capabilities [11]. A number of execution-
support facilities (e.g. object life-cycle control, persistent
1. Introduction objects, transactional facilities, etc) can be integrated into
an ORB as Common Object Services (COS), and can be

The need for a@ynamic reconfiguration servi¢®RS) to directly used by application objects [10]. This technology
support software evolution is an urgent demand in the do-favors the constructi_on of.a reconfi.guration mechanism on
main of long-running distributed applications. In general, top of CORBA services like the LifeCycle COS, and its
dynamic reconfiguration refers to the changes of system’sincorporationin a CORBA compliant platform.
logical and physical structure (e.g. insertion, removal or In this paper we address the issue of dynamic recon-
replacement of physical nodes, logical components and in-figuration in the CORBA framework. Building on the se-
teraction links). These changes can be roughly classifiedmantics of the LifeCycle CORBA service, we propose a
into two categoriesi) programmed reconfiguration (ad novel algorithm for dynamic reconfiguration that introduces
hocchanges) that is part of the system design and is schedminimal disruption on system’s execution by passivating
uled to happen when certain conditions are satisfied duringonly the links attached to the target of the change. In a
application execution (e.g. embedded failure recovery), andmulti-threaded execution environment, passivating links re-
ii) evolutionary reconfiguration (gost hochanges) that sults in suspending the activities of neighbor objects that
refers to structure modifications caused by events indepenuse these links, while the rest of the activities remain unaf-
dent from the application specifications (e.g. maintenancefected. Changes are initiated and coordinated by a Dynamic
actions, components upgrade, etc). Despite the difference®Reconfiguration Manager (DRM) which interacts with the

reconfiguration activities of application objects. The overall should affect the smallest possible set of system activities.
schema guarantees local node consistency [8] which is interdn the case of composite objects consisting of independently
preted as RPC integrity in the CORBA framework, i.e. all executing activities (e.g. multi-threaded objects), only the
RPCs initiated by activities affected by the reconfiguration activities actually affected by the reconfiguration should be
will be completed before the changes are effected. blocked, and not entire objects containing affected activities.
The remainder of the paper is organized as follows: in The consistency objective is somewhat more delicate to
the next section we present our motivations and design de-sspecify. To build an application independent reconfiguration
cisions by juxtaposing the reconfiguration requirements of service, the guaranteed consistency should be application
typical CORBA applications with existing reconfiguration independent. We define the term consistency in the CORBA
algorithms. From this discussion it follows that a novel framework as the property of RPC integriiye. a state
algorithm is needed to guarantee RPC integrity while intro- of an object is consistent if there are no pending RPCs
ducing minimal disturbance to application execution. The initiated by that objectRPC integrity guarantees local node
prominent aspects of the algorithm, its implementation and consistency but not application consistency in terms of some
an evaluation of its performance are presenteg§Bin The system-wide invariant. The latter is application dependent
concluding section summarizes the paper, stresses our corand additional mechanisms should be built on the top of our
tribution, discusses the limitations of the proposed algo- reconfiguration service to guarantee it. In the remainder of
rithm, and refers to current status and future work issues. the paper, we concentrate our attention on node consistency
issues.
2. Motivations At this point, the problem of a dynamic reconfiguration
management integrated with a CORBA compliant platform

The need to support the structural changes of distributedis well defined. What is needed is an algorithm that satisfies

applications has been recognized by the OMG, who has pro_the efficiency and consistency constraints mentioned above,

posed the LifeCycle COS that consists of a set of facilities PY Providing a set of operations that allow the creation, state
for controlling objects life-cycles (see chapter 6 in [10]). transfer, and removal of objects and the creation and removal

However, there is a significant difference between control- of Ilnk_s. In the remainder of t_h's sectlo_n we .make a ,b”ef
ling object life-cycles and managing configuration changes: ©VerView o_f some representative reconflgura_tlon algorithms
the former deals with the primitives that a CORBA platform pr(_)p_osed in the Ilterature. Beglde the fulfiliment of th_e
should possess in order to support the creation, transfer an@ T1Ci€NCy and consistency requirements, we also examine
removal of objects, while the latter is occupied with how their independence of some system-specific support and the
to use these primitives and coordinate the resulting actions2mount of programmer guidance that they require.

