1 Plotting - Statistical Significance

The main library for plotting is matplotlib, which uses the Matlab plotting capabilities. We can also use the seaborn library on top of that to do visually nicer plots.

```python
import pandas as pd
import pandas_datareader.data as web  # For accessing web data
from datetime import datetime  # For handling dates
import os

import matplotlib.pyplot as plt  # Main plotting tool for Python
import matplotlib as mpl
import seaborn as sns  # A more fancy plotting library

# For presenting plots inline
%matplotlib inline
```

```python
os.environ['IEX_API_KEY'] = 'pk_4f1eb9a770e04d2ebc44123e297618bb'  #'pk_******************************'
```

```python
stocks = 'FB'
data_source = 'iex'
start = datetime(2018,1,1)
end = datetime(2018,12,31)

stocks_data = web.DataReader(stocks, data_source, start, end)

# If you want to load only some of the attributes:
# stocks_data = web.DataReader(stocks, data_source, start, end)[['open','close']]  
```

```python
df = stocks_data
df = df.rename(columns = {'volume':'vol'})
```

```python
df['profit'] = (df.close - df.open)
for idx, row in df.iterrows():
    if row.close < row.open:
```
df.loc[idx,'gain']='negative'
elif (row.close - row.open) < 1:
    df.loc[idx,'gain']='small_gain'
elif (row.close - row.open) < 3:
    df.loc[idx,'gain']='medium_gain'
else:
    df.loc[idx,'gain']='large_gain'
df.head()

[6]:

<table>
<thead>
<tr>
<th>date</th>
<th>open</th>
<th>high</th>
<th>low</th>
<th>close</th>
<th>vol</th>
<th>profit</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-01-02</td>
<td>177.68</td>
<td>181.58</td>
<td>177.55</td>
<td>181.42</td>
<td>18151903</td>
<td>3.74</td>
<td>large_gain</td>
</tr>
<tr>
<td>2018-01-03</td>
<td>181.88</td>
<td>184.78</td>
<td>181.33</td>
<td>184.67</td>
<td>16886563</td>
<td>2.79</td>
<td>medium_gain</td>
</tr>
<tr>
<td>2018-01-04</td>
<td>184.90</td>
<td>186.21</td>
<td>184.10</td>
<td>184.33</td>
<td>13880896</td>
<td>-0.57</td>
<td>negative</td>
</tr>
<tr>
<td>2018-01-05</td>
<td>185.59</td>
<td>186.90</td>
<td>184.93</td>
<td>186.85</td>
<td>13574535</td>
<td>1.26</td>
<td>medium_gain</td>
</tr>
<tr>
<td>2018-01-08</td>
<td>187.20</td>
<td>188.90</td>
<td>186.33</td>
<td>188.28</td>
<td>17994726</td>
<td>1.08</td>
<td>medium_gain</td>
</tr>
</tbody>
</table>

[9]: gain_groups = df.groupby('gain')
gdf = df[['open','low','high','close','vol','gain']].groupby('gain').mean()
gdf = gdf.reset_index()

1.0.1 Simple plots

[10]: df.high.plot()
df.low.plot(label='low values')
plt.legend(loc='best') #puts the legend in the best possible position

[10]: <matplotlib.legend.Legend at 0x18e92f35a20>
1.0.2 Histograms

[11]: df.close.hist(bins=20)

[11]: <matplotlib.axes._subplots.AxesSubplot at 0x18e93441780>
1.0.3 Plotting columns against each other

```python
[13]:
def = pd.read_excel('example-functions.xlsx')
defs = df.sort_values(by='A', ascending=True)  # Sorting in data frames
```

Plot columns B,C,D against A

The plt.figure() command creates a new figure for each plot

```python
[15]:
plt.figure();
defs.plot(x='A', y='B');
plt.figure();
defs.plot(x='A', y='C');
plt.figure();
defs.plot(x='A', y='D');
```

<Figure size 432x288 with 0 Axes>
Use a grid to put all the plots together

```python
[16]: #plt.figure();
    fig, ax = plt.subplots(1, 3, figsize=(20,5))
    dfs.plot(x = 'A', y = 'B', ax = ax[0]);
    dfs.plot(x = 'A', y = 'C', ax = ax[1]);
    dfs.plot(x = 'A', y = 'D', ax = ax[2]);
```

Plot all columns together against A.
Clearly they are different functions
Plot all columns against A in log scale

We observe straight lines for B,C while steeper drop for D
Plot with log scale only on y-axis.

