
Online Social Networks and
Media

Link Analysis

First try: Human curated Web directories
Yahoo, DMOZ, LookSmart

How to Organize the Web

How to organize the web

• Second try: Web Search
– Information Retrieval investigates:

• Find relevant docs in a small and trusted set e.g.,
Newspaper articles, Patents, etc. (“needle-in-a-
haystack”)

• Limitation of keywords (synonyms, polysemy, etc)

 But: Web is huge, full of untrusted documents, random
things, web spam, etc.

▪ Everyone can create a web page of high production value
▪ Rich diversity of people issuing queries
▪ Dynamic and constantly-changing nature of web content

How to organize the web

• Third try (the Google era): using the web
graph

– Shift from relevance to authoritativeness

– It is not only important that a page is relevant, but
that it is also important on the web

• For example, what kind of results would we
like to get for the query “covid19”?

Link Analysis

• Not all web pages are created equal on the web

• The links act as endorsements:

– When page p links to q it endorses the content of
the content of q

What is the simplest way to
measure importance of a
page on the web?

Rank by Popularity

• Rank pages according to the number of
incoming edges (in-degree, degree centrality)

1. Red Page

2. Yellow Page

3. Blue Page

4. Purple Page

5. Green Page

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Popularity

• It is not important only how many link to you, but also
how important are the people that link to you.

• Good authorities are pointed by good authorities
– Recursive definition of importance

THE PAGERANK ALGORITHM

PageRank
• Good authorities should be pointed by good authorities

– The value of a node is the value of the nodes that point to it.

• How do we implement that?
– Assume that we have a unit of authority to distribute to all

nodes.

– Node 𝑖 gets a fraction 𝑤𝑖 of that authority weight

– Each node distributes the authority value they have to their
neighbors

– The authority value of each node is the sum of the authority
fractions it collects from its neighbors.

𝑤𝑖 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑤𝑗

𝑤𝑣: the PageRank value of node 𝑣

Recursive definition

An example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

We can obtain the weights by solving this
system of equations

𝑤𝑖 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑤𝑗

w1 + w2 + w3 + w4 + w5 = 1

Computing PageRank weights

• A simpler way to compute the weights is by
iteratively updating the weights using the
equations

• PageRank Algorithm

• This process converges

Initialize all PageRank weights to 𝑤𝑖
0=

1

𝑛

Repeat:

 𝑤𝑖
𝑡 = σ𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑤𝑗

𝑡−1

Until the weights do not change

Example

w1 = 1/3 w4 + 1/2 w5

w2 = 1/2 w1 + w3 + 1/3 w4

w3 = 1/2 w1 + 1/3 w4

w4 = 1/2 w5

w5 = w2

𝑤𝑖 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑤𝑗

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒘𝟓

t=0 0.2 0.2 0.2 0.2 0.2

t=1 0.16 0.36 0.16 0.1 0.2

t=2 0.13 0.28 0.11 0.1 0.36

t=3 0.22 0.22 0.1 0.18 0.28

t=4 0.2 0.27 0.17 0.14 0.22

Think of the weight as a fluid: there is
constant amount of it in the graph, but it
moves around until it stabilizes

The PageRank algorithm

Think of the nodes in the
graph as containers of
capacity of 1 liter.

We distribute a liter of liquid
equally to all containers

The edges act like pipes
that transfer liquid
between nodes.

The PageRank algorithm

The contents of each node
are distributed to its
neighbors.

The PageRank algorithm

The edges act like pipes
that transfer liquid
between nodes.

The contents of each node
are distributed to its
neighbors.

The PageRank algorithm

The edges act like pipes
that transfer liquid
between nodes.

The contents of each node
are distributed to its
neighbors.

The PageRank algorithm

The edges act like pipes
that transfer liquid
between nodes.

The system will reach an
equilibrium state where
the amount of liquid in
each node remains
constant.

The PageRank algorithm

The amount of liquid in
each node determines the
importance of the node.

Large quantity means large
incoming flow from nodes
with large quantity of
liquid.

The PageRank algorithm

Random Walks on Graphs

• The algorithm defines a random walk on the
graph

• Random walk:

– Start from a node chosen uniformly at random with

probability
1

𝑛
.