in order to effect the configuration changes efficiently and

without affecting some well-defined form of consistency in 2.2. Consistent Dynamic Reconfiguration

the system. Our goal is to extend the LifeCycle facilities to

support dynamic reconfiguration of a CORBA application. Preserving some form of consistency during reconfigu-
This can be achieved by the construction of a service onration actions has been one of the principal goals of algo-
top of the LifeCycle COS, which uses the primitives pro- rithms dealing with configuration changes. We have identi-
vided by this CORBA service in order to coordinate the fied two categories of reconfiguration mechanisms, focusing

reconfiguration actions. on application consistency and on node consistency respec-
tively. Although application consistency entails application
2.1. Design Objectives dependence, mechanisms providing such consistency cause

low execution disruption. On the other hand, despite the

Two major requirements on a reconfiguration service arefact of elevated execution disruption, mechanisms provid-
to be efficient and to preserve some well-defined consis-ing node consistency require less programmer guidance and
tency of the system. Efficiency refers to minimal execution less system-specific features.
disruption, both during normal system execution and dur- Among the prevalent work in dynamic reconfiguration
ing configuration changes. The former aspect of executionpreserving application consistency is the one based on the
disruption is due to the overhead introduced by the mech-POLYLITH distributed programming environment [5]. Re-
anism that detects reconfiguration conditions, and can beconfiguration points are explicitly defined in the application
minimized by a careful implementation. The latter execu- source code by the programmer. The execution disruption
tion disruption aspect depends on the reconfiguration man-caused by this mechanism is minimal due to the fact that
agement algorithm, which is the focus of attention in the the application execution is disrupted only when necessary
remainder of the paper. To keep the execution disruptionto perform some configuration change. Nevertheless, the
due to configuration changes minimal, the reconfiguration process of explicitly identifying the reconfiguration points