The plot of $D$ becomes a line, indicating that $D$ is an exponential function of $A$.

```
[19]: plt.figure(); dfs.plot(x = 'A', y = ['B', 'C', 'D'], logy=True);
```

<Figure size 432x288 with 0 Axes>
Plotting using matlab notation

Also how to put two figures in a 1x2 grid

```python
[20]: plt.figure(figsize = (15,5))  # defines the size of figure
    plt.subplot(121)  # plot with 1 row, 2 columns, 1st plot
    plt.plot(dfs['A'],dfs['B'],dfs['A'],dfs['C'],dfs['A'],dfs['D'],label='A',linewidth=2)
    plt.loglog(dfs['A'],dfs['B'],dfs['A'],dfs['C'],dfs['A'],dfs['D'],label='A',linewidth=2)

[20]: <matplotlib.lines.Line2D at 0x18e93860668>,
    <matplotlib.lines.Line2D at 0x18e93e24c88>,
    <matplotlib.lines.Line2D at 0x18e93e24dd8>
```
Using seaborn

[21]: `sns.lineplot(x='A', y='B', data=dfs, marker='o')`

[21]: `<matplotlib.axes._subplots.AxesSubplot at 0x18e94ff7e80>`

Scatter plots: Scatter plots take as input two series X and Y and plot the points (x,y).
We will do the same plots as before as scatter plots using the dataframe functions

[22]: `fig, ax = plt.subplots(1, 2, figsize=(15,5))
dff.plot(kind='scatter', x='A', y='B', ax=ax[0])`
```python
dff.plot(kind='scatter', x='A', y='B', loglog=True, ax=ax[1])
```

![Scatter plot with loglog scale](image1)

```python
[22]: <matplotlib.axes._subplots.AxesSubplot at 0x18e951d3128>
```

```python
plt.scatter(dff.A, dff.B)
```

![Scatter plot of dff.A and dff.B](image2)

```python
[23]: <matplotlib.collections.PathCollection at 0x18e938c2198>
```

```python
plt.scatter([1,2,3],[3,2,1])
```

![Scatter plot with custom points](image3)

```python
[24]: <matplotlib.collections.PathCollection at 0x18e939d2550>
```
Putting many scatter plots into the same plot

```python
[25]: t = dff.plot(kind='scatter', x='A', y='B', color='DarkBlue', label='B curve',
               loglog=True);
dff.plot(kind='scatter', x='A', y='C', color='DarkGreen', label='C curve', ax=t,
               loglog=True);
dff.plot(kind='scatter', x='A', y='D', color='Red', label='D curve', ax=t,
               loglog=True);
```
Using seaborn

[26]: sns.scatterplot(x='A', y='B', data=dff)

[26]: <matplotlib.axes._subplots.AxesSubplot at 0x18e939801d0>
In log-log scale (for some reason it seems to throw away small values)

```python
[27]: splot = sns.scatterplot(x='A', y='B', data=dff)
    # splot.set(xscale="log", yscale="log")
    splot.loglog()
```