– Pick one of the outgoing edges uniformly at random

– Move to the destination of the edge

– Repeat.

Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 0

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 1

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 1

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 2

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 3

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 3

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Example

• Step 4…

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being

at node 𝑖 after 𝑡 steps? 𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝑝3
0 =

1

5

𝑝4
0 =

1

5

𝑝5
0 =

1

5

𝑝1
𝑡 =

1

3
𝑝4

𝑡−1 +
1

2
𝑝5

𝑡−1

𝑝2
𝑡 =

1

2
𝑝1

𝑡−1

+ 𝑝3

𝑡−1 +
1

3
𝑝4

𝑡−1

𝑝3
𝑡 =

1

2
𝑝1

𝑡−1 +
1

3
𝑝4

𝑡−1

𝑝4
𝑡 =

1

2
𝑝5

𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝1
0 =

1

5

𝑝2
0 =

1

5

𝑝𝑖
𝑡 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑝𝑗

𝑡−1

The equations are the same as those for the PageRank iterative computation

Random walk

• At convergence:
𝑣2

𝑣3

𝑣4𝑣5

𝑣1

We get the same equation as for PageRank

𝑝𝑖 =

𝑗→𝑖

1

|𝑁𝑜𝑢𝑡 𝑗 |
𝑝𝑗

The PageRank of node 𝑖 is the probability that the random walk is at node 𝑖 after
a very large (infinite) number of steps

Markov chains

• A Markov chain describes a discrete time stochastic
process over a set of states

𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}
 according to a transition probability matrix 𝑃 = {𝑃𝑖𝑗}

– 𝑃𝑖𝑗 = probability of moving from state 𝑖 to state 𝑗

• Matrix 𝑃 has the property that the entries of all rows
sum to 1

𝑗

𝑃 𝑖, 𝑗 = 1

 A matrix with this property is called stochastic

Markov chains
• The stochastic process proceeds in steps and moves

between the states:
– State probability distribution: The vector 𝑝𝑡 =

 (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡) that stores the probability distribution of

being at state 𝑠𝑖 after 𝑡 steps

• Memorylessness property: The next state of the
chain depends only at the current state and not on
the past of the process (first order MC)
– Higher order MCs are also possible

• We can compute the vector 𝑝𝑡 at step 𝑡 using a
vector-matrix multiplication

𝑝𝑡 = 𝑝𝑡−1𝑃

Random walks

• Random walks on graphs correspond to
Markov Chains

– The set of states 𝑆 is the set of nodes of the graph
𝐺

– The transition probability matrix is the probability
that we follow an edge from one node to another

𝑃 𝑖, 𝑗 =
1

d𝑜𝑢𝑡 𝑖

An example

=

0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

=

01001

00111

00010

10000

00110

A

An example

=

0210021

00313131

00010

10000

0021210

P

𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝑝1
𝑡 =

1

3
𝑝4

𝑡−1 +
1

2
𝑝5

𝑡−1

𝑝2
𝑡 =

1

2
𝑝1

𝑡−1

+ 𝑝3

𝑡−1 +
1

3
𝑝4

𝑡−1

𝑝3
𝑡 =

1

2
𝑝1

𝑡−1 +
1

3
𝑝4

𝑡−1

𝑝4
𝑡 =

1

2
𝑝5

𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝𝑡 = 𝑝𝑡−1𝑃

Stationary distribution

• The stationary distribution of a random walk with
transition matrix 𝑃, is a probability distribution 𝜋,
such that 𝜋 = 𝜋𝑃

• The stationary distribution is an eigenvector of
matrix 𝑃
– the principal left eigenvector of P – stochastic matrices

have maximum eigenvalue 1

• Markov Chain Theory: The random walk converges
to a unique stationary distribution independent of
the initial vector if the graph is strongly connected,
and not bipartite.
– In our case these are the PageRank values.

Computing the stationary distribution

• The Power Method

• After many iterations 𝑝𝑡 → 𝜋 regardless of the initial
vector 𝑝0

• Power method because it computes 𝑝𝑡 = 𝑝0𝑃𝑡

• Rate of convergence =
|𝜆2|

|𝜆1|
= 𝜆2

– determined by the second eigenvalue

Initialize 𝑝0 to some distribution
Repeat
 𝑝𝑡 = 𝑝𝑡−1𝑃
Until convergence

The stationary distribution

• 𝜋 is the left eigenvector of transition matrix 𝑃

• 𝜋(𝑖): the probability of being at node 𝑖 after very large
(infinite) number of steps

• 𝜋(𝑖): the fraction of times that the random walk
visited state 𝑖 as 𝑡 → ∞

• 𝜋 = 𝑝0𝑃∞, where 𝑃 is the transition matrix, 𝑝0 the
original vector
– 𝑃 𝑖, 𝑗 : probability of going from 𝑖 to 𝑗 in one step
– 𝑃2(𝑖, 𝑗): probability of going from 𝑖 to 𝑗 in two steps

(probability of all paths of length 2)
– 𝑃∞ 𝑖, 𝑗 = 𝜋(𝑗): probability of going from 𝑖 to 𝑗 in infinite

steps – same for all 𝑖, starting point does not matter.

The PageRank random walk

• Vanilla random walk

– make the adjacency matrix stochastic and run a
random walk

=

0210021

00313131

00010

10000

0021210

P

The PageRank random walk

• What about sink nodes?

– what happens when the random walk moves to a
node without any outgoing inks?

=

0210021

00313131

00010

00000

0021210

P

=

0210021

00313131

00010

5151515151

0021210

P'

The PageRank random walk

• Replace these row vectors with a vector 𝑣

– typically, the uniform vector

P’ = P + dvT

=
otherwise0

sink is i if1
d

Outer product

The PageRank random walk

• What about loops?

– Spider traps

−+

=

5151515151

5151515151

5151515151

5151515151

5151515151

2100021

00313131

00010

5151515151

0021210

'P')1(

The PageRank random walk

• Add a random jump to a node chosen according
to the vector 𝑣 with prob 1 − 𝛼

– typically, to 𝑣 is a uniform probability vector

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s
Random walk with restarts

PageRank algorithm [BP98]

• The Random Surfer model
– pick a page at random

– with probability 𝛼 follow a random
outgoing link

– with probability 1 − 𝛼 jump to a
random page

• Rank according to the stationary
distribution

• 𝑤𝑖 = 𝛼 σ𝑗→𝑖
1

|𝑁𝑜𝑢𝑡 𝑖 |
𝑤𝑗 + (1 − 𝛼)

1

𝑛

• We repeat this computation until
convergence

1. Red Page

2. Purple Page

3. Yellow Page

4. Blue Page

5. Green Page

𝛼 = 0.85 in most cases

Stationary distribution with random
jump

• If 𝑣 is the jump vector

– 𝑝0 = 𝑣

– 𝑝1 = 𝛼𝑝0𝑃′ + 1 − 𝛼 𝑣 = 𝛼𝑣𝑃′ + 1 − 𝛼 𝑣

– 𝑝2 = 𝛼𝑝1𝑃′ + 1 − 𝛼 𝑣 = 𝛼2𝑣𝑃′2 + 1 − 𝛼 𝑣𝛼𝑃′ + 1 − 𝛼 𝑣

– ⋮

– 𝑝∞ = 1 − 𝛼 𝑣 + 1 − 𝛼 𝑣𝛼𝑃′ + 1 − 𝛼 𝑣𝛼2𝑃′2
+ ⋯ = 1 − 𝛼 𝑣 𝐼 − 𝛼𝑃′ −1

• Explanation: From the last step trace the last restart :
– With probability 1 − 𝛼 you just restarted in the last step
– With probability 𝛼 1 − 𝛼 you restarted one step before and then did a random walk

step
– With probability 𝛼2(1 − 𝛼) you restarted two steps before and then did two random

walk steps
– Etc…

• Conclusion: you will not walk very far
• With the random jump the shorter paths are more important, since the weight

decreases exponentially
– makes sense when thought of as a restart

Random walks with restarts

• If 𝑣 is not uniform, we can bias the random walk
towards the nodes that are close to 𝑣

• Personalized PageRank:
– Restart the random walk from a specific node x
– All nodes are ranked according to their closeness to x

• Topic-Specific Pagerank.
– Restart the random walk from a specific set of nodes (e.g.,

nodes about a topic)
– All nodes are ranked according to their closeness to the

topic.