is too error prone, especially as the distributed application order for rendering nodes in a quiescent state, in such a way
scales in source code size. Similar approaches presentethat no partially completed transactions are blocked by the
in [4] and [13] are respectively based on facilities provided reconfiguration actions. The variants of the initial algorithm
by the Chorus operating system, and on PCL (a configura-focus either on efficiency aspects by minimizing the set of
tion language for modeling evolving system architectures). blocked nodes (e.g. [3]) or by associating locks with object
These approaches alleviate the programmer from some ofmethods, which must be acquired prior to call a method on
the drudgery of identifying reconfiguration points, by au- a server, in order to facilitate node passivation (e.g. [12]).
tomating the corresponding process. They also cause low The algorithms that provide application consistency, in-
execution disruption, but they remain application dependent,troduce low execution disruption but are application depen-
and in addition they require system-specific features. dent and generally need substantial guidance. On the other
An effort towards formalizing reconfiguration rules is hand, the algorithms that guarantee node consistency, are ap-
presented in [14], where application consistency is ex- plication independent but introduce a non-negligible execu-
pressed in existence and placement constraints and reconfigion disruption since they block more system activities than
uration rules are given as an execution condition followed by Necessary. From these remarks raises the need for a novel
a sequence of reconfiguration actions. Although the authorgeconfiguration algorithm, which should remain application
do not give any details concerning the execution disruption independent by preserving some form of local consistency
caused by their implementation using DARWIN and the while, at the same time, it should minimize the execution
NIH C++ class library, we can deduce that a mindful imple- disruption that it introduces. The next section presents the
mentation should not introduce high execution disruption. design, implementation and performance evaluation of such
In the same spirit, two approaches are based respectively o@n algorithm.
a Finite State Machine model [9] and on a CSP- or CCS-like
process algebra [2]. They both require the formal specifica-3. Dynamic Reconfiguration Service
tions of the reconfiguration conditions, which can be seen
as part of the application specifications. Hence, if the pro- oy algorithm for the reconfiguration service is designed
gramming environment supports formal specifications, the for 3 CORBA framework supporting multi-threaded objects,
guidance that is expected from the programmer is not veryso|jowing the thread-per-operation execution model. Since
hlgh and it amounts to deflnmg the synchronization con- \ye do not have an implementation of the LifeCycle COS,
straints for thg_recpnﬂguratlons. In th_e apsence of asu_ppor(,\,e first need the standard LifeCycle primitive®ateand
for_formal verl_flcatlon, the cost of vallda_tlng the reconfigu- emovethat correspond to the homonym configuration ac-
ration constraints bgcomes almost prohibitive for large scaletigns. In addition, we need to extend their semantics so as
distributed applications. to include basic knowledge about configuration and consis-
The DURRA programming environment supports an tency constraints. Moreover, we need the primitiliak,
event-triggered reconfiguration mechanism [1], which is unlink, transferLink,andtransferStateo respectively cre-
used mostly for error recovery purposes. The descriptionate and destroy a link, transfer the requests pending on a
of the application structure contains more than one alter-passivated link to another existing link, and to transfer the
native configurations, associated with an execution eventstate from one object to another. In the following subsec-
which serves as the condition that triggers a reconfigurationtions, we use these primitives to elaborate on the Dynamic
action. Medium guidance is required, since the program-Reconfiguration Service (DRS) properties in terms of the
mer has to consider all possible execution events that mayconsistency and efficiency constraints.
trigger a reconfiguration, but there is no need to modify
application’s source code. 3.1. Consistency and Efficiency Constraints
The fact that the above approaches require substantial
programmer guidance and depend on application factors, The consistency constraint that we wish to guarantee in
render them unsuitable for the purpose of implementing athe CORBA framework, is the one of RPC integrity, i.e. a
dynamic reconfiguration service for CORBA platforms. To reconfiguration action should notleave initiated RPCs pend-
obtain application independence, the reconfiguration mech4ing. The consistency constrairt (') is formally expressed
anism should focus on node interactions rather than applicaas:
tion specifications. This form of local consistency hasbeen CC =Vi € L : (remove(l) =
first considered in the CONIC programming environment to (Vr € Ry : send(r) = result(r)))
support the integrity of transactions [8]. The reconfigura- where£ is the set of system linksy; the set of RPCs is-
tion schema and its variants (e.g. [3] and [12]), have beensued ovel, send(r) andresult(r) are the predicates that
based on thguiescenstate of nodes, in which a node can hold if RPCr is initiated and the result is returned respec-
no longer interact with its environment. They propose an tively, andremove(l) holds if link [is removed. Notice

that CC' implicitly assumes RPCs whose synchronization tivities should be only those affected by the configuration
semantics are either synchronous or asynchronous with deehanges. Activities affected by a reconfiguration action are
ferred synchronization on the result reception. In CORBA, given by the preconditions of the reconfiguration actions,
the asynchronous RPC semantics is also provided. How-which indicate the links that must be passivated. The effi-
ever, this case can be handled by consideringrttatit(r) ciency constraintf C') is formally expressed as:
holds as soon as the request is received, which is correct EC =VI € L : blocked(l) =
with respect to the ORB specification. (unlink(l) V (I € Lo A remove(0)))

The proposed’C differs from the one usually employed whereblocked(I) holds if the entity issuing a request over
in the design of dynamic reconfiguration services [8]: the blocked by the DRS for reconfiguration purposelink(l)
latter takes into account a sequence of nested RPCs (e.gand remove(o) hold if the corresponding reconfiguration
transactions) while our'C' is given in terms of independent actions are requested, add is the set of incoming and
RPC requests. We have decided to design a DRS serviceutgoingo’s links.
based onC'C' due to the fact that in CORBA, the notion
of nested RPCs is not specified; only object-to-object com-3 2 Algorithm
munications are defined. Nested RPCs become meaningful
when using additional object services such as the OTS COS jyen the DRS specification, the DRS algorithm is al-

for transaction management (see chapter 10 in [10]). Formost direct. It should be guaranteed that links that must
illustration purposes, let us consider a configuration consist-pe passive with respect to the requested reconfiguration ac-

ing of three object®1, 0., andoz connected in sequence,

where an RPC from to 0, leads to a nested RPC framto

o3. If the application manager replaces objegby object

04, then usingC’'C the RPC integrity is guaranteed if there

are no pending RPCs from to o3 prior to oz’s removal.
Given CC, let us now examine the conditions under

which the reconfiguration actions can be effected in order

to ensure’’C' as actions’ postcondition. Theeeateandlink

actions do not affee?’C' since they do not affect any initiated

RPCs. On the other hand, to satigfy’ when removing a

tion are indeed passive and remain §&(criterion) for

the duration of the action, and that all the other links (i.e.
activities that do not issue request over the links that need to
be passive) are not affecteB ' criterion). The following

is the description of the reconfiguration algorithm:

Reconfiguration =

var
% data object that stores the configuration graph
config: configdesc;

begin case

link, one should guarantee that there are no pending RPCs create (obj: objdesc):

over that link. Correctness of themoveaction requires

to ensure that the resulting object removal does not lead to

the deadlock of any pending RPCs neither on the incoming
nor on the outgoing links. ThieansferStateaction can be
handled like theemoveaction, in which case the object state
is copied only when the original object is not servicing any
request. In the same way, ttransferLinkoperation can be
handled like theunlink action, and its precondition is that
the original link is passivated and the destination link exists.
More formally, we have:

Précreate = true
Preéiink = true
passive(l) = (VreR::
send(r) = result(r))
preuntink (1) passive(l)

VI € incoming(o)U
outgoing(o) : passive(l)
passive(l1) A exist(l2)
preremove(ol) A 81‘ist(02)

Préremove(0)

pretransferLink(lly l2)
p’retransferstate(ol, 02)

whereincoming(o), andoutgoing(o) stand respectively
for the incoming and outgoings links.

From the standpoint of the efficiency constraint, the DRS
must ensure that a minimal set of system activities is dis-
turbed by a reconfiguration action. Optimally, these ac-

config.addObj (obj); create(obj);
link (client.obj: objdesc; serveobj: obj.desc):
config.addLink (client.obj, serverobj);
unlink (clientobj: objdesc; servepbj: obj.desc):
passivateLink (clientobj, serverobj);
config.delLink (client.obj, serverobj);
transferLink (client.obj: obj.desc;
serverobjl, serverobj2: objdesc):
if (config.passive (client.obj, serverobj1))then
moveLink (clientobj, serverobjl, serverobj2);
remove (obj: obj.desc):

blockObject (obj); config.delObj (obj); remove(obj);
transferState (obj1, obj2: objdesc):
blockObject (objl); copy(obj2, getState(objl));
unblockObject (objl);
end case

end % End of Reconfiguration

The behavior of the operations on tbenfig data ob-
ject is direct from their name, and tlreeate, delete and
copy functions realize the corresponding actions on the ob-
jects according to the LifeCycle COS specification. We
do not describe thenoveLink and unblockObject
operations, their implementation is straightforward from
our presentation. The core operations of the algorithm lie
in the passivateLink andblockObject operations.
ThepassivateLink operation consists of requesting the

client object to no longer issue a request on the correspond¢lient/server communication model. An object playing the
ing link (i.e. to block any object activity issuing a request role of a clientissues a reques an RPC to an object play-
over the link) and to make sure that there is no pendinging the role of the server. The latter performs the requested
RPC request on this link. ThislockObject operation geryices and returns a result to the client. In this framework,
functions as follows: we can safely assume that a big majority of applications

blockObject (object: objdesc) = are based on cycle-free object interactions, i.e. in the case
var clients, serverstist of obj_desc; of nested RPCs (RPCs that initiate other RPCs and depend
begin on their successful termination), an object that has initiated
% get the list of objects clients a nested RPC cannot play the role of the server for some
clients :=config.getClients (object); consequent RPC.
forall objin clientsdo))
passivateLink (obj, object): The correctness of the proposed reconfiguration algo-
end; rithm depends on:i() the satisfaction of th€'C and EC'
% get the list of object’s servers criteria, and if) the algorithm’s safety and liveness. The
servers :=config.getServers (object); liveness and safety properties are trivial to show due to the
forall objin serversdo passivation of links and the ordering of passivation actions,
passivateLink (object, obj); respectively. It is also trivial to show tha&tC' andEC are
end, guaranteed. By design of the algorithm, a link is passivated

end % End of blockObject before being removed and no request is issued over that link

The precondition that must hold for removing an object after its removal, hence satisfyi@C'. In the same way,
is that all the incoming and outgoing links of the object are EC is guaranteed since only activities that are issuing re-
passive, i.e., they are no pending RPC requests on thes@uests over the links that are affected by a reconfiguration
links and no new RPC request will be issued through theseare blocked.
links. Thus, it consists of performingassivateLink
operations on the objeotto be removed, and on the objects
for whicho is a server so as to respectively passivate outgo-3.3. CORBA specification
ing and incoming’s links. However, care should be taken
about the order in which theassivateLink operations
are performed due to nested RPC requests. For iIIustrationde
purpose, let us consider the configuration made of objects
01, 02, andos such thab; sends a synchronous RPC request
to 0,, and the call treatment withiwp leads to issue a nested
synchronous RPC requestdg Let us now assume that the
removal ofo, is requested. The link fromy to o, must be Reconfiguration
passivated before the link from to o3 so as to not intro-
duce a deadlock. In general, client objects of an ohject Reconfigurable
to be removed are requested first to passivate their link to object (RO)
o, and once they have all acknowledged link passivation,
is requested to passivate its outgoing links. Notice that the
proposed ordering applies to applications that have cycles
in their configuration graph as long as their execution is

Figure 1 illustrates the major components and interfaces
fined by the DRS. The objects belonging to an application

passivateLink | RO Interface
notify_end
movelink
readState

writeState

cycle-free.

Configurations with a cycle in their execution are handled creste remove
by using a dif'ferent reconfiggration alg(_)rithm that is not fur- DRM Interace "t?gnsf;g';;;g
ther considered in the remainder of this paper due to space transferLink

e . . X tify_read
limitations. Briefly stated, the undertaken solution consists oy

of temporarily unblocking activities that are blocked on a
passivated link, in a way similar to the algorithm of [3],
which leads to a less efficient algorithm that does not satisfy
the EC criterion. The resulting non-conformance with the 4+ needs to be dynamically reconfigured mustemmn-
EC requirementin the case of configurations with execution figyraple which allows them to interact with tiBynamic
cycles is of a minimal penalty in the CORBA framework. Reconfiguration ManagegiDRM) that provides the recon-

A CORBA application is typically structured as a set of figuration primitives. The IDL interface of the DRM is the
objects engaged in pairwise interactions according to thefollowing:

Figure 1. Major components of the DRS

_ blocked. A thread that remains block subsequently to the
interface DRM{ . execution ofnotify _end will be unblocked if the target
long create (in string object); link of the suspended RPC request is substituted by another
long remove (in string object); one usingnoveLink
I link (in stri lient,in stri ;) . . .
onglink (in string client, in string server): In the case whereoveLink is not called, this means

long unlink (in string client,in string server);
long transferState (in string source, that there is a software fault since the reconfiguration al-

in string dest); tered the application consistency. At this time, we have not
long transferLink (in string serverl, integrated software fault management within the DRS so as
in string server2); to detect the above type of faults. This is an issue for fu-
long notify _ready (in string object); ture enhancement of the DRS, which may be handled using
} timeouts and garbage collection. TineveLink operation

allows to move the requests that are blocked over a link to

In addition to the reconfiguration operations introduced another link by updating the server object reference and then

so far, it provides theaotify _ready operation. This is . . .
due to the fact that the requests for link passivation that areresdumn;gsthe blocked threads. Flna}lly,l matzsgate he ob
issued to reconfigurable objects are sentasynchroridosly ~ andreadstate operations respectively modifies the ob-
efficiency purposenotify _ready is thus used to detect J€Ct state and returns the current value of the object state.

termination of the requested link passivation actions. We do These two operations are provided as substitution of the
not detail the implementation of the DRM, it is direct from copy operation provided by the LifeCycle COS since we
the algorithm described in the previous subsection. Let ushave no such service available at this time; in particular,
simply remark that the DRM is currently centralized; distri- writeState andreadState together augment the se-

bution of the DRM is one of the planned enhancements for mantics ofcopy as given in the LifeCycle COS (chapter 6
the DRS so as to cope efficiently with large scale distributed i [10]).

CORBA applications. For an object to be reconfigurable, it 1, aqgition to the implementation of the operations pro-
gggti;ngi\elgtnfkr)%rlgvtvhé?QobJect class whose IDL inter- vided in the reconfigurable object IDL interface, any recon-
' figurable object redefines the ORM®/oke operation that
is provided to issue RPC requests over the ORB. The redef-
interface RQObject { inition consists of issuing an RPC request only if the target
void passivateLink (in sequencecstring> servers); link is valid and is not passivated.
void moveLink (in string serverl,

in string server2); Ct Cz
void notify _end (in sequencecstring > status, @ @
in sequencecstring> servers);
void writeState (in RO_state state);
void readState (out RO_state state); V-

} \V

The argument of thpassivateLink operation is the S —
list of server objects with which the links to be passivated
serve to communicate. This operation consists of updat-
ing data structures so as to block any object thread that
will be issuing a request over the passivated links and, con-
currently, to notify the action termination using the DRM
notify _ready operation once all the RPC requests that
are being served over the passivated links are terminated.
Thenotify _end operation is then called by the DRM to
notify termination of the reconfiguration action that led to 3.4. Implementation and Evaluation
the request for passivating the links with the server objects.
If the first argument ohotify _end indicates that both the
server objects and the links are still present (i.e. the links
were passivated to execute ttransferState action)
then the threads blocked on an RPC request to the serve
objects resume execution. Otherwise, these threads remai

v 1/0 Thread

O Reconfiguration Thread

Figure 2. Configuration of the test application

We have implemented the DRS on Orbix2.0 MT (a
CORBA compliant, multi-threaded platform), supported by
the Solaris 5.5.1 thread API, and we have performed some
measurement on Sun Ultra WorkStations running Solaris
B5.1. Figure 2 illustrates the configuration of the appli-

1TheCORBA::Request:send _oneway() operation is used in order Caj‘tion uged for performance _evaluation pu_rposﬁgis a
to perform non-blocking RPCs. client object that does a certain amount of internal compu-

tation and then issues synchronous RPCSjtawhich is a columns show the cost of replacing each of 3 51, and
storage server object. Upon receiving a requéstyrites S, respectively. The reader may verify that the cost of
some data on the disk, performs some internal computationthe performed reconfigurations always remains below 7%,
and does a nested RPC3g which is another storage server and becomes almost negligible in the computation intensive
object that replicates the data after executing some internatase. This fact verifies the efficiency of DRS when it comes

computation on them. Finally; is similar toC1; a client

object that does some internal computation and then issue$asic objectives.

synchronous RPCs t8) for writing data on the disk.
Based on this configuration, we measured the execution

to perform configuration changes, which was one of our

times of different versions of an application where each Com(r)n. Non-Reconf. | Reconf.
of the C; and C, issues 1000 requests. The parameters >9§A’ 18.31sec | 26.59sec
varying among the different versions are the size of the data 50% 32.00sec | 38.54sec

. . . . 35% 47.27sec 54.12sec
written on disk, and the amount of internal computations

f db h obiect. W ted fi . f 20% 79.07sec 80.11sec
performed by each object. We executed five versions o <5% 408.08sec | 408.12sec
the application with communication intensity ranging from @)
more than 95% to less than 5%, in two sets of measurements.
The first _set was performed over a cluster of Sun Ultra comm. base | Co—C | S1— S, | Sz — 55
WorkStations and the goal was to measure the overhead ~ =959 32.12sec| 33.77sec| 34.03sec| 34.29sec
introduced by the reconfiguration mechanism. For doing so, 50% 48.82sec| 50.61sec| 51.00sec| 51.47sec
we measured the execution time of the application with and 35% 63.70sec| 65.25sec| 65.82sec| 66.67sec
without the DRS. The second set of measurements aimed 20% 85.02sec| 86.25sec| 86.97sec| 87.57sec
at computing the actual cost of configuration changes, and ~ <5% 406.1sec| 407.6sec| 407.9sec| 408.3sec
it included three independent reconfigurations, performed (i)

one at a time: in the first reconfiguration measurement we
replaced’,, inthe second we replacéd, and in the last one
we replaceds,. We executed this set of measurements on a

single Sun Ultra WorkStation, in order to better monitorthe 4 Conclusions

reconfiguration process, and to manage isolating the cost of
the reconfiguration algorithm from the distribution factors.

Table 1. Performance results

We have presented the conception, implementation de-

The requestsissued to the DRM in each reconfiguration case;

are given in the following table:

gn, and performance evaluation of a novel algorithm for
dynamic reconfiguration of multi-threaded CORBA applica-
tions, which preserves RPC integrity. The algorithm builds

G2~ G 51— 5] 52— 5 on the semantics of the CORBA LifeCycle COS, and can
oreate (CL): create (51 create (S}) be seen as an extension of it. By design, the execution
v e, ey bink (5 54 vk (0 2 disruption introduced due to reconfiguration actions is min-
ik ('3, S wansferState - (Sy, S | wansferState - (S5, 5 imal, since the algorithm passivates links, a fact that results
remove (Cp); transferLink (Cq, S1, Sl); transferLink (Cp, Sy, S;); . bl k | h h d h h b .

ik (5], 5% wanstertink (7, S5, 50 in blocking only the threads that use them but not entire
remove(Sq); remove (Sp)

objects (i.e. nodes of the configuration graph). The perfor-

The results presented in tabld)fefer to the execution ~mance evaluation showed a low reconfiguration cost in the
disruption caused by the mechanism that detects reconfiguorder of 0.50sec - 1.80sec, which is almost independent of
ration conditions. This cost is almost stable in terms of ab- the communicationintensity of the application. On the other
solute time (between 6sec and 8sec) and causes a disruptiof@nd, the overhead due to the existence of the reconfigura-
that ranges from 45% in the communication intensive Casetion threads that is introduced to the normal execution of
to less than 1% in the computation intensive case. We bring@n application was shown to decrease as the communication
to the reader’s attention that these measurements are takelftensity decreases, ranging from 45% for communication
on the prototype implementation of the DRS, which does not intensive applications to less than 1% for computation in-
focus on this aspects of execution disruption. Improving the tensive applications.
performance of the mechanism that detects reconfiguration
conditions is part of the ongoing work. Contribution. From the standpoint of CORBA applica-

On the other hand, the cost of executing a reconfigu-tions, DRS can be integrated with an ORB execution plat-
ration is given in table 1i(). The first column indicates form and thereafter used as a COS extension. The facts that
the execution time of the reconfigurable application with- it is application independent and also that it is built on top
out performing any reconfiguration actions, while the next of the LifeCycle COS, advocate to this direction. Hence,

our first contribution is an extension of a CORBA COS 3rd International Conference on Configurable Distributed

for dynamic reconfiguration that preserves RPC integrity. Systemspages 62-69, May 1996. . .
From the point of view of configuration management, the [4] S.Hauptmann and J. Wasel. On-line Maintenance with On-
presented algorithm succeeds almost optimum score in all the-fly Software Replacement. Froceedings of the 3rd

International Conference on Configurable Distributed Sys-
tems pages 70-80, May 1996.

[5] C.R. Hofmeister and J. Purtilo. Dynamic reconfiguration in
distributed systems. adapting software modules for replace-

four categories on which we have compared related work
in §2.2. It is application independent, it requires minimum
programmer guidance, and it introduces minimal execution

disruption while preserving a well-defined consistency con- ment. InProceedings of the 13th International Conference
straint on objects interactions. Thus, another basic contri- on Distributed Computing Systemsages 101-110, May
bution is the successful assembly of the prevalent charac- 1993.

teristics of existing dynamic reconfiguration algorithmsina [6] V. Issarny, C. Bidan, and T. Saridakis. Designing an Open-
single service for the management of configuration changes ~ ended Distributed File System in Aster. Rioceedings of
of client/server distributed app“cations_ Fina”y’ the gener- the 9th International Conference on Parallel and Distributed
ality of the algorithm permits its use for the configuration Computing Systempages 163-168, September 1996. Also
managementof a wide spectrum of distributed systems. The __available at hitp://www.irisa.fr/solidor/work/aster.html.

o . . [7] V. Issarny, C. Bidan, and T. Saridakis. Achieving Mid-
preconditions for its employment, namely RPC communica-

. d lti-threaded obi b Vi d dleware Customization in a Configuration-Based Develop-
tions and multi-threaded objects, can be scarcely interprete ment Environment: Experience with the Aster Prototype. In

as limitations, especially in the framework of CORBA ap- Proceedings of the 4th International Conference on Config-
plications. urable Distributed Systembay 1998.

[8] J. Kramer and J. Magee. The Evolving Philosophers
Current and Future Work. Building on our previous ex- Problem. IEEE Transactions on Software Engineering
perience on providing some form of dynamic reconfigura- 15(1):1293-1306, November 1990.

[9] A. S. Lim. Abstraction and Composition Techniques for
Reconfiguration of Large-Scale Complex Applications. In
Proceedings of the 3rd International Conference on Config-

tion for CORBA applications [6], we have carefully im-
plemented the DRS described§8, focusing primarily on

efficiency aspects. We are very happy with its performance, urable Distributed Systempages 186-193, May 1996.
considering thatitis still in an experimental stage. Currently [10] OMG Document. CORBAservices: Common Object Ser-
we are occupied with performing some refinements on the vices Specification. Technical report, Object Management
activation of the reconfiguration thread, and with tuning the Group, November 1995.

coordination actions of the DRM in order to further optimize [11] OMG Document. The Common Object Request Broker:
the DRS performance. We also study an extension of the Architectu_re and Specification (Revision 2.0). Technical
DRS, which will ease the reconfiguration management by report, Object Management Group, July 199S.

allowing a set of related configuration changes to be effected [12] - Oueichekand X. R. de Pina. Dynamic Configuration Man-
in a single reconfiguration action. agement in the Guide Object-Oriented Distributed System.

. - In Proceedings of the 3rd International Conference on Con-
In the near future, we plan to exploit the DRS utility figurable Distributed Systempages 28-35, May 1996.

by using it in the customization of execution platforms for 13) | Warren and I. Sommerville. A Model for Dynamic Config-
applications that require support for configuration changes uration which Preserves Application Integrity. Ftoceed-
(e.g. tolerating object failures, guiding server replication ings of the 3rd International Conference on Configurable
for load balancing purposes, etc). For doing so, we intent Distributed Systempages 81-88, May 1996.

to integrate the DRS in Aster, a distributed programming [14] M. Zimmermann and O. Drobnik. Specification and Imple-
environment for distributed system customization, based on mentation of Reconfigurable Distributed Applications. In

the formal specifications of the application’s requirements Proceedings of the 2nd International Conference on Config-
(e.g. see [7]) urable Distributed Systempages 23-34, May 1994.

References

[1] M. Barbacci, C. Weinstock, D. Doubleday, M. Gardner, and
R. Lichota. Durra: A Structure Description Language for
Developing Distributed ApplicationslEE Software Engi-
neering Journal pages 83-94, March 1993.

[2] G.Etzkorn. Change Programming in Distributed Systems. In
Proceedings of the International Workshop on Configurable
Distributed Systempages 140-151, March 1992.

[3] K. M. Goudarzi and J. Kramer. Maintaining Node Consis-
tency in the Face of Dynamic Change.Rroceedings of the

