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ABSTRACT

Service-oriented architectures evolved rapidly las $olution to the latest requirements for

loosely-coupled distributed computing. Into thisodm context several approaches emerged
towards the discovery and the systematic compagitichestration of services. One of the next
challenges in this field is the maintenance of iseroriented architectures towards

accomplishing the ultimate goal of constructingredé service-oriented systems out of loosely-
coupled basic engineering elements. The partiqudablem we deal with in this paper is the

dynamic maintenance of service orchestrations i@ fresence of unavailable services.

Specifically, we focus on the dynamic substitutafnstateful services that become unavailable
during the execution of service orchestrations.afissanswer to this problem, we propose the
SIROCO middleware platform which is further detdildong with an experimental evaluation of

our first prototype. Our findings show that SIRO@@vides the necessary means for achieving
dynamic maintenance with a reasonable expensecogxtitution of service orchestrations.

1. INTRODUCTION

Service Oriented Architecture (SOA) is an architest style that emerged recently as the answer
to the latest requirements for loosely-coupledrithated computingQardoso & Sheth, 2006)nline
with the conventional distributed computing paradidunctionality is decomposed into distinct
architectural elements, distributed over the nekwhievertheless, in SOA the basic architectural
elements (i.e., services) are by themselves autousnsystems that have been developed
independently from each other. Moreover, serviceslve independently. A service may be
deployed, or un-deployed at anytime. Its implemimba along with its interface may change
without prior notification. Services are typicalgombined in a loosely-coupled manner by
building service orchestrations. Basically, an esthation is a workflow that consists of a set of



activities which exchange data with a set of sewicThe orchestration incarnates the basic
control and dataflow dependencies that governtkewdion of these activities.

In the context of SOA, several research effortswgreith the main focus being on the
discovery and the systematic composition/orchestradf services, e.g., (Ben Mokhtat al,
2006; Berardet al, 2005; Yang & Papazoglou, 2004). One of the nazllenges in this field is
the maintenance of service orchestrations towardsoraplishing the ultimate goal of
constructing eternal service-oriented systems blaasely-coupled basic architectural elements
(Fredjet al, 2008). To this end, in this chapter we focugl@dynamic maintenance of a set of
executing orchestrations upon the unavailabilityaafervice that is required for the execution of
these orchestrationsThe deal with this problem we propose an apprahelt enables the
dynamic substitution of the unavailable servicenvdh available one. The proposed approach is
aimed at W3C Web services (W3Ca, 2004); we asshatestrvices exchange information with
the rest of the world within SOAP messages; seruiterfaces are specified in SA-WSDL
(W3Ch, 2007); finally, service orchestrations apedfied in terms of BPEL (IBM, 2002).
Dealing with the dynamic substitution of statelessvices is more or less straightforward. Thus,
we concentrate on the worst case that involvesdiamic substitution of stateful services.
According to the standard WS-Resource FrameworkSISA2004), we assume that service state
descriptions may be provided, along with serviderfiace descriptions.

Several approaches that deal with the unavailghifitservices, e.g., (Salatge & Fabre, 2007),
rely on the construction of fault tolerant servigeoups out of unreliable services. The
formulation of fault-tolerant groups of servicespaeposed in the state of the art seems difficult
to apply when considering that the constituent isesv may be offered by competitive
organizations or businesses. In this realistic atemo independent business (e.g., a hotel) will
accept to register its online service as a passe&up member of a group of services. Similarly,
no independent business will accept to registeorilfne service in a group that realizes active
replication, while knowing that this will involveegtoting precious resources to the group without
any actual benefit (many reservations made by d#hgescustomer to each of the active replicas,
while only one of them will be validated at the esfdthe protocol that realizes the reservation
process through the active replication group). Biryi, in the field of dynamic reconfiguration of
conventional distributed systems, several appraatdekied the issue of substituting an entity for
another prefabricated backup entity (Kramer & Mag&890; Goudarzi & Kramer, 1996;
Hauptmann & Wasel, 1996; Minslst al, 1996; Warren & Sommerville, 1996; Bida al,
1998; Blairet al, 2000; Poladiart al, 2004). As previously discussed, the problem ofise
substitution is far more complex. In SOA, we casuase the possible existence of several
semantically compatible services capable of perifogrthe same or similar tasks. However, each
one of them constantly serves requests and cabenobnsidered as a passive backup for other
services.

Therefore, the service substitution process thatane after consists in (1) discovering
candidate substitute services out of a set of seoadly compatible services that can be used in
place of a service, which becomes unavailable &dirying to identify one amongst these
candidates that can be used as an actual substithenever possible the selected substitute
service must be such that its current state casybehronized with the state of the unavailable
service. Based on the above, our contribution RCEIO, a middleware platform that enables the



dynamic maintenance of service orchestrations uperunavailability of services used in these
orchestrations.

The rest of this chapter is structured as follo8&ction 2 provides the necessary background
on dynamic substitution of basic engineering elamém conventional distributed systems and
discusses work related to service substitution artigular. Section 3 discusses in detail our
approach to the problem of dynamic service suliititin SOA. Section 4 presents an evaluation
of our first prototype. Finally, Section 5 providesr conclusions and future research issues.

2. BACKGROUND & RELATED WORK
Background

To provide a background on the dynamic substitutadnbasic engineering elements in
conventional distributed systems, we rely on a gemeconfiguration cycle, which provides an
abstract descriptive view of reconfiguration apptas that have been proposed in the past (the
interested reader may refer to (Zareasl, 2006) for a more detailed survey).

Conceptually, the basic entities involved in theordiguration cycle are thReconfigurable
System(RS, its Contextor Environment(CE), and theReconfiguration Management System
(RM). CE consists of prefabricated passive functiopatities that can be used for the
reconfiguration of RS. RM provides all the functdities that are necessary for the
reconfiguration of RS. Conventional approachesrassthat RS is described at an abstract level
in terms of components and connectors. Based onthiey deal with the reconfiguration of RS in
terms of adding, removing and substituting comptsmélramer & Magee, 1990; Goudarzi &
Kramer, 1996; Minskyet al, 1996; Bidaret al, 1998; Kramer & Magee, 1985; Hofmeister &
Purtilo, 1993), and connectors (Blairal, 2000; Konret al; 2002).

The reconfiguration cycle typically comprises awsagce of phases that take place during the
lifetime of RS. These phases support the recordigam of RS whenever needed. In Phase 1, RS
executes normally, while RM monitors RS. The mamig tasks typically include checkpointing
the state of RS as this state changes. Phase 2 pidee whenever a cause for reconfiguration
emerges. RM detects the emerging cause for reaoafign after having observed current
monitoring data and compared it with execution t@msts. In Phase 3, RM prepares RS for
reconfiguration. This preparation concerns comptmaffected by the intended reconfiguration
and may take several forms. For example, requeskiolg (Kramer & Magee, 1990; Goudarzi &
Kramer, 1996; Bidaret al, 1998), request redirection (Minslky al, 1996) or request queuing
may be enforced on components that interact witbraponent that must be substituted. In Phase
4, RM determines the contribution of CE to the renfiguration. In Phase 5, RM adapts RS to
the new configuration. In this phase, the subsitubf components or connectors further implies
transferring the state of the elements used irctineent configuration to their substitute elements
(Warren & Sommerville, 1996; Blagt al, 2000). Finally, in Phase 6, RM carries out thelfi
reconfiguration actions, which typically comprisegucing a new configuration description and
putting RS back to normal execution (Phase 1)).



Related Work

Concerning the particular problem of service smtin, there have been few interesting

approaches, which we discuss in the remainderi®ftttion. /these approaches mainly focus on
the enabling the substitution of services, whileaducing minimum changes in the clients that
use these services, i.e. the service orchestratiamg particular system model.

In (Melloul & Fox, 2004) the authors propose anfeavork that allows defining abstractions,
which are called service composition patterns. fgosition pattern can be refined into various
alternative concrete service compositions. Congagtyyean orchestration developed with respect
to the composition pattern can exploit these adtitvas without any changes. A similar approach
that involves abstractions is proposed in (Yangafdzoglou, 2004).

Moreover, in (Tahemwt al., 2006) another approach is proposed, which is basethe
definition of abstractions, named abstract servid®s abstract service represents a set of
alternative concrete services that offer the sammectionality, via different interfaces.
Technically, the abstract service interface canmagped into the interfaces of the alternative
concrete services. Then, a service orchestratianh#is been built based on the abstract service
interface may use, any of the alternative concsetgices, without changes in the orchestration.
Going on step further, in (Athanasopouleisal, 2009) we discuss the need for a systematic
process that mines service abstractions out ofiegiservices that offer similar functionality via
different interfaces.

In the same spirit (Ponnekanti & Fox, 2004) disessthe issue of substituting a target
service with another concrete service, in the paldr case where the interfaces of both services
are derived from the same popular, or standardiateiface. To deal with such substitution
scenarios, various types of incompatibilities betwehe services' interfaces (structural, value,
encoding, semantic), are identified and handled the proposed approach. Moreover,
corresponding resolution options are proposedtfactiral and value incompatibilities. Based on
these resolution options an adapter is generateel.aflapter provides the interface of the target
service, which is implemented based on the funatigpnthat is provided by the interface of the
substitute service. Then, the adapter can be amtdgsa service orchestration using the original
target interface to access the functionality of shbstitute service without any changes in the
orchestration. The assumption that the interfadethe current and the substitute services are
derived from the same popular or, standardizedfate is taken into account in (Ponnekanti,
2003). In this case, the proposed framework expl@it service repository that manages
information about available services and adapteas ¢an be used to map the functionality of a
service to other services that offer the same fanatity via different interfaces. Based on the
service repository, a target service can be reglagea substitute service as long as the repository
contains a corresponding adapter. The developnfeadapters for pairs of services that may get
involved in a substitution scenario is assignedftthe corresponding service providers.



Finally, the framework proposed in (Motahari Nedleaal.,2007) provides mechanisms that
aim at detecting both structural and protocol inpatibilities for pairs of services that can be
involved in a substitution scenario.

Although all of the aforementioned approaches amiiable towards enabling service
substitution, the main issue that still remainsrojgedealing with the substitution in the particula
case of stateful services that become unavailalriegl the execution of service orchestrations.
This issue is the main focus of the SIROCO appr@achconsequently constitutes the distinctive
feature of SIROCO, compared to the state of thenaervice substitution.

3. DYNAMIC SERVICE SUBSTITUTION IN SIROCO

SIROCO offers aReconfiguration ManagerRM (Figure 1), that provides the necessary
functionality for maintaining the execution of seer orchestrations in the presence of
unavailable services. Without loss of generalite assume that RM is a centralized entity.
However, the proposed approach can be extendedduita straightforward way towards a
coordinated set of RMs. The basic constituents®SIROCO RM are:
e A BPEL execution-enginghat carries out the execution of service orclgstns that are
provided to SIROCO by users. In particular, a usay provide as input to SIROCO a
BPEL orchestration description and require its ansation, or even require the
instantiation of an orchestration that is alreadgilable through SIROCO (i.e., it has
been previously registered to SIROCO possibly diffarent user).
e A service-registrythat manages information concerning Web servibas ¢an be used
for the execution of service orchestrations registéo SIROCO.
e A monitoring-managethat inspects the set of orchestrations that aeewting through
the SIROCO execution-engine.
e An adaptation-managerthat dynamically reconfigures the orchestrationhemv

necessary.
n - 3l
Execution Adaptation
Engine Manager -
> __—
II_—
E 3] -Websa'vica
Monitoring Service @ be
Manager Registry .:> o )
]
5 Reconfiguration Manager

Figure 1. Overview of SIROCO.



Therefore, from the point of view of SIROCO the erodbf RS is played by a set of
orchestrations that are concurrently executinguhinahe SIROCO execution-engine. The role of
CE is played by Web services that have been regit® the SIROCO service-registry. These
services have been independently developed andydzbiin certain sites. Taking an example,
consider that the SIROCO RM has been provided wafittorchestration description that others
online medical help to patients. This orchestratioay be instantiated multiple times by the
SIROCO execution engine for different patients, tdz and pharmacies. Initially, the
orchestration receives from the patient his persdetils and symptoms. Following, it forwards
the patient's symptoms to an associated doctothétsame time, the patient's social security
record is updated with a new tuple that contairiermation about the patient's e-visit to the
associated doctor; this information is insertedtie database of the national social security
service. The orchestration waits for the receptibthe doctor's prescription which is sent back to
the patient. Depending on its contents, the prgson is further forwarded to an associated
pharmacy along with the patient's details. The \8&tvices involved in this orchestration are: the
one used to communicate with the patient, the dra¢ allows online interaction with the
associated doctor's office, the national sociausscservice and the service offered by the
associated pharmacy.

Information Managed by SIROCO

The information managed by the SIROCO RM consikts o

e Descriptions of service orchestrations, specifreterms of BPEL (IBM,2002).

o Descriptions of the Web services that have beeistergd to SIROCO, given in terms of
SA-WSDL (W3Cb, 2007).

e Descriptions of the state that is managed by the ¥éevices that have been registered to
SIROCO, specified in terms oiVS-ResourcePropertiedocuments (OASIS, 2004).
Providing state descriptions for the services ismandatory in SIROCO. Nevertheless,
SIROCO takes advantage of this information, if kalde, towards dealing with dynamic
service substitution.

Specifying Service Orchestrations

The specification of service orchestrations in SGRDis standardized and quite straightforward.
Briefly, a BPEL (IBM, 2002) orchestration specifiasset of activities, which may be either
simple or structured. Simple activities may invollie reception of a message, the invocation of a
service operation, or the reply to a message. ®mert activities prescribe control flow
dependencies for a set of constituent activitieejfential execution, concurrent execution,
conditional execution, etc.). A BPEL specificatifimther comprises the definition of variables
which serve as placeholders for the data exchamithdthe services during the execution of the
BPEL activities. Finally, BPEL supports the spextion of fault handling and compensation
activities. Such application-specific activitiestroduced by the authors of a BPEL orchestration,
may also serve for handling the unavailability oeavice. In general, we see these facilities as
complementary to our approach, which aims at hagdiervice unavailability without requiring
the intervention of the authors of BPEL orchestradi



Figure 2, gives a simplified view of the BPEL déstion that specifies the online medical
help conversation. In particular,raceive activityaccepts a request from a patient. Following, a
flow activity (i.e., a concurrent activity) is used towardsriatéing concurrently with the service
that is deployed at the doctor's office and théonat social security service. The first branch of
the flow activity further comprises switch activity(i.e., a conditional activity) that interacts, if
necessary, with the service that is deployed irptremacy.

<process name = “OnlineMedicalBelp”>

operation="enqueuehequest™ inputVariable="doctorRequest™>

operation="getPrescription™ variable="doctorReply™>
.<fassian>

<assign>...

<inwvoke partmerLink="pharmacy™ portType="PharmacypT™
operation="issueRequest™ inputvariable="pharmacyRequest™>
<fcasex
<otherwise>
<empiy>
<fotherwise>
<frlow>
</sequence>
</process>

Figure 2. The online medical help BPEL orchestnatio

Specifying Service Descriptions

Typically, Web service descriptions are specifisthg WSDL. Nevertheless, in
SIROCO we employ a standard extension of this iotatvhich allows us to add
semantic annotations to standard WSDL descriptibhe.purpose of adding semantic
annotations to service descriptions is twofold:

Service interfaces (i.e., PortTypes) are annotafigiil semantic concepts defined
in an OWL ontology offered by SIROCO to enable thesssification of services
that offer semantically compatible functionality icorresponding semantic
categories. The OWL ontology that we assume reires well-known thesaurus
of concepts, called WordNet (WordNet, 2006).

Operations offered by a service interface are atadt with either the
UpdateState, or the QueryState OWL concept (Fi@lrm order to distinguish



between operations that update the state of tviceesnd operations that simply
query the state of the service. As explained latt@is distinction serves for
enriching a BPEL orchestration with activities thatliow the SIROCO

monitoring-manager to checkpoint (if possible) #tate of a service before the
execution of activities that invoke operations, evhichange the state of the
service. Checkpointing is possible if the desooiptiof the service is further
associated with a description of the service state.

«OWL Class»
Thing

P

«OWL Class»
OperationBehavior

«QWL Class» «OWL Class»
QueryState UpdateState

Figure 3. Ontology concepts used for distinguish8%&WSDL operations with respect to their
impact on state.

The semantic annotation of service descriptiona responsibility of the service providers
who should further collaborate with the SIROCO adistiator who is in charge of validating the
service descriptions and extending the SIROCO OWiblogy, whenever necessary. Regarding
our scenario, Figure 4 gives a simplified (UML-jkeview of the interface (i.e., the
GeneralPractitionerPT port type) that is offeredabservice, which provides access to a doctor's
office. The interface is annotated with a referetmethe GeneralPractitioner OWL concept
(Figure 5). Each operation of the GeneralPracti®T interface is annotated with a reference to
the UpdateState or the QueryState OWL conceptsu(@&ig). The enqueueRequest() operation,
for instance, is characterized with the UpdateStatecept because it inserts a request from a
patient in a waiting queue managed by the service.

<<WSDL PorType>>
GeneralPractitionerP T
s<<modelReference>> GeneralPractitioner

<<out-only>> getCoordinates()
<<in-only>> enqueueRequest()
<=<out-only>> getPrescription()

<<WSDL Operation>> <<WSDL Operation>>
getCoordinates getPrescription

s<<modelReference>> QueryState s<<maodelReference>> QueryState

s<<output>> doctorCoordinates : DoctorCoordReplyMsg s<<output>> doctorReply : DoctorReplyMsg

<<WSDL Operation>>
enqueueRequest
s<<model Reference>> UpdateState
#<<input>> doctorRequest : DoctorRequestMsg

Figure 1. Semantically annotated WSDL descriptibthe GeneralPractitionerPT interface.



«OWL Class»
Thing

1

«OWL Class»
HealthProfessional

T

«QWL Class» «OWL Class» «QWL Class» «QWL Class» «OWL Class»
Allergist Cardiologist Gasti terologist GeneralPractitioner Veterinary

Figure 2. Ontology concepts used for the semamigcacterization of medical services.
Specifying Service State Descriptions

According to the WS-ResourceProperties standasgkrégice state description defines an XML

complex type that consists of one or more statpgites. Still according to the standard, the

values of each property can be queried or updayedebding standardized SOAP messages
towards the service; the service is obliged to w®\corresponding functionality that handles

these messages. The messages are characterizedriantes of the properties involved.

In SIROCO, we require that the properties that ttuie a service state description are
defined with respect to the SIROCO OWL ontologyclt@roperty corresponds to a SIROCO
OWL concept, which is further associated with an Xklata type (simple or complex). The
XML elements that constitute the property are aséined with respect to the SIROCO OWL
ontology. If a propertyp is defined as a subclass of another propgrone of the following

conditions must hold for their associated datatypée, , typs, :
o type, is equal totype, .
o type, is derived fromtypg, by XML restriction (i.e., the values oftyp€,are a
subset of the values dyp§,).
o type, is derived fromtyp&, by XML extension (i.e., botfiyp€, and typ&, are XML
complex types, anbypep inherits the XML elements of and further defineditidnal
XML elements).

Providing service state descriptions is a collativgatask that involves the service providers
and the SIROCO administrator who is in charge ditlating the state descriptions and possibly
extending the SIROCO OWL ontology, if needed.

In our scenario, the state description of a sertid provides the GeneralPractitionerPT
interface is given in Figure 6. Figure 7, givestpdrthe SIROCO OWL ontology that includes
the concepts involved in the state descriptiorhefdervice. The description models the waiting
gueue managed by the service, i.e., the stateasnplex XML type that consists of zero or more
Patient properties; each property further consiét$ elements corresponding to the Name,
Address, Phone Number, Email and Symptoms of @patall 5 elements are of the same XML
type (i.e., XML string).



<element name = “Patient”>
<complexType>
<sequence>
<element name=“"Name” type = “string” minOccurs = “1” maxOccurs = “1”/>
<element name="Address” type = “string” minOccurs = “1” maxOccurs = “17/>
<element name="PhoneNumber” type = “string” minOccurs = “1” maxQOccurs = “17/>

<element name="Email” type = “string” minOccurs = “0” maxOccurs = “17/>
<element name="Symptoms” type = “string” minOccurs = “1” maxOccurs = “17/>
</sequence>
</complexType>
</element>

<element name="GeneralPractitionerQueus”>
<complexType>
<sequence>
<element ref="Patient” minOccurs = 0 maxOccurs = “unBounded”/>
</sequence>
</complexType>
</element>

Figure 3. State description of a service that pdeg the GeneralPractitionerPT interface.

«OWL Class»
Thing
«OWL Class» «OWL Class» «OWL Class»
Organism Location Abstraction
«OWL Class»
“O\",";:;:“” Geographic «OWL Class» «OWL Class» «OWL Class»
Point Relation Communication Information
«OWL Class»
«OWL Class» QL Siass» Address «OWL Class» «OWL Class» OL Gass» «OWL Class»
se P Constituent Phone Number A Evidence
erson Comminication
«OWL Class» «OWL Class» “2ﬂ;fif» «OWL Class» «OWL Glass» «OWL Class»
Patient Street Address Address Linguistic Unit Email Symptom
«OWL Class» «OWL Class» «OWL Class»
Name Freemail Spam
«OWL Class» «OWL Class» <OWL Class»
Nickname Last Name First Name

Figure 4. Ontology concepts used for definingstade of medical services.

Service Substitution Cycle

Phase 1: Normal RS execution

During this phase, the BPEL execution-engine ishiarge of the concurrent execution of a set of
orchestrations that are instantiated accordings&rsl requests. Specifically, at any time a user
may provide as input to the BPEL execution-engimewa orchestration description along with
abstractdescriptions of the services required for the atien of this orchestration (we use the
term abstract to refer to SA-WSDL descriptions thatnot contain any binding information).
Based on this information a number of preparatteps are performed before instantiating the
new orchestration.

First, the service-registry is searched for sessitteat can be used for the execution of the
orchestration. The service-registry maintains serwiatalogs. Each catalog corresponds to a



different semantic category of services and theeefbis characterized by an OWL semantic
concept such as the ones given in Figure 5. Eacliceecatalog is progressively populated
(during the lifetime of RS) witltoncreteSA-WSDL descriptions of services (we use the term
concrete to refer to SA-WSDL descriptions that aonbinding information) that are registered
to the service-registry. Hence, given the sematitcept that characterizes the abstract SA-
WSDL description of a service that is required tloe execution of the new orchestration, the
corresponding service-registry catalog is locafBue catalog is then searched for a concrete
service description whose WSDL interface syntatificanatches the WSDL interface that is
specified in the abstract service description. Uitiple concrete services are discovered in this
step, one of them is randomly selected.

In our scenario, the execution of the online mddiedp orchestration (Figure 2) amounts to
locating a service-registry catalog, annotated wlith GeneralPractitioner (Figure 5) semantic
concept. Following, the catalog is searched foolacrete service description that specifies an
interface that syntactically matches the GeneratRi@nerPT interface, described in Figure 4.
The service discovery step is followed by the dnrient of the orchestration description with
checkpointing activities. In particular, a concregrvice description resulted from the previous
step may be associated with a service state déeariMoreover, every operation of the interface
that is offered by the discovered concrete serigceharacterized by a semantic annotation
(Figure 3) that specifies whether or not the openathanges the state of the service. Based on
this information, the BPEL description of the newchestration is searched for activities that
invoke operations which change the state of thevicger For every such activityg, a
checkpointing activity that precedesis added in the orchestration. As prescribed ley WS-
ResourceProperties standard, the checkpointingitgcfia) constructs a standardized message
that queries the values of the properties thatspexified in the service state description, (b)
sends the message towards the service and (c) foritse reception of a corresponding reply
message that contains the current values of theepiies that constitute the state of the service.
The state data are enriched with identifiers tlnaracterize the orchestration and the actiaity
Finally, the state data are forwarded to the mainigemanager, which stores them persistently.

In our scenario, the orchestration descriptionighife 2 must be enriched with checkpointing
activities. Such an activity must be added, fortanse, before the activity that invokes the
enqueueRequest() operation on the service thatsoffiee GeneralPractitionerPT interface
(highlighted in Figure2). The message that quahiescontents of the waiting queue managed by
the service (i.e., the list of the Patient progsrtispecified in the WS-ResourceProperties
document of the service (Figure 6)) is given inurg8(a). An example of a response message
that contains the service state data is givendarei 8(b).

The preparation for the execution of the enrichadhestration ends by parsing the
orchestration description towards the constructbr(1) an abstract control-flow dependency
graph (CDG) (e.g., Figure 9) and (2) an abstratafaiav dependency graph (DDG) (e.g. Figure
10), which shall serve for the dynamic maintenaotdhe orchestration. The nodes in both
graphs are the basic BPEL activities of the orchésh. Typically, in the control-flow graph, a
dependency from an activitg to an activityb specifies that the execution of a precedes the
execution of b. In the dataflow graph, a dependdrmy an activitya to an activityb specifies
that the output produced layas a result of interacting with a service is méitl byb as an input to
the same or another service. The CDG and DDG aengs input to the adaptation-manager.
Finally, the BPEL execution-engine begins the ekeawf the enriched orchestration.



(a) Siaie requesi message.

Gl TR LGRS PR

{b) Stale response message.

Figure 5. Checkpointing messages for a service thavides the GeneralPractitionerPT
interface; the messages are generated with redpdbe state description of Figure 6.
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Figure 6. CDG for the online medical helgrigure 7. DDG for the online medical help
scenario. scenario.

Phase 2: A cause for dynamic substitution occurs

This phase takes place upon the occurrence ofseedaudynamic service substitution. While the
BPEL execution-engine of SIROCO executes orchésirat interaction with the Web services
involved may result into an exception which serass notification that a service is not available.
If such an exception is caught, the execution-engiatifies the SIROCO adaptation-manager.
Technically, in our prototype interactions with Weeérvices are realized through the standard



JAXRPC mechanism. Therefore, the execution-engimeelks for standard JAXRPC exceptions
(e.g., RemoteException) that may be thrown whileaativity attempts to interact with a Web
service.

In our scenario, assume the following failure scienahich shall be used in the remainder of
this section: the online medical help orchestratims been instantiated twice for different
patients that contact the same doctor; a Remotgifimoeexception is caught by the execution-
engine; the exception refers to the first orchésinaand specifically it is caught during the
execution of the activity that invokes the getPriggion() operation on the GeneralPractitionerPT
service (i.e., activity 5 in Figure 9); as a redhlé execution-engine notifies the adaptation-
manager about the unavailability of this service.

Phase 3: Preparing the substitution

This phase begins when the SIROCO adaptation-mamaigetified about the occurrence of an
exception in the execution of an orchestration. Huaaptation-manager checks the set of
executing orchestrations for other affected orchéisns. The set of affected orchestrations
consists of the orchestration that failed to interaith the service and all other executing
orchestrations that interact with the unavailaldesise. The execution of certain of the affected
orchestrations may be in points where they hawadir interacted with the unavailable service,
while the execution of certain others may be innoiwhere the first interaction with the
unavailable service will take place in the actestithat follow. In both cases, the adaptation-
manager blocks the execution of the affected otcditésns to prevent the occurrence of further
exceptions.

In our example, the set of affected orchestratimetudes both of the instantiated online
medical help orchestrations.

Phase 4: Planning the substitution actions

With the affected orchestrations blocked, the gddhis phase is to discover candidate substitute
services that may take the place of the unavailséteice. To this end, the adaptation-manager
contacts the service-registry. As in Phase 1, ¢éineice-registry looks for the service catalog that
contains descriptions of services that are sensllyticompatible with the unavailable service.
Technically, this is the catalog that is charaetsdi by the OWL semantic concept that also
characterizes the SA-WSDL description of the uratbte service.

In our scenario, for instance, the registry loc#itesservice catalog that is characterized by the
GeneralPractitioner concept (Figure 4). The sercaglog may include several concrete SA-
WSDL descriptions of services that provide différamierfaces. The service catalog is searched
for services whose interface syntactically matcthes interface of the unavailable service. In
particular, the GeneralPractitioner catalog is cfeed for concrete SA-WSDL descriptions of
services that provide the GeneralPractitionerP&riate. The search results are divided in two
sets. The first seGtateCompatibleServicesontains descriptions of services that are asterti
with service state descriptions (i.e., WS-Resoummegtties documents) which are semantically
compatible with the service state description oé tlinavailable service. The second set,
StatelncompatibleServicesontains all other descriptions of services withtching interfaces.



Obviously, if the unavailable service is not accampd with a service state description,
StateCompatibleServicesd.

To avoid the extra overhead of checking for stabenmatibility between service state
descriptions at the time when there is a need fostdute an unavailable service, state
compatibility relations are established as the SIRGservice-registry is progressively populated
with service descriptions. The semantic compatibif two service state descriptioss st’ is
defined according to the following intuition. Assdussed in Subsection 3.1, the properties that
constitutest andst’ correspond to SIROCO OWL ontology concepts. Tlmegfwe consider that
stis compatible withst’ if there exists @ne-to-oneend ontomapping between the propertiessof

and st’. According to this mapping every proper§y,, € St should be mapped to a property
P, € St such that:
e the OWL concept that corresponds [ig, is equal to the OWL concept that corresponds
to P, or,
e the OWL concept that corresponds fa, is a subclass of the OWL concept that
corresponds tddg; .

<element name = “Case”>
<complexType>
<sequence>
<element name="Name” type = “string” minOccurs = “1” maxOccurs = “17/>
<element name="Location” type = “string” minOccurs = “1” maxOccurs = “1”/>
<element name="PhoneNumber” type = “string” minOccurs = “1” maxOccurs = “1”/>
<element name="Email” type = “string” minOccurs = “0” maxOccurs = “1”/>
<element name="Evidence” type = “string” minOccurs = “1” maxOccurs = “17/>
</sequence>
</complexType>
</element>

<element name="GeneralistQueue”>
<complexType>
<sequence>
<element ref="Case” minOccurs = 0 maxOccurs = “unBounded” />
</sequence>
</complexType>
</element>

Figure 8. State description of a candidate subsgituservice that provides the
GeneralPractitionerPT interface.

In our scenario, suppose that the GeneralPraditiocatalog contains the description of a
candidate substitute service, which is associatéu tive state description that is given in Figure
11. As detailed in Figure 12, the state descriptibthe candidate substitute service (Figure 11) is
semantically compatible with the state descriptimin the unavailable service (Figure 6).
Specifically, Patient is an OWL subclass of Casgufe 7). Figure 12 further details how the
elements that constitute Patient are recursivelgped into the elements that constitute the Case
property; Address is an OWL subclass of Locatiomf@oms is an OWL subclass of Evidence,
etc.

The two state compatibility constraints that we gsarantee that state data that have been
obtained by checkpointing the unavailable serviae lge transformed into state date that can be
handled by a candidate substitute service. As egdain Subsection 3.1, every OWL concept is

associated with a corresponding XML data type. &foge, if a propertyp,, € St is mapped into
a property p., € St' such that the first of the compatibility consttaiholds, then the data type of



P, is equal to the data type pf. . In this case, the values ¢, can be directly used as values
of P, . On the other hand, if a properfy is mapped into a propertp,. such that the second of
the compatibility constraints holds, then the dgtee of P, may be equal to the data type
of P, or it may be derived by the data type [of. by XML restriction, or by XML extension
(Subsection 3.1). In the former case (XML restoig}i the values ofp,, can be directly used as
values ofp, . In the latter case (XML extension), the valuesf contain more XML elements
than required fop, . Hence, the values df; can be transformed into values pf, simply by
removing the extra XML elements.

«OWL Class» |

Name
«OWL Class» |

Address

GeneralPractitionerQueue < >— “O\;V:tigﬁss» F:(}?OV:ELNCJ?:S; ______
«OWL Class» | o
Email
«mapping: subclass»

«OWL Class» PPINg

Symptoms

«mapping: subclass»

«OWL Class»

Name o
«OWL Class»
Location - 7
«mapping: subclass»
. «OWL Class» «OWL Class»
Ceperaligt > Case PhoneNumber |
«OWL Class» |
Email
«OWL Class»

Evidence

Figure 9. Semantic state compatibility mappingtfa state descriptions of Figures 6 and 11.

Nevertheless, the ability to transform state da@schot guarantee that the substitution of the
unavailable service with a candidate substituteiserthat belongs irstateCompatibleServices
shall be successful. This issue is further disaligséhe following subsection.

Phase 5: Adapting the current configuration

Given the two sets of candidate substitute services the StateCompatibleServicend the
StatelncompatibleServicesets) that resulted from the previous phase, tlptaton-manager



tries to select a service out of these sets toaligtaubstitute the unavailable service. First, the
adaptation-manager queries the monitoring-managethke latest state data obtained from the
unavailable service.

Following, the adaptation-manager iterates over SteCompatibleServiceset. For each
candidate substitute servic€ € StateCompatibleServicegshe adaptation-manager tries to
synchronize the current state ©Wwith the state data of the unavailable servicedi&sussed in
the previous subsection, the synchronization magplue transforming the state data of the
unavailable service into state data that can bdlbdrbys, with respect to the semantic mapping
between the state descriptions of the services.

Regarding our scenario, assume that the adaptatzorager selects from the
StateCompatibleServicest the servics that is associated with the state descriptionigtife
11. The XML data types of the elements that camstithe state property af(Figure 11) are
equal to the data types of the elements that datesthe state property of the unavailable service
(Figure 6). Therefore, the transformation of stidéa (Figure 8(b)) that have been obtained from
the unavailable service is quite simple. Accordingthe semantic mapping of Figure 12, the
transformation amounts to simply renaming certaMLxtags (e.g., the Patient property should
be renamed to Case, the Address element shoushbened to Location, etc.).

Figure 10. State synchronization message for thedickate substitute service; the message is
generated with respect to (1) the state descrigtiofithe unavailable and the candidate substitute
services (Figures 6, 11) and, (2) the semantic nmgppetween these state descriptions (Figure
12).

Then, the adaptation manager tries to update thgepties that characterize the states with
respect to the transformed state data of the uladlai service. According to the WS-
ResourceProperties standard, this step involvedirggio s a standardized SetResourceProperties
message. In our scenario, the synchronization leztvilee states of the two services involves
inserting the contents of the waiting queue of dhavailable service, into the waiting queue of
the substitute service by sending the messagestgaten in Figure 13.



The result of the synchronization may be successfobt. In the latter cassshall respond to
the adaption-manager with a standardized fault agessand the adaptation-manager shall
proceed with another service from tBateCompatibleServicagt. In our scenario, for instance,
the waiting queue of the candidate substitute servmay be full. In this case, the
SetResourceProperties message shall fail and the caadidate will be examined by the
adaptation-manager. If the state synchronizatida far all candidate services that belong to the
StateCompatibleServicesthe adaptation-manager randomly selects a seryioen the
StatelncompatibleServicest.

Phase 6: Completing the execution.

The goal of this phase is to put the affected mth&ons back to normal execution. This task
highly depends on the outcome of the previous phase

In particular, if the adaptation-manager discoveas service substitute in the
StateCompatibleServicagt, the execution of all the affected orchesiregiis resumed from the
points where they were stopped (i.e., from thevdigs that were blocked or failed). In our
example, we assumed 2 instances of the online wmletiglp orchestration, affected by the
unavailability of the GeneralPractitionerPT servi€he execution of the first orchestration failed
during activity 5 (Figure 9, 10), while the exeomiof the second one was blocked right before
contacting the GeneralPractitionerPT service ferfitst time (i.e., before activity 2). Therefore,
in this case the first orchestration is resumednfaxtivity 5, while the second one is resumed
from activity 2.

One the other hand, if the adaptation-manager dssoa service substitute in the
StatelncompatibleServicagt, the affected orchestrations are rolled-back point that precedes
the first interaction with the unavailable servitdentifying this point involves using the CDG
and the DDG of the affected orchestrations, whileher taking into account the checkpointing
activities that relate to the rest of the serviaeed in these orchestrations. In our example, the
first interaction with the unavailable service whsging activity 2. Hence, the execution of both
orchestrations is rolled-back to activity 2.

4. EVALUATION

To evaluate the basic concepts of SIROCO we deedlap first prototype and performed a
number of experiments. The prototype and all oyreernents were based on the AXIS SOAP
engine and the Apache Tomcat application servie SIROCO BPEL engine currently does not
support full-featured BPEL orchestrations (e.gndiers, pick activities, wait activities are not
supported).

The main benefit from using SIROCO for the develeptmof service orchestrations is the
ability to dynamically maintain them to confronietlinavailability of the services involved. On
the other hand, the price to pay for this abilgythe need for enriching the orchestrations with
additional checkpointing activities, which introduan overhead in the execution of the
orchestrations. Hereafter, we use the term enhamdestration to refer to an orchestration
enriched with checkpointing activities. Respectjyele use the term original-orchestration to
refer to an orchestration that does not includelgb@inting activities.



Based on the previous remarks we performed two afeexperiments. In the first set, we
compared the execution time of enhanced-orchestatagainst the execution time of the
original-orchestration in various scenarios of narmxecution (i.e., there were no unavailable
services during the orchestrations execution)héndecond set of experiments, we measured the
execution time of enhanced-orchestrations in varfailure scenarios that can not be handled by
the original-orchestrations.

In both sets of experiments, we used BPEL orchigstisa that combine 5 Web services

(W§,WS,,...WS)), each one of which offered 10 operations. Thetrobnflow of the

orchestrations was derived from a combination af well-known work-flow patterns (Sequence
and Parallel-Split\an Der Aalstet al, 2003). Specifically, each orchestration consists dfoav

activity that comprises 5 sequence activities, SQ,,...,SQ) which execute concurrently.
Each sequencéSQ consists of 10 basic activitiesA¢q s Asq, --1Asq,,) Which invoke the
operations 0fVS. The dataflow dependencies between the activities set according to the

following pattern: the output messages of the servbperations invoked in activities
ASQ,J ief12)j<frot have been used for constructing input messagdbédaervice invocations of the

activities Asq, .+ ASQua + PSQua - IN DOth sets of experiments, we used 4 different

variants of orchestrations, where we varied the bemof operations of each service that change
the state of the service as follows: 1, 2, 5 andfdérations per service. Therefore, we varied the
number of checkpointing activities introduced ie thrchestrations from 5 to 50. Finally, in both
sets of experiments, the SIROCO RM was deployedroi.6 GHz Intel Centrino, with 1GB
RAM, while the services were deployed on 1.7 IRehtium, with 1 GB RAM.
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(a) 1st set of experiments.
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Figure 11. Experimental results.

Figure 14(a) summarizes the results from the lsbfsexperiments (average execution times
with a 95% confidence interval of 1%). Expectedhg overhead of the checkpointing activities
introduced by SIROCO in the execution of the ortla®ns is linear to the number of
checkpoints.

In the 2nd set of experiments we assessed the SIR@gproach in 5 different failure
scenarios wherdV'§ became unavailable. Specifically, in each scemaribe {1..5}, we

generated an exception during the execution dﬁ/it&;pt%q(w. We assumed a candidate

substitute foMV§ for which the state synchronization was succes$h results from this set of

experiments are summarized in Figure 14(b) (aveexgeution times for the 5 failure scenarios
with a 95% confidence interval of 2%). As we carsa@fve the overall maintenance overhead
introduced by SIROCO in the presence of unavailabigices is quite reasonable.

5. CONCLUSION

In this paper we detailed the SIROCO middleward&qian that enables the dynamic substitution
of stateful services during the execution of servicchestrations. As opposed to conventional
dynamic reconfiguration approaches, the

SIROCO reconfiguration process consists of (1)aliedng candidate substitute services out of a
set of semantically compatible services that caruded in place of a service that becomes
unavailable and (2) identifying one amongst thesadidates that can be used as an actual
substitute; whenever possible the selected sutestiervice is such that its current state can be
synchronized with the state of the service thatisstituted. The basic concepts of SIROCO were
discussed in detail along with an experimental watédn of our first prototype. Our findings
showed that SIROCO provides the necessary mearechoeving dynamic service substitution
with a reasonable expense on the execution ofcgeorchestrations.

However, the problem of dynamic service substituinvolves further challenging issues for
future research. Currently, we focus our effortwaals an optimization mechanism that would
allow the efficient enrichment of service orchettras with checkpointing activities. Moreover,
we work towards a mechanism for the distributedrdimation of multiple SIROCO middleware



instances. Finally, we plan to extend our approgclenable the substitution of unavailable
services with semantically compatible services finavide different interfaces.

REFERENCES

Cardoso & Sheth, 2006

Ben Mokhtaret al, 2006

Berardiet al, 2005

Yang & Papazoglou, 2004

Fredjet al, 2008

W3Ca, 2004

W3Cb, 2007

IBM, 2002

OASIS, 2004

Salatge & Fabre, 2007

Cardoso, J., Sheth, A.: Sem#Web Services, Processes and
Applications. Springer (2006).

Ben Mokhtar, S., Kaul, A., Georgantas, Nssatny, V..
Efficient Semantic Service Discovery in Pervasivenfputing
Environments. In: Proceedings of the 7th ACM/IFIBENIX
International Middleware Conference (MIDDLEWARE'06)
Volume 4290., LNCS (2006) 240-259.

Berardi, D., Calvanese, D., DeGiacomo, Genzerini, M.,
Mecella, M.: Automatic Service Composition Based on
Behavioral Descriptions. International Journal ajo@erative
Information Systems 14 (2005) 333-376.

Yang, J., Papazoglou, MrviSe Components for Managing
the Lifecycle of Service Compositions. Informati®ystems 29
(2004) 97-125.

Fredj, M., Georgantas, N., Issarny, V., ZgriA.: Dynamic
Service Substitution in Service-Oriented Architeetu In:
Proceedings of the IEEE International Conferenceservices
Computing (SCC'08). (2008).

W3C: Web Services Architecture. Techniaport, W3C
(2004) http:/iwww.w3c.org/TR/ws-arch.

W3C: Semantic Annotations for WSDL aniiLX Schema.
Technical report, W3C (2007) http://www.w3c.org/SRWsdl.

IBM, Microsoft Corporation and BEA: Bugss Process
Execution Language for Web Service (BPEL4WS) v.1.0.
Technical report, IBM, Microsoft Corporation, BEARQ02)
http://www.ibm.com/developerworks/webservices/ligravs-
bpel/.

OASIS:  Web  Services Resource Propertié®/S-
ResourceProperties). Technical report, OASIS (2004)
http://docs.oasis-open.org/wsrf/2004/06/wsrf-WS-
ResourceProperties-1.2-draft-04.pdf.

Salatge, N., Fabre, J.C.:lt Faalerance Connectors for
Unreliable Web Services. In: Proceedings of theh 3xmnual
IEEE/IFIP International Conference on Dependablst&pys
and Networks. (2007) 51-60.



Kramer & Magee, 1990

Gougarzi & Kramer, 1996

Hauptmann & Wasel, 1996

Minsky et al, 1996

Warren & Sommerville, 1996

Bidanet al, 1998

Blair et al., 2000

Poladiaret al, 2004

Zarraset al, 2006

Kramer & Magee, 1985

Kramer, J., Magee, J.: Thehtwg Philosophers Problem:
Dynamic Change Management. IEEE Transactions otwad
Engineering 16 (1990) 1293-1306.

Goudarzi, K.M., Kramer, Maintaining Node Consistency in
the Face of Dynamic Change. In: Proceedings oBBtdelEEE
International Conference on Configurable Distrilougystems.
(1996) 62-69.

Hauptmann, S., Wasel, d-tii@ Maintenance with On-the-y
Software Replacement. In: Proceedings of the 3r&EIE
International Conference on Configurable Distrilbugystems.
(1996) 70-80.

Minsky, N., Ungureanu, V., Wang, W., Zhadg, Building
Reconfiguration Primitives into the Law of a System:
Proceedings of the 3rd IEEE International Confegermm
Configurable Distributed Systems. (1996) 62-69.

Warren, |. & Sommeryilld.: A Model for Dynamic
Configuration which Preserves Application Integrityn:
Proceedings of the 3rd IEEE International Confeeermm
Configurable Distributed Systems. (1996) 81-88.

Bidan, C., Issarny, V., Saridakis, T., ZafrA.: A Dynamic
Reconfiguration Service for CORBA. In: Proceedingithe 4th
IEEE International Conference on Configurable isired
Systems. (1998) 35-42.

Blair, G.S., Blair, L., Issarny,, Tuma, P., Zarras, A.. The
Role of Software Architecture in Constraining Adasin in
Component-Based Middleware Platforms. In: Procegdiaf
the 2nd ACM/IFIP/USENIX International Middleware
Conference (MIDDLEWARE'00). (2000) 164-184.

Poladian, V., Sousa, J.P., Garlan, D., Shew, Dynamic
Configuration of Resource-Aware Services. In: Pealtegs of
the 26th IEEE-ACM-SIGPLAN International Conferenoe
Software Engineering (ICSE’04). (2004) 604-613.

Zarras, A., Fredj, M., Georgantas, N., Isga¥.: Engineering
Reconfigurable Distributed Software Systems: Issid@sing
for Pervasive Computing. In: Rigorous Developmerft o
Complex Fault-Tolerant Systems. Volume 4157. LN2G0OE)
364-386.

Kramer, J., Magee, J.: Dyna@on_guration for Distributed
Systems. |IEEE Transactions on Software Engineetidg



Hofmeister & Purtilo, 1993

Konet al, 2002

Van Der Aalstet al, 2003

WordNet, 2006

AXxis
Tomcat

Melloul & Fox, 2004

Taheret al.,2006

Athanasopoulost al.,2009

Ponnekantet al.,2004

Ponnekanti, 2003

Motahari Nezhaet al.,2007

(1985) 424-436.

Hofmeister, C., Purtild,M.: Dynamic Recon_guration in
Distributed Systems: Adapting Software Modules for
Replacement. In: Proceedings of the 13th IEEE mhational
Conference on Distributed Computing Systems. (19B8&)-
110.

Kon, F., Cost, F., Blair, G., Campbell, R.Hthe Case of
Reective Middleware. Communications of the ACM 2832)
33-38.

Van Der Aalst, W., Hofstede, A.T., Kiepusz&iyvB., Barros,
A.: Workow Patterns. Distributed and Parallel Dasds 14
(2003) 5-51.

WordNet 3.0, Princeton
http://wordnet.princeton.edu/

University (Z1))

Axis, http://ws.apache.org/axis/index.html
Apache Tomcat, http://tomcat.apache.org/

Melloul, L., Fox, A.: Reusablleinctional Composition Patterns
for Web Services. In: Proceedings of the IEEE haéonal
Conference on Web Services (ICWS’ 04). (2004) 498-5

Taher, Y., Benslimane, D., Fauvet, M.-C., Mag Z.
Towards an Approach for Web Services Substitutiom.
Proceedings of the f0nternational Database Engineering and
Applications Symposium. (2006) 166-173.

Athanasopoulos, D., Zarras, A., Issarny, Vowards the
Maintenance of Service Oriented Software. In: Pedoggs of
the 3rd CSMR Workshop on Software Quality and
Maintenance (SQM'09). (2009).

Ponnekanti, S. R., Fox, A.: Interoperabilithmong
Independently Evolving Web Services. In: Proceeslinfthe
5"ACM/IFIP/USENIX International Middleware Conference
(MIDDLEWARE’04). (2004) 331-351.

Ponnekanti, S. R.: ApplicationvBer Interoperation Without
Standardized Service Interfaces. In: Proceedingseof' IEEE
International Conference on Pervasive Computing and
Communications. (2003) 30-37.

Motahari Nezhad, H. R.. Benatallah, B., MastéA., Curbera,
F., Casati, F..: Semi-Automated Adaptation of Servic
Interactions. In: Proceedings of the Internatiovarld Wide
Web Conference (WWW'07). (2007) 993-1002.