• Random Walks with restarts is a general technique for
measuring closeness on graphs.

Personalized Pagerank Example

• Global Pagerank vector (jump vector [
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
])

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

1

2

5

4

3

6

Personalized Pagerank Example

• Global Pagerank vector (jump vector [
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
]):

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

• Personalized Pagerank for node 1 (jump vector [1,0,0,0,0,0]):
[0.26, 0.20, 0.24, 0.14, 0.08, 0.07]

1

2

5

4

3

6

Personalized Pagerank Example

• Global Pagerank vector (jump vector [
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
]):

[0.13, 0.18, 0.24, 0.18, 0.13, 0.13]

• Personalized Pagerank from node 1 (jump vector [1,0,0,0,0,0]):
[0.26, 0.20, 0.24, 0.14, 0.08, 0.07]

• Personalized Pagerank from node 6 (jump vector [0,0,0,0,0,1]):
[0.07, 0.13, 0.19, 0.19, 0.15, 0.27]

1

2

5

4

3

6

Personalized Pagerank Example

• Global Pagerank vector (jump vector [
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
]):

[0.14, 0.17, 0.21, 0.18, 0.15, 0.15]

• Personalized Pagerank from node 1 (jump vector [1,0,0,0,0,0]):
[0.55, 0.17, 0.18, 0.05, 0.03, 0.02]

• Personalized Pagerank from node 6 (jump vector [0,0,0,0,0,1]):
[0.02, 0.04, 0.07, 0.16, 0.15, 0.56]

With 𝑎 = 0.5

1

2

5

4

3

6

Effects of random jump

• Guarantees convergence to unique
distribution

• Motivated by the concept of random surfer

• Offers additional flexibility

– personalization

– anti-spam

• Controls the rate of convergence

– the second eigenvalue of matrix 𝑃′′ is 𝛼

Random walks on undirected graphs

• For undirected graphs, the stationary distribution
of a random walk is proportional to the degrees
of the nodes
– Thus, in this case a random walk is the same as degree

popularity

• This is not longer true if we do random jumps
– Now the short paths play a greater role, and the

previous distribution does not hold.
– Random walks with restarts to a single node are

commonly used on undirected graphs for measuring
similarity between nodes

PageRank implementation

• Store the graph as a list of edges

• Keep current pagerank values and new
pagerank values

• Go through edges and update the values of
the destination nodes.

• Repeat until the difference between the
pagerank vectors (𝐿1 or 𝐿∞ difference) is
below some small value ε.

A (Matlab/Numpy-friendly) PageRank
algorithm

• Performing vanilla power method is now too
expensive – the matrix is not sparse

q0 = v
t = 1
repeat

 t = t +1
until δ < ε

() 1tTt q'P'q −=
1tt qqδ −−=

Efficient computation of y = (P’’)T x

βvyy

yx β

xαPy

11

T

+=

−=

=

P = normalized adjacency matrix

P’’ = αP’ + (1-α)uvT, where u is the vector of all 1s

P’ = P + dvT, where di is 1 if i is sink and 0 o.w.

PageRank history

• Huge advantage for Google in the early days
– It gave a way to get an idea for the value of a page, which

was useful in many different ways
• Put an order to the web.

– After a while it became clear that the anchor text was
probably more important for ranking

– Also, link spam became a new (dark) art

• Flood of research
– Numerical analysis got rejuvenated
– Huge number of variations
– Efficiency became a great issue.
– Huge number of applications in different fields

• Random walk is often referred to as PageRank.

THE HITS ALGORITHM

The HITS algorithm

• Another algorithm proposed around the same
time as PageRank for using the hyperlinks to
rank pages

– Kleinberg: then an intern at IBM Almaden

– IBM never made anything out of it

Query dependent input

Root Set

Root set obtained from a text-only search engine

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Query dependent input

Root Set

IN OUT

Base Set

Hubs and Authorities [K98]

• Authority is not necessarily
transferred directly
between authorities

• Pages have double identity
– hub identity

– authority identity

• Good hubs point to good
authorities

• Good authorities are
pointed by good hubs

hubs authorities

Hubs and Authorities

• Two kind of weights:
– Hub weight

– Authority weight

• The hub weight is the sum of the authority
weights of the authorities pointed to by the hub

• The authority weight is the sum of the hub
weights that point to this authority.

HITS Algorithm

• Initialize all weights to 1.

• Repeat until convergence
– O operation : hubs collect the weight of the authorities

ℎ𝑖
𝑡 =

𝑗:𝑖→𝑗

𝑎𝑖
𝑡−1

– I operation: authorities collect the weight of the hubs

𝑎𝑖
𝑡 =

𝑗:𝑗→𝑖

ℎ𝑗
𝑡−1

– Normalize weights under some norm

Note: The order of the operations is not important. You could do them in parallel or
sequentially, the result will still be the same.

Example

hubs authorities

1

1

1

1

1

1

1

1

1

1

Initialize

Example

hubs authorities

1

1

1

1

1

1

2

3

2

1

Step 1: O operation

Example

hubs authorities

6

5

5

2

1

1

2

3

2

1

Step 1: I operation

Example

hubs authorities

1

5/6

5/6

2/6

1/6

1/3

2/3

1

2/3

1/3

Step 1: Normalization (Max norm)

Example

hubs authorities

1

5/6

5/6

2/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: O step

Example

hubs authorities

33/6

27/6

23/6

7/6

1/6

1

11/6

16/6

7/6

1/6

Step 2: I step

Example

hubs authorities

1

27/33

23/33

7/33

1/33

6/16

11/16

1

7/16

1/16

Step 2: Normalization

Example

hubs authorities

1

0.8

0.6

0.14

0

0.4

0.75

1

0.3

0

Convergence

HITS and eigenvectors

• The HITS algorithm is a power-method eigenvector
computation

• In vector terms
– 𝑎𝑡 = 𝐴𝑇ℎ𝑡−1 and ℎ𝑡 = 𝐴𝑎𝑡−1

– 𝑎𝑡 = 𝐴𝑇𝐴𝑎𝑡−1 and ℎ𝑡 = 𝐴𝐴𝑇ℎ𝑡−1

– Repeated iterations will converge to the eigenvectors

• The authority weight vector 𝑎 is the eigenvector of
𝐴𝑇𝐴 and the hub weight vector ℎ is the eigenvector of
𝐴𝐴𝑇

• The vectors 𝑎 and ℎ are called the singular vectors of the
matrix A

Singular Value Decomposition

• r : rank of matrix A

• σ1≥ σ2≥ … ≥σr : singular values (square roots of eig-vals AAT, ATA)

• : left singular vectors (eig-vectors of AAT)

• : right singular vectors (eig-vectors of ATA)

==

r

2

1

r

2

1

r21
T

v

v

v

σ

σ

σ

uuuVΣUA

[n×r] [r×r] [r×n]

r21 u,,u,u

r21 v,,v,v

T
rrr

T
222

T
111 vuσvuσvuσA

+++=

Why does the Power Method work?

• If a matrix R is real and symmetric, it has real eigenvalues
and eigenvectors: 𝜆1, 𝑤1 , 𝜆2, 𝑤2 , … , (𝜆𝑟 , 𝑤𝑟)
– r is the rank of the matrix

– |𝜆1 ≥ |𝜆2 ≥ ⋯ ≥ 𝜆𝑟

• For any matrix R, the eigenvectors 𝑤1, 𝑤2, … , 𝑤𝑟 of R define
a basis of the vector space
– For any vector 𝑥, 𝑅𝑥 = 𝛼1𝑤1 + 𝑎2𝑤2 + ⋯ + 𝑎𝑟𝑤𝑟

• After t multiplications we have:

– 𝑅𝑡𝑥 = 𝜆1
𝑡−1𝛼1𝑤1 + 𝜆2

𝑡−1𝑎2𝑤2 + ⋯ + 𝜆𝑟
𝑡−1𝑎𝑟𝑤𝑟

• Normalizing (divide by 𝜆1
𝑡−1) leaves only the term 𝑤1.