1.0.4 Statistical Significance

Recall the dataframe we obtained when grouping by gain

```python
[127]: gdf
```

<table>
<thead>
<tr>
<th>gain</th>
<th>open</th>
<th>low</th>
<th>high</th>
<th>close</th>
<th>vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>large_gain</td>
<td>170.459730</td>
<td>169.941351</td>
<td>175.660811</td>
<td>174.990811</td>
<td>3.034571e+07</td>
</tr>
<tr>
<td>medium_gain</td>
<td>172.305769</td>
<td>171.410962</td>
<td>175.321346</td>
<td>174.185577</td>
<td>2.795407e+07</td>
</tr>
<tr>
<td>negative</td>
<td>171.473306</td>
<td>168.024545</td>
<td>172.441322</td>
<td>169.233636</td>
<td>2.771124e+07</td>
</tr>
<tr>
<td>small_gain</td>
<td>171.218049</td>
<td>169.827317</td>
<td>173.070488</td>
<td>171.699268</td>
<td>2.488339e+07</td>
</tr>
</tbody>
</table>

AWe see that there are differences in the volume of trading depending on the gain. But are these differences statistically significant? We can test that using the Student t-test. The Student t-test will give us a value for the difference between the means in units of standard error, and a p-value
that says how important this difference is. Usually we require the p-value to be less than 0.05 (or 0.01 if we want to be more strict). Note that for the test we will need to use all the values in the group.

To compute the t-test we will use the **SciPy** library, a Python library for scientific computing.

```python
import scipy as sp  # library for scientific computations
from scipy import stats  # The statistics part of the library

The t-test value is:

\[
t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma^2_1}{n_1} + \frac{\sigma^2_2}{n_2}}}
\]

where \( \bar{x}_i \) is the mean value of the \( i \) dataset, \( \sigma^2_i \) is the variance, and \( n_i \) is the size.

```python
# Test statistical significance of the difference in the mean volume numbers
sm = gain_groups.get_group('small_gain').vol
lg = gain_groups.get_group('large_gain').vol
med = gain_groups.get_group('medium_gain').vol
neg = gain_groups.get_group('negative').vol
print(stats.ttest_ind(sm, neg, equal_var = False))
print(stats.ttest_ind(sm, med, equal_var = False))
print(stats.ttest_ind(sm, lg, equal_var = False))
print(stats.ttest_ind(neg, med, equal_var = False))
print(stats.ttest_ind(neg, lg, equal_var = False))
print(stats.ttest_ind(med, lg, equal_var = False))
```

```
Ttest_indResult(statistic=-0.7956394985081949, pvalue=0.429417750163685)
Ttest_indResult(statistic=-0.6701399815165451, pvalue=0.5044832095805987)
Ttest_indResult(statistic=-1.2311419812548245, pvalue=0.22206628199791936)
Ttest_indResult(statistic=-0.06722743349643102, pvalue=0.9465813743143181)
Ttest_indResult(statistic=-0.7690284467674665, pvalue=0.44515731685000515)
Ttest_indResult(statistic=-0.5334654665318221, pvalue=0.5950877691078409)
```

We can compute the standard error of the mean using the stats.sem method of scipy, which can also be called from the data frame.

```python
print(sm.sem())
print(neg.sem())
print(stats.sem(med))
print(stats.sem(lg))
```

```
3207950.267667195
1530132.8120272094
3271861.2395884297
3064988.17806777
```
We can also visualize the mean and the standard error in a bar-plot, using the barplot function of seaborn. Note that we need to apply this to the original data. The averaging is done automatically.

\[ \text{sns.barplot(x='gain',y='vol', data=df)} \]

\[ <matplotlib.axes._subplots.AxesSubplot at 0x18e938fa828> \]

We can also visualize the distribution using a box-plot. In the box plot, the box shows the quartiles of the dataset (the part between the higher 25% and lower 25%), while the whiskers extend to show the rest of the distribution, except for points that are determined to be “outliers”. The line shows the median.

\[ \text{sns.boxplot(x='gain',y='vol', data=df)} \]

\[ <matplotlib.axes._subplots.AxesSubplot at 0x18e94ecccf8> \]
#Removing outliers

```
sns.boxplot(x='gain', y='vol', data=df, showfliers=False)
```

```
<matplotlib.axes._subplots.AxesSubplot at 0x18e94fb4e80>
```
Plot the average volume over the different months

```python
df = df.reset_index()
df.date = df.date.apply(lambda d: datetime.strptime(d, "%Y-%m-%d"))

def get_month(row):
    return row.date.month
df["month"] = df.apply(get_month, axis = 1)

sns.lineplot(x='month', y = 'vol', data = df)
```

```python
<matplotlib.axes._subplots.AxesSubplot at 0x18e95409eb8>
```
```python
df['positive_profit'] = (df.profit>0)
sns.lineplot(x='month', y='vol', hue='positive_profit', data = df)
```

This code creates a line plot where the x-axis represents the months and the y-axis represents the volume. The plot is colored by whether the profit is positive or not.
1.1 Comparing multiple stocks

As a last task, we will use the experience we obtained so far – and learn some new things – in order to compare the performance of different stocks we obtained from Yahoo finance.

```python
[57]: stocks = ['FB', 'GOOG', 'TSLA', 'MSFT', 'NFLX']
atr = 'close'
dfmany = web.DataReader(stocks,
    data_source,
    start= datetime(2018, 1, 1),
    end= datetime(2018, 12, 31))[atr]
dfmany.head()
```

<table>
<thead>
<tr>
<th>Symbols</th>
<th>FB</th>
<th>GOOG</th>
<th>TSLA</th>
<th>MSFT</th>
<th>NFLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018-01-02</td>
<td>181.42</td>
<td>1065.00</td>
<td>64.11</td>
<td>85.95</td>
<td>201.07</td>
</tr>
<tr>
<td>2018-01-03</td>
<td>184.67</td>
<td>1082.48</td>
<td>63.45</td>
<td>86.35</td>
<td>205.05</td>
</tr>
<tr>
<td>2018-01-04</td>
<td>184.33</td>
<td>1086.40</td>
<td>62.92</td>
<td>87.11</td>
<td>205.63</td>
</tr>
<tr>
<td>2018-01-05</td>
<td>186.85</td>
<td>1102.23</td>
<td>63.32</td>
<td>88.19</td>
<td>209.99</td>
</tr>
<tr>
<td>2018-01-08</td>
<td>188.28</td>
<td>1106.94</td>
<td>67.28</td>
<td>88.28</td>
<td>212.05</td>
</tr>
</tbody>
</table>
Next, we will calculate returns over a period of length $T$, defined as:

$$r(t) = \frac{f(t) - f(t-T)}{f(t)}$$

The returns can be computed with a simple DataFrame method `pct_change()`. Note that for the first $T$ timesteps, this value is not defined (of course):

```python
rets = dfmany.pct_change(30)
rets.iloc[25:35]
```

<table>
<thead>
<tr>
<th>Symbols</th>
<th>date</th>
<th>FB</th>
<th>GOOG</th>
<th>TSLA</th>
<th>MSFT</th>
<th>NFLX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018-02-07</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>2018-02-08</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>2018-02-09</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>2018-02-12</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>2018-02-13</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>
2018-02-14 -0.010473 0.004413 0.005459 0.056545 0.322922
2018-02-15 -0.025505 0.006504 0.052955 0.073075 0.366837
2018-02-16 -0.037813 0.007732 0.066434 0.056136 0.354472
2018-02-20 -0.058014 0.000209 0.057328 0.051366 0.326492
2018-02-21 -0.055078 0.003975 -0.009215 0.036362 0.325348

Now we’ll plot the timeseries of the returns of the different stocks.

Notice that the NaN values are gracefully dropped by the plotting function.

```python
rets.FB.plot(label = 'facebook')
rets.GOOG.plot(label = 'google')
rets.TSLA.plot(label = 'tesla')
rets.MSFT.plot(label = 'microsoft')
rets.NFLX.plot(label = 'netflix')
_=plt.legend(loc='best')
```

```python
plt.scatter(rets.TSLA, rets.GOOG)
plt.xlabel('TESLA 30-day returns')
_=plt.ylabel('GOOGLE 30-day returns')
```
We can also use the seaborn library for doing the scatterplot. Note that this method returns an object which we can use to set different parameters of the plot. In the example below we use it to set the x and y labels of the plot. Read online for more options.

```
[51]:
data_source = 'iex'
start = datetime(2018,1,1)
end = datetime(2018,12,31)

dfb = web.DataReader('FB', data_source, start, end)
dgoog = web.DataReader('GOOG', data_source, start, end)

print(dfb.head())
print(dgoog.head())
```

<table>
<thead>
<tr>
<th>date</th>
<th>open</th>
<th>high</th>
<th>low</th>
<th>close</th>
<th>volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-01-02</td>
<td>177.68</td>
<td>181.58</td>
<td>177.55</td>
<td>181.42</td>
<td>18151903</td>
</tr>
<tr>
<td>2018-01-03</td>
<td>181.88</td>
<td>184.78</td>
<td>181.33</td>
<td>184.67</td>
<td>16886563</td>
</tr>
<tr>
<td>2018-01-04</td>
<td>184.90</td>
<td>186.21</td>
<td>184.10</td>
<td>184.33</td>
<td>13880896</td>
</tr>
<tr>
<td>2018-01-05</td>
<td>185.59</td>
<td>186.90</td>
<td>184.93</td>
<td>186.85</td>
<td>13574535</td>
</tr>
<tr>
<td>2018-01-08</td>
<td>187.20</td>
<td>188.90</td>
<td>186.33</td>
<td>188.28</td>
<td>17994726</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>date</th>
<th>open</th>
<th>high</th>
<th>low</th>
<th>close</th>
<th>volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-01-02</td>
<td>1048.34</td>
<td>1066.94</td>
<td>1045.23</td>
<td>1065.00</td>
<td>1237564</td>
</tr>
<tr>
<td>2018-01-03</td>
<td>1064.31</td>
<td>1086.29</td>
<td>1063.21</td>
<td>1082.48</td>
<td>1430170</td>
</tr>
</tbody>
</table>
def gainrow(row):
    if row.close < row.open:
        return 'negative'
    elif (row.close - row.open) < 1:
        return 'small_gain'
    elif (row.close - row.open) < 3:
        return 'medium_gain'
    else:
        return 'large_gain'

dfb['gain'] = dfb.apply(gainrow, axis = 1)
dgoog['gain'] = dgoog.apply(gainrow, axis = 1)
dfb['profit'] = dfb.close-dfb.open
dgoog['profit'] = dgoog.close-dgoog.open

# Also using seaborn
fig = sns.scatterplot(dfb.profit, dgoog.profit)
fig.set_xlabel('FB profit')
fig.set_ylabel('GOOG profit')

Text(0, 0.5, 'GOOG profit')
Get all pairwise correlations in a single plot

\[[164]:\ \texttt{sns.pairplot(rets.iloc[30:]),}\]

\[[164]:\ <\texttt{seaborn.axisgrid.PairGrid at 0x21e20c39e48}>\]

There appears to be some (fairly strong) correlation between the movement of TSLA and YELP stocks. Let’s measure this.

The correlation coefficient between variables $X$ and $Y$ is defined as follows:

$$\text{Corr}(X, Y) = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Pandas provides a DataFrame method to compute the correlation coefficient of all pairs of columns:
 corr().

```
[165]: rets.corr()
```

<table>
<thead>
<tr>
<th>Symbols</th>
<th>FB</th>
<th>GOOG</th>
<th>TSLA</th>
<th>MSFT</th>
<th>NFLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>1.000000</td>
<td>0.598776</td>
<td>0.226645</td>
<td>0.470696</td>
<td>0.546997</td>
</tr>
<tr>
<td>GOOG</td>
<td>0.598776</td>
<td>1.000000</td>
<td>0.210414</td>
<td>0.790085</td>
<td>0.348008</td>
</tr>
<tr>
<td>TSLA</td>
<td>0.226645</td>
<td>0.210414</td>
<td>1.000000</td>
<td>-0.041969</td>
<td>-0.120794</td>
</tr>
<tr>
<td>MSFT</td>
<td>0.470696</td>
<td>0.790085</td>
<td>-0.041969</td>
<td>1.000000</td>
<td>0.489569</td>
</tr>
<tr>
<td>NFLX</td>
<td>0.546997</td>
<td>0.348008</td>
<td>-0.120794</td>
<td>0.489569</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

```
[165]: rets.corr(method='spearman')
```

<table>
<thead>
<tr>
<th>Symbols</th>
<th>FB</th>
<th>GOOG</th>
<th>TSLA</th>
<th>MSFT</th>
<th>NFLX</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>1.000000</td>
<td>0.540949</td>
<td>0.271626</td>
<td>0.457852</td>
<td>0.641344</td>
</tr>
<tr>
<td>GOOG</td>
<td>0.540949</td>
<td>1.000000</td>
<td>0.288171</td>
<td>0.803731</td>
<td>0.382466</td>
</tr>
<tr>
<td>TSLA</td>
<td>0.271626</td>
<td>0.288171</td>
<td>1.000000</td>
<td>0.042268</td>
<td>-0.066012</td>
</tr>
<tr>
<td>MSFT</td>
<td>0.457852</td>
<td>0.803731</td>
<td>0.042268</td>
<td>1.000000</td>
<td>0.456912</td>
</tr>
<tr>
<td>NFLX</td>
<td>0.641344</td>
<td>0.382466</td>
<td>-0.066012</td>
<td>0.456912</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

It takes a bit of time to examine that table and draw conclusions.

To speed that process up it helps to visualize the table using a heatmap.

```
[167]: _ = sns.heatmap(rets.corr(), annot=True)
```
Use the scipy.stats library to obtain the p-values for the pearson and spearman rank correlations

```
print(stats.pearsonr(rets.iloc[30:].NFLX, rets.iloc[30:].TSLA))
print(stats.spearmanr(rets.iloc[30:].NFLX, rets.iloc[30:].TSLA))
print(stats.pearsonr(rets.iloc[30:].GOOG, rets.iloc[30:].FB))
print(stats.spearmanr(rets.iloc[30:].GOOG, rets.iloc[30:].FB))
```

(-0.12079364118016642, 0.07311519342514292)
SpearmanrResult(correlation=-0.06601220718867777, pvalue=0.3286469530126206)
(0.5987760976044885, 6.856639483414064e-23)
SpearmanrResult(correlation=0.5409485585956174, pvalue=3.3889335195231e-18)

```
print(stats.pearsonr(dfb.profit, dgoog.profit))
print(stats.spearmanr(dfb.profit, dgoog.profit))
```

(0.7502980828890071, 1.1838784594493575e-46)
SpearmanrResult(correlation=0.7189927028730208, pvalue=3.177135649196623e-41)

Finally, it is important to know that the plotting performed by Pandas is just a layer on top of matplotlib (i.e., the plt package).

So Panda’s plots can (and should) be replaced or improved by using additional functions from matplotlib.

For example, suppose we want to know both the returns as well as the standard deviation of the returns of a stock (i.e., its risk).

Here is visualization of the result of such an analysis, and we construct the plot using only functions from matplotlib.

```
_ = plt.scatter(rets.mean(), rets.std())
plt.xlabel('Expected returns')
plt.ylabel('Standard Deviation (Risk)')
for label, x, y in zip(rets.columns, rets.mean(), rets.std()):
    plt.annotate(
        label,
        xy = (x, y), xytext = (20, -20),
        textcoords = 'offset points', ha = 'right', va = 'bottom',
        bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
        arrowprops = dict(arrowstyle = '<->', connectionstyle = 'arc3,rad=0'))
```
To understand what these functions are doing, (especially the \texttt{annotate} function), you will need to consult the online documentation for matplotlib. Just use Google to find it.