
A Dynamic Reconfiguration Service for CORBA

Christophe Bidan, Valérie Issarny, Titos Saridakis, Apostolos Zarras
IRISA / INRIA

Campus de Beaulieu, 35042 Rennes Cédex, FRANCE

fissarny, bidan, saridaki, zarrasg@irisa.fr

Abstract

Providing software qualities such as availability, adapt-
ability and maintenability to long-running distributed ap-
plications, forms a major challenge for the configuration
management of a software system. Modifications of sys-
tem’s structure are expected to happen on-the-fly, to cause
minimum execution disruption, and to be effected in a way
that preserves a consistent state of the participating enti-
ties. This paper presents a novel algorithm for performing
consistent dynamic reconfiguration of CORBA applications,
where consistency refers to RPC integrity. The novelty of
the algorithm is that it passivates the links affected by the
reconfiguration, which causes the node activities that use
them to block, but does not result in blocking the entire
node. The consequent execution disruption is minimal, a
fact that is practically verified by a performance evaluation
done in a number of different reconfiguration scenarios.

Keywords: Consistency, CORBA application, Dynamic
Reconfiguration, Execution disruption, RPC integrity.

1. Introduction

The need for adynamic reconfiguration service(DRS) to
support software evolution is an urgent demand in the do-
main of long-running distributed applications. In general,
dynamic reconfiguration refers to the changes of system’s
logical and physical structure (e.g. insertion, removal or
replacement of physical nodes, logical components and in-
teraction links). These changes can be roughly classified
into two categories:i) programmed reconfiguration (orad
hocchanges) that is part of the system design and is sched-
uled to happen when certain conditions are satisfied during
application execution (e.g. embedded failure recovery), and
ii) evolutionary reconfiguration (orpost hocchanges) that
refers to structure modifications caused by events indepen-
dent from the application specifications (e.g. maintenance
actions, components upgrade, etc). Despite the differences

in the nature of these reconfiguration classes, the primitive
operations that should be provided by the reconfiguration
service are the same in both cases: creation and removal
of components, creation and removal of links, and state
transfer among components. In addition, two requirements
are placed on the use of these primitives to perform a re-
configuration: to preserve some well-defined consistency
constraints and at the same time to introduce a minimal
disruption to the length of time of the system’s operation.

In order to accommodate an application independent dy-
namic reconfiguration service, the functional concerns of
the application components should be separated from the
structural configuration concerns, and only the latter should
be considered in reconfigurations. This allows to build a
system level service that supports configuration changes in-
dependently from application specifications, and to incorpo-
rate it into programming environments aimed at developing
distributed applications. CORBA compliant programming
environments allow a clean separation of application func-
tional and structural concerns, where an application consists
of a number of objects that communicate over an ORB,
which offers RPC capabilities [11]. A number of execution-
support facilities (e.g. object life-cycle control, persistent
objects, transactional facilities, etc) can be integrated into
an ORB as Common Object Services (COS), and can be
directly used by application objects [10]. This technology
favors the construction of a reconfiguration mechanism on
top of CORBA services like the LifeCycle COS, and its
incorporation in a CORBA compliant platform.

In this paper we address the issue of dynamic recon-
figuration in the CORBA framework. Building on the se-
mantics of the LifeCycle CORBA service, we propose a
novel algorithm for dynamic reconfiguration that introduces
minimal disruption on system’s execution by passivating
only the links attached to the target of the change. In a
multi-threaded execution environment, passivating links re-
sults in suspending the activities of neighbor objects that
use these links, while the rest of the activities remain unaf-
fected. Changes are initiated and coordinated by a Dynamic
Reconfiguration Manager (DRM) which interacts with the

reconfiguration activities of application objects. The overall
schema guarantees local node consistency [8] which is inter-
preted as RPC integrity in the CORBA framework, i.e. all
RPCs initiated by activities affected by the reconfiguration
will be completed before the changes are effected.

The remainder of the paper is organized as follows: in
the next section we present our motivations and design de-
cisions by juxtaposing the reconfiguration requirements of
typical CORBA applications with existing reconfiguration
algorithms. From this discussion it follows that a novel
algorithm is needed to guarantee RPC integrity while intro-
ducing minimal disturbance to application execution. The
prominent aspects of the algorithm, its implementation and
an evaluation of its performance are presented inx3. The
concluding section summarizes the paper, stresses our con-
tribution, discusses the limitations of the proposed algo-
rithm, and refers to current status and future work issues.

2. Motivations

The need to support the structural changes of distributed
applications has been recognized by the OMG, who has pro-
posed the LifeCycle COS that consists of a set of facilities
for controlling objects life-cycles (see chapter 6 in [10]).
However, there is a significant difference between control-
ling object life-cycles and managing configuration changes:
the former deals with the primitives that a CORBA platform
should possess in order to support the creation, transfer and
removal of objects, while the latter is occupied with how
to use these primitives and coordinate the resulting actions
in order to effect the configuration changes efficiently and
without affecting some well-defined form of consistency in
the system. Our goal is to extend the LifeCycle facilities to
support dynamic reconfiguration of a CORBA application.
This can be achieved by the construction of a service on
top of the LifeCycle COS, which uses the primitives pro-
vided by this CORBA service in order to coordinate the
reconfiguration actions.

2.1. Design Objectives

Two major requirements on a reconfiguration service are
to be efficient and to preserve some well-defined consis-
tency of the system. Efficiency refers to minimal execution
disruption, both during normal system execution and dur-
ing configuration changes. The former aspect of execution
disruption is due to the overhead introduced by the mech-
anism that detects reconfiguration conditions, and can be
minimized by a careful implementation. The latter execu-
tion disruption aspect depends on the reconfiguration man-
agement algorithm, which is the focus of attention in the
remainder of the paper. To keep the execution disruption
due to configuration changes minimal, the reconfiguration

should affect the smallest possible set of system activities.
In the case of composite objects consisting of independently
executing activities (e.g. multi-threaded objects), only the
activities actually affected by the reconfiguration should be
blocked, and not entire objects containing affected activities.

The consistency objective is somewhat more delicate to
specify. To build an application independent reconfiguration
service, the guaranteed consistency should be application
independent. We define the term consistency in the CORBA
framework as the property of RPC integrity,i.e. a state
of an object is consistent if there are no pending RPCs
initiated by that object. RPC integrity guarantees local node
consistency but not application consistency in terms of some
system-wide invariant. The latter is application dependent
and additional mechanisms should be built on the top of our
reconfiguration service to guarantee it. In the remainder of
the paper, we concentrate our attention on node consistency
issues.

At this point, the problem of a dynamic reconfiguration
management integrated with a CORBA compliant platform
is well defined. What is needed is an algorithm that satisfies
the efficiency and consistency constraints mentioned above,
by providing a set of operations that allow the creation, state
transfer, and removal of objects and the creation and removal
of links. In the remainder of this section we make a brief
overview of some representative reconfiguration algorithms
proposed in the literature. Beside the fulfillment of the
efficiency and consistency requirements, we also examine
their independence of some system-specific support and the
amount of programmer guidance that they require.

2.2. Consistent Dynamic Reconfiguration

Preserving some form of consistency during reconfigu-
ration actions has been one of the principal goals of algo-
rithms dealing with configuration changes. We have identi-
fied two categories of reconfiguration mechanisms, focusing
on application consistency and on node consistency respec-
tively. Although application consistency entails application
dependence, mechanisms providing such consistency cause
low execution disruption. On the other hand, despite the
fact of elevated execution disruption, mechanisms provid-
ing node consistency require less programmer guidance and
less system-specific features.

Among the prevalent work in dynamic reconfiguration
preserving application consistency is the one based on the
POLYLITH distributed programming environment [5]. Re-
configuration points are explicitly defined in the application
source code by the programmer. The execution disruption
caused by this mechanism is minimal due to the fact that
the application execution is disrupted only when necessary
to perform some configuration change. Nevertheless, the
process of explicitly identifying the reconfiguration points

is too error prone, especially as the distributed application
scales in source code size. Similar approaches presented
in [4] and [13] are respectively based on facilities provided
by the Chorus operating system, and on PCL (a configura-
tion language for modeling evolving system architectures).
These approaches alleviate the programmer from some of
the drudgery of identifying reconfiguration points, by au-
tomating the corresponding process. They also cause low
execution disruption,but they remain application dependent,
and in addition they require system-specific features.

An effort towards formalizing reconfiguration rules is
presented in [14], where application consistency is ex-
pressed in existence and placement constraints and reconfig-
uration rules are given as an execution condition followed by
a sequence of reconfiguration actions. Although the authors
do not give any details concerning the execution disruption
caused by their implementation using DARWIN and the
NIH C++ class library, we can deduce that a mindful imple-
mentation should not introduce high execution disruption.
In the same spirit, two approaches are based respectively on
a Finite State Machine model [9] and on a CSP- or CCS-like
process algebra [2]. They both require the formal specifica-
tions of the reconfiguration conditions, which can be seen
as part of the application specifications. Hence, if the pro-
gramming environment supports formal specifications, the
guidance that is expected from the programmer is not very
high and it amounts to defining the synchronization con-
straints for the reconfigurations. In the absence of a support
for formal verification, the cost of validating the reconfigu-
ration constraints becomes almost prohibitive for large scale
distributed applications.

The DURRA programming environment supports an
event-triggered reconfiguration mechanism [1], which is
used mostly for error recovery purposes. The description
of the application structure contains more than one alter-
native configurations, associated with an execution event
which serves as the condition that triggers a reconfiguration
action. Medium guidance is required, since the program-
mer has to consider all possible execution events that may
trigger a reconfiguration, but there is no need to modify
application’s source code.

The fact that the above approaches require substantial
programmer guidance and depend on application factors,
render them unsuitable for the purpose of implementing a
dynamic reconfiguration service for CORBA platforms. To
obtain application independence, the reconfiguration mech-
anism should focus on node interactions rather than applica-
tion specifications. This form of local consistency has been
first considered in the CONIC programming environment to
support the integrity of transactions [8]. The reconfigura-
tion schema and its variants (e.g. [3] and [12]), have been
based on thequiescentstate of nodes, in which a node can
no longer interact with its environment. They propose an

order for rendering nodes in a quiescent state, in such a way
that no partially completed transactions are blocked by the
reconfiguration actions. The variants of the initial algorithm
focus either on efficiency aspects by minimizing the set of
blocked nodes (e.g. [3]) or by associating locks with object
methods, which must be acquired prior to call a method on
a server, in order to facilitate node passivation (e.g. [12]).

The algorithms that provide application consistency, in-
troduce low execution disruption but are application depen-
dent and generally need substantial guidance. On the other
hand, the algorithms that guarantee node consistency,are ap-
plication independent but introduce a non-negligible execu-
tion disruption since they block more system activities than
necessary. From these remarks raises the need for a novel
reconfiguration algorithm, which should remain application
independent by preserving some form of local consistency
while, at the same time, it should minimize the execution
disruption that it introduces. The next section presents the
design, implementation and performance evaluation of such
an algorithm.

3. Dynamic Reconfiguration Service

Our algorithm for the reconfiguration service is designed
for a CORBA framework supporting multi-threaded objects,
following the thread-per-operation execution model. Since
we do not have an implementation of the LifeCycle COS,
we first need the standard LifeCycle primitivescreateand
removethat correspond to the homonym configuration ac-
tions. In addition, we need to extend their semantics so as
to include basic knowledge about configuration and consis-
tency constraints. Moreover, we need the primitiveslink,
unlink, transferLink,and transferStateto respectively cre-
ate and destroy a link, transfer the requests pending on a
passivated link to another existing link, and to transfer the
state from one object to another. In the following subsec-
tions, we use these primitives to elaborate on the Dynamic
Reconfiguration Service (DRS) properties in terms of the
consistency and efficiency constraints.

3.1. Consistency and Efficiency Constraints

The consistency constraint that we wish to guarantee in
the CORBA framework, is the one of RPC integrity, i.e. a
reconfiguration action should not leave initiated RPCs pend-
ing. The consistency constraint (CC) is formally expressed
as:

CC � 8l 2 L : (remove(l))

(8r 2 Rl : send(r)) result(r)))

whereL is the set of system links,Rl the set of RPCs is-
sued overl, send(r) andresult(r) are the predicates that
hold if RPCr is initiated and the result is returned respec-
tively, andremove(l) holds if link l is removed. Notice

that CC implicitly assumes RPCs whose synchronization
semantics are either synchronous or asynchronous with de-
ferred synchronization on the result reception. In CORBA,
the asynchronous RPC semantics is also provided. How-
ever, this case can be handled by considering thatresult(r)
holds as soon as the request is received, which is correct
with respect to the ORB specification.

The proposedCC differs from the one usually employed
in the design of dynamic reconfiguration services [8]: the
latter takes into account a sequence of nested RPCs (e.g.
transactions) while ourCC is given in terms of independent
RPC requests. We have decided to design a DRS service
based onCC due to the fact that in CORBA, the notion
of nested RPCs is not specified; only object-to-object com-
munications are defined. Nested RPCs become meaningful
when using additional object services such as the OTS COS
for transaction management (see chapter 10 in [10]). For
illustration purposes, let us consider a configuration consist-
ing of three objectso1, o2, ando3 connected in sequence,
where an RPC fromo1 too2 leads to a nested RPC fromo2 to
o3. If the application manager replaces objecto3 by object
o4, then usingCC the RPC integrity is guaranteed if there
are no pending RPCs fromo2 to o3 prior too3’s removal.

Given CC, let us now examine the conditions under
which the reconfiguration actions can be effected in order
to ensureCC as actions’ postcondition. Thecreateandlink
actions do not affectCC since they do not affect any initiated
RPCs. On the other hand, to satisfyCC when removing a
link, one should guarantee that there are no pending RPCs
over that link. Correctness of theremoveaction requires
to ensure that the resulting object removal does not lead to
the deadlock of any pending RPCs neither on the incoming
nor on the outgoing links. ThetransferStateaction can be
handled like theremoveaction, in which case the object state
is copied only when the original object is not servicing any
request. In the same way, thetransferLinkoperation can be
handled like theunlink action, and its precondition is that
the original link is passivated and the destination link exists.
More formally, we have:

precreate � true

prelink � true

passive(l) � (8r 2 Rl :
send(r)) result(r))

preunlink(l) � passive(l)
preremove(o) � 8l 2 incoming(o)[

outgoing(o) : passive(l)
pretransferLink(l1; l2) � passive(l1) ^ exist(l2)
pretransferState(o1; o2) � preremove(o1) ^ exist(o2)

where incoming(o), andoutgoing(o) stand respectively
for the incoming and outgoingo’s links.

From the standpoint of the efficiency constraint, the DRS
must ensure that a minimal set of system activities is dis-
turbed by a reconfiguration action. Optimally, these ac-

tivities should be only those affected by the configuration
changes. Activities affected by a reconfiguration action are
given by the preconditions of the reconfiguration actions,
which indicate the links that must be passivated. The effi-
ciency constraint (EC) is formally expressed as:

EC � 8l 2 L : blocked(l))
(unlink(l) _ (l 2 Lo ^ remove(o)))

whereblocked(l)holds if the entity issuing a request overl is
blocked by the DRS for reconfiguration purpose,unlink(l)
and remove(o) hold if the corresponding reconfiguration
actions are requested, andLo is the set of incoming and
outgoingo’s links.

3.2. Algorithm

Given the DRS specification, the DRS algorithm is al-
most direct. It should be guaranteed that links that must
be passive with respect to the requested reconfiguration ac-
tion are indeed passive and remain so (CC criterion) for
the duration of the action, and that all the other links (i.e.
activities that do not issue request over the links that need to
be passive) are not affected (EC criterion). The following
is the description of the reconfiguration algorithm:

Reconfiguration =
var

% data object that stores the configuration graph
config: configdesc;

begin case
create (obj: obj desc):

config.addObj (obj); create(obj);
link (client obj: obj desc; serverobj: obj desc):

config.addLink (client obj, serverobj);
unlink (client obj: obj desc; serverobj: obj desc):

passivateLink (client obj, serverobj);
config.delLink (client obj, serverobj);

transferLink (client obj: obj desc;
serverobj1, serverobj2: obj desc):

if (config.passive (client obj, serverobj1)) then
moveLink (client obj, serverobj1, serverobj2);

remove (obj: obj desc):
blockObject (obj); config.delObj (obj); remove(obj);

transferState (obj1, obj2: objdesc):
blockObject (obj1);copy(obj2, getState(obj1));
unblockObject (obj1);

end case
end % End of Reconfiguration

The behavior of the operations on theconfig data ob-
ject is direct from their name, and thecreate, delete and
copy functions realize the corresponding actions on the ob-
jects according to the LifeCycle COS specification. We
do not describe themoveLink and unblockObject
operations, their implementation is straightforward from
our presentation. The core operations of the algorithm lie
in thepassivateLink andblockObject operations.
ThepassivateLink operation consists of requesting the

client object to no longer issue a request on the correspond-
ing link (i.e. to block any object activity issuing a request
over the link) and to make sure that there is no pending
RPC request on this link. TheblockObject operation
functions as follows:

blockObject (object: objdesc) =
var clients, servers:list of obj desc;
begin

% get the list of object’s clients
clients :=config.getClients (object);
forall obj in clientsdo

passivateLink (obj, object);
end;
% get the list of object’s servers
servers :=config.getServers (object);
forall obj in serversdo

passivateLink (object, obj);
end;

end % End of blockObject

The precondition that must hold for removing an object
is that all the incoming and outgoing links of the object are
passive, i.e., they are no pending RPC requests on these
links and no new RPC request will be issued through these
links. Thus, it consists of performingpassivateLink
operations on the objecto to be removed, and on the objects
for whicho is a server so as to respectively passivate outgo-
ing and incomingo’s links. However, care should be taken
about the order in which thepassivateLink operations
are performed due to nested RPC requests. For illustration
purpose, let us consider the configuration made of objects
o1, o2, ando3 such thato1 sends a synchronous RPC request
to o2, and the call treatment withino2 leads to issue a nested
synchronous RPC request too3. Let us now assume that the
removal ofo2 is requested. The link fromo1 to o2 must be
passivated before the link fromo2 to o3 so as to not intro-
duce a deadlock. In general, client objects of an objecto

to be removed are requested first to passivate their link to
o, and once they have all acknowledged link passivation,o

is requested to passivate its outgoing links. Notice that the
proposed ordering applies to applications that have cycles
in their configuration graph as long as their execution is
cycle-free.

Configurations with a cycle in their execution are handled
by using a different reconfiguration algorithm that is not fur-
ther considered in the remainder of this paper due to space
limitations. Briefly stated, the undertaken solution consists
of temporarily unblocking activities that are blocked on a
passivated link, in a way similar to the algorithm of [3],
which leads to a less efficient algorithm that does not satisfy
theEC criterion. The resulting non-conformance with the
EC requirement in the case of configurations with execution
cycles is of a minimal penalty in the CORBA framework.
A CORBA application is typically structured as a set of
objects engaged in pairwise interactions according to the

client/server communication model. An object playing the
role of a client issues a requestvia an RPC to an object play-
ing the role of the server. The latter performs the requested
services and returns a result to the client. In this framework,
we can safely assume that a big majority of applications
are based on cycle-free object interactions, i.e. in the case
of nested RPCs (RPCs that initiate other RPCs and depend
on their successful termination), an object that has initiated
a nested RPC cannot play the role of the server for some
consequent RPC.

The correctness of the proposed reconfiguration algo-
rithm depends on: (i) the satisfaction of theCC andEC

criteria, and (ii) the algorithm’s safety and liveness. The
liveness and safety properties are trivial to show due to the
passivation of links and the ordering of passivation actions,
respectively. It is also trivial to show thatCC andEC are
guaranteed. By design of the algorithm, a link is passivated
before being removed and no request is issued over that link
after its removal, hence satisfyingCC. In the same way,
EC is guaranteed since only activities that are issuing re-
quests over the links that are affected by a reconfiguration
are blocked.

3.3. CORBA specification

Figure 1 illustrates the major components and interfaces
defined by the DRS. The objects belonging to an application

create
unlink

transferState
transferLink
notify_ready

link
remove

passivateLink

moveLink
notify_end

writeState
readStatethread

Reconfiguration

D R M

Other
threads

RO Interface

DRM Interace

Reconfigurable
object (RO)

Figure 1. Major components of the DRS

that needs to be dynamically reconfigured must berecon-
figurable, which allows them to interact with theDynamic
Reconfiguration Manager(DRM) that provides the recon-
figuration primitives. The IDL interface of the DRM is the
following:

interface DRMf
long create (in string object);
long remove (in string object);
long link (in string client, in string server);
long unlink (in string client, in string server);
long transferState (in string source,

in string dest);
long transferLink (in string server1,

in string server2);
long notify ready (in string object);

g

In addition to the reconfiguration operations introduced
so far, it provides thenotify ready operation. This is
due to the fact that the requests for link passivation that are
issued to reconfigurable objects are sent asynchronously1for
efficiency purpose;notify ready is thus used to detect
termination of the requested link passivation actions. We do
not detail the implementation of the DRM, it is direct from
the algorithm described in the previous subsection. Let us
simply remark that the DRM is currently centralized; distri-
bution of the DRM is one of the planned enhancements for
the DRS so as to cope efficiently with large scale distributed
CORBA applications. For an object to be reconfigurable, it
must inherit from theROobject class whose IDL inter-
face is given below:

interface ROObject f
void passivateLink (in sequence<string> servers);
void moveLink (in string server1,

in string server2);
void notify end (in sequence<string> status,

in sequence<string> servers);
void writeState (in RO state state);
void readState (out RO state state);

g

The argument of thepassivateLink operation is the
list of server objects with which the links to be passivated
serve to communicate. This operation consists of updat-
ing data structures so as to block any object thread that
will be issuing a request over the passivated links and, con-
currently, to notify the action termination using the DRM
notify ready operation once all the RPC requests that
are being served over the passivated links are terminated.
Thenotify end operation is then called by the DRM to
notify termination of the reconfiguration action that led to
the request for passivating the links with the server objects.
If the first argument ofnotify end indicates that both the
server objects and the links are still present (i.e. the links
were passivated to execute thetransferState action)
then the threads blocked on an RPC request to the server
objects resume execution. Otherwise, these threads remain

1TheCORBA::Request::send oneway() operation is used in order
to perform non-blocking RPCs.

blocked. A thread that remains block subsequently to the
execution ofnotify end will be unblocked if the target
link of the suspended RPC request is substituted by another
one usingmoveLink .

In the case wheremoveLink is not called, this means
that there is a software fault since the reconfiguration al-
tered the application consistency. At this time, we have not
integrated software fault management within the DRS so as
to detect the above type of faults. This is an issue for fu-
ture enhancement of the DRS, which may be handled using
timeouts and garbage collection. ThemoveLink operation
allows to move the requests that are blocked over a link to
another link by updating the server object reference and then
resuming the blocked threads. Finally, thewriteState
andreadState operations respectively modifies the ob-
ject state and returns the current value of the object state.
These two operations are provided as substitution of the
copy operation provided by the LifeCycle COS since we
have no such service available at this time; in particular,
writeState andreadState together augment the se-
mantics ofcopy as given in the LifeCycle COS (chapter 6
in [10]).

In addition to the implementation of the operations pro-
vided in the reconfigurable object IDL interface, any recon-
figurable object redefines the ORBinvoke operation that
is provided to issue RPC requests over the ORB. The redef-
inition consists of issuing an RPC request only if the target
link is valid and is not passivated.

1S

C1 C2

2S
Internal Computation Thread

I/O Thread

Reconfiguration Thread

Legend

DISK

Figure 2. Configuration of the test application

3.4. Implementation and Evaluation

We have implemented the DRS on Orbix2.0 MT (a
CORBA compliant, multi-threaded platform), supported by
the Solaris 5.5.1 thread API, and we have performed some
measurement on Sun Ultra WorkStations running Solaris
5.5.1. Figure 2 illustrates the configuration of the appli-
cation used for performance evaluation purposes:C1 is a
client object that does a certain amount of internal compu-

tation and then issues synchronous RPCs toS1, which is a
storage server object. Upon receiving a request,S1 writes
some data on the disk, performs some internal computation,
and does a nested RPC toS2, which is another storage server
object that replicates the data after executing some internal
computation on them. Finally,C2 is similar toC1; a client
object that does some internal computation and then issues
synchronous RPCs toS2 for writing data on the disk.

Based on this configuration, we measured the execution
times of different versions of an application where each
of the C1 andC2 issues 1000 requests. The parameters
varying among the different versions are the size of the data
written on disk, and the amount of internal computations
performed by each object. We executed five versions of
the application with communication intensity ranging from
more than 95% to less than 5%, in two sets of measurements.
The first set was performed over a cluster of Sun Ultra
WorkStations and the goal was to measure the overhead
introduced by the reconfiguration mechanism. For doing so,
we measured the execution time of the application with and
without the DRS. The second set of measurements aimed
at computing the actual cost of configuration changes, and
it included three independent reconfigurations, performed
one at a time: in the first reconfiguration measurement we
replacedC2, in the second we replacedS1, and in the last one
we replacedS2. We executed this set of measurements on a
single Sun Ultra WorkStation, in order to better monitor the
reconfiguration process, and to manage isolating the cost of
the reconfiguration algorithm from the distribution factors.
The requests issued to the DRM in each reconfiguration case
are given in the following table:

C2 ! C0
2

S1 ! S0
1

S2 ! S0
2

create (C0
2

); create (S0
1

); create (S0
2

);

unlink (C2; S2); unlink (C1; S1); unlink (S1; S2);
transferState (C2; C

0

2
); unlink (S1; S2); unlink (C2; S2);

link (C0
2
; S2); transferState (S1; S

0

1
); transferState (S2; S

0

2
);

remove (C2); transferLink (C1; S1; S
0

1
); transferLink (C2; S2; S

0

2
);

link (S0
1
; S2); transferLink (S1; S2; S

0

2
);

remove(S1) ; remove (S2)

The results presented in table 1(i) refer to the execution
disruption caused by the mechanism that detects reconfigu-
ration conditions. This cost is almost stable in terms of ab-
solute time (between 6sec and 8sec) and causes a disruption
that ranges from 45% in the communication intensive case
to less than 1% in the computation intensive case. We bring
to the reader’s attention that these measurements are taken
on the prototype implementation of the DRS, which does not
focus on this aspects of execution disruption. Improving the
performance of the mechanism that detects reconfiguration
conditions is part of the ongoing work.

On the other hand, the cost of executing a reconfigu-
ration is given in table 1(ii). The first column indicates
the execution time of the reconfigurable application with-
out performing any reconfiguration actions, while the next

columns show the cost of replacing each of theC2; S1; and
S2 respectively. The reader may verify that the cost of
the performed reconfigurations always remains below 7%,
and becomes almost negligible in the computation intensive
case. This fact verifies the efficiency of DRS when it comes
to perform configuration changes, which was one of our
basic objectives.

Comm.
>95%
50%
35%
20%
<5%

Non-Reconf. Reconf.
18.31sec 26.59sec
32.00sec 38.54sec
47.27sec 54.12sec
79.07sec 80.11sec
408.08sec 408.12sec

(i)

Comm.
>95%
50%
35%
20%
<5%

base C2 ! C0

2 S1 ! S0

1 S2 ! S0

2

32.12sec 33.77sec 34.03sec 34.29sec
48.82sec 50.61sec 51.00sec 51.47sec
63.70sec 65.25sec 65.82sec 66.67sec
85.02sec 86.25sec 86.97sec 87.57sec
406.1sec 407.6sec 407.9sec 408.3sec

(ii)

Table 1. Performance results

4. Conclusions

We have presented the conception, implementation de-
sign, and performance evaluation of a novel algorithm for
dynamic reconfiguration of multi-threaded CORBA applica-
tions, which preserves RPC integrity. The algorithm builds
on the semantics of the CORBA LifeCycle COS, and can
be seen as an extension of it. By design, the execution
disruption introduced due to reconfiguration actions is min-
imal, since the algorithm passivates links, a fact that results
in blocking only the threads that use them but not entire
objects (i.e. nodes of the configuration graph). The perfor-
mance evaluation showed a low reconfiguration cost in the
order of 0.50sec - 1.80sec, which is almost independent of
the communication intensity of the application. On the other
hand, the overhead due to the existence of the reconfigura-
tion threads that is introduced to the normal execution of
an application was shown to decrease as the communication
intensity decreases, ranging from 45% for communication
intensive applications to less than 1% for computation in-
tensive applications.

Contribution. From the standpoint of CORBA applica-
tions, DRS can be integrated with an ORB execution plat-
form and thereafter used as a COS extension. The facts that
it is application independent and also that it is built on top
of the LifeCycle COS, advocate to this direction. Hence,

our first contribution is an extension of a CORBA COS
for dynamic reconfiguration that preserves RPC integrity.
From the point of view of configuration management, the
presented algorithm succeeds almost optimum score in all
four categories on which we have compared related work
in x2.2. It is application independent, it requires minimum
programmer guidance, and it introduces minimal execution
disruption while preserving a well-defined consistency con-
straint on objects interactions. Thus, another basic contri-
bution is the successful assembly of the prevalent charac-
teristics of existing dynamic reconfiguration algorithms in a
single service for the management of configuration changes
of client/server distributed applications. Finally, the gener-
ality of the algorithm permits its use for the configuration
management of a wide spectrum of distributed systems. The
preconditions for its employment, namely RPC communica-
tions and multi-threaded objects, can be scarcely interpreted
as limitations, especially in the framework of CORBA ap-
plications.

Current and Future Work. Building on our previous ex-
perience on providing some form of dynamic reconfigura-
tion for CORBA applications [6], we have carefully im-
plemented the DRS described inx3, focusing primarily on
efficiency aspects. We are very happy with its performance,
considering that it is still in an experimental stage. Currently
we are occupied with performing some refinements on the
activation of the reconfiguration thread, and with tuning the
coordination actions of the DRM in order to further optimize
the DRS performance. We also study an extension of the
DRS, which will ease the reconfiguration management by
allowing a set of related configuration changes to be effected
in a single reconfiguration action.

In the near future, we plan to exploit the DRS utility
by using it in the customization of execution platforms for
applications that require support for configuration changes
(e.g. tolerating object failures, guiding server replication
for load balancing purposes, etc). For doing so, we intent
to integrate the DRS in Aster, a distributed programming
environment for distributed system customization, based on
the formal specifications of the application’s requirements
(e.g. see [7]).

References

[1] M. Barbacci, C. Weinstock, D. Doubleday, M. Gardner, and
R. Lichota. Durra: A Structure Description Language for
Developing Distributed Applications.IEE Software Engi-
neering Journal, pages 83–94, March 1993.

[2] G. Etzkorn. Change Programming in Distributed Systems. In
Proceedings of the International Workshop on Configurable
Distributed Systems, pages 140–151, March 1992.

[3] K. M. Goudarzi and J. Kramer. Maintaining Node Consis-
tency in the Face of Dynamic Change. InProceedings of the

3rd International Conference on Configurable Distributed
Systems, pages 62–69, May 1996.

[4] S. Hauptmann and J. Wasel. On-line Maintenance with On-
the-fly Software Replacement. InProceedings of the 3rd
International Conference on Configurable Distributed Sys-
tems, pages 70–80, May 1996.

[5] C. R. Hofmeister and J. Purtilo. Dynamic reconfiguration in
distributed systems. adapting software modules for replace-
ment. InProceedings of the 13th International Conference
on Distributed Computing Systems, pages 101–110, May
1993.

[6] V. Issarny, C. Bidan, and T. Saridakis. Designing an Open-
ended Distributed File System in Aster. InProceedings of
the 9th International Conference on Parallel and Distributed
Computing Systems, pages 163–168, September 1996. Also
available at http://www.irisa.fr/solidor/work/aster.html.

[7] V. Issarny, C. Bidan, and T. Saridakis. Achieving Mid-
dleware Customization in a Configuration-Based Develop-
ment Environment: Experience with the Aster Prototype. In
Proceedings of the 4th International Conference on Config-
urable Distributed Systems, May 1998.

[8] J. Kramer and J. Magee. The Evolving Philosophers
Problem. IEEE Transactions on Software Engineering,
15(1):1293–1306, November 1990.

[9] A. S. Lim. Abstraction and Composition Techniques for
Reconfiguration of Large-Scale Complex Applications. In
Proceedings of the 3rd International Conference on Config-
urable Distributed Systems, pages 186–193, May 1996.

[10] OMG Document. CORBAservices: Common Object Ser-
vices Specification. Technical report, Object Management
Group, November 1995.

[11] OMG Document. The Common Object Request Broker:
Architecture and Specification (Revision 2.0). Technical
report, Object Management Group, July 1995.

[12] I. Oueichek and X. R. de Pina. Dynamic Configuration Man-
agement in the Guide Object-Oriented Distributed System.
In Proceedings of the 3rd International Conference on Con-
figurable Distributed Systems, pages 28–35, May 1996.

[13] I. Warren and I. Sommerville. A Model for Dynamic Config-
uration which Preserves Application Integrity. InProceed-
ings of the 3rd International Conference on Configurable
Distributed Systems, pages 81–88, May 1996.

[14] M. Zimmermann and O. Drobnik. Specification and Imple-
mentation of Reconfigurable Distributed Applications. In
Proceedings of the 2nd International Conference on Config-
urable Distributed Systems, pages 23–34, May 1994.