The SALSA algorithm

• Perform a random walk on the
bipartite graph of hubs and
authorities alternating between the
two

hubs authorities

The SALSA algorithm

• Start from an authority chosen uniformly at
random
– e.g. the red authority

hubs authorities

• Start from an authority chosen uniformly at
random
– e.g. the red authority

• Choose one of the in-coming links
uniformly at random and move to a hub
– e.g. move to the yellow authority with

probability 1/3 hubs authorities

The SALSA algorithm

• Start from an authority chosen uniformly at
random
– e.g. the red authority

• Choose one of the in-coming links
uniformly at random and move to a hub
– e.g. move to the yellow authority with

probability 1/3

• Choose one of the out-going links
uniformly at random and move to an
authority
– e.g. move to the blue authority with probability

1/2

hubs authorities

The SALSA algorithm

The SALSA algorithm

• Formally we have probabilities:
– 𝑎𝑖: probability of being at authority 𝑖

– ℎ𝑗: probability of being at hub 𝑗

• The probability of being at authority 𝑖 is computed as:

𝑎𝑖 =

𝑗∈𝑁𝑖𝑛(𝑖)

1

𝑑𝑜𝑢𝑡 𝑗
ℎ𝑗

• The probability of being at hub 𝑗 is computed as

ℎ𝑗 =

𝑖∈𝑁𝑜𝑢𝑡(𝑗)

1

𝑑𝑖𝑛 𝑖
𝑎𝑖

• Repeated computation converges

The SALSA algorithm [LM00]

• In matrix terms
– 𝐴𝑐 = the matrix 𝐴 where columns are

normalized to sum to 1

– 𝐴𝑟 = the matrix 𝐴 where rows are normalized to
sum to 1

• The hub computation
– ℎ = 𝐴𝑐

𝑎

• The authority computation
– 𝑎 = 𝐴𝑟

𝑇 ℎ = 𝐴𝑟
𝑇 𝐴𝑐

𝑎

• In MC terms the transition matrix
– 𝑃 = 𝐴𝑟 𝐴𝑐

𝑇

hubs authorities

𝒂𝟏 = 𝒉𝟏 + 𝟏/𝟐 𝒉𝟐 + 𝟏/𝟑 𝒉𝟑

𝒉𝟐 = 𝟏/𝟑 𝒂𝟏 + 𝟏/𝟐 𝒂𝟐

	Slide 1: Online Social Networks and Media
	Slide 2: How to Organize the Web
	Slide 3: How to organize the web
	Slide 5: How to organize the web
	Slide 6: Link Analysis
	Slide 7: Rank by Popularity
	Slide 8: Popularity
	Slide 9: THE PageRank ALGORITHM
	Slide 10: PageRank
	Slide 11: An example
	Slide 12: Computing PageRank weights
	Slide 13: Example
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Random Walks on Graphs
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example
	Slide 26: Example
	Slide 27: Example
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31: Random walk
	Slide 32: Random walk
	Slide 33: Markov chains
	Slide 34: Markov chains
	Slide 35: Random walks
	Slide 36: An example
	Slide 37: An example
	Slide 38: Stationary distribution
	Slide 39: Computing the stationary distribution
	Slide 40: The stationary distribution
	Slide 41: The PageRank random walk
	Slide 42: The PageRank random walk
	Slide 43: The PageRank random walk
	Slide 44: The PageRank random walk
	Slide 45: The PageRank random walk
	Slide 46: PageRank algorithm [BP98]
	Slide 48: Stationary distribution with random jump
	Slide 49: Random walks with restarts
	Slide 50: Personalized Pagerank Example
	Slide 51: Personalized Pagerank Example
	Slide 52: Personalized Pagerank Example
	Slide 53: Personalized Pagerank Example
	Slide 54: Effects of random jump
	Slide 55: Random walks on undirected graphs
	Slide 56: PageRank implementation
	Slide 57: A (Matlab/Numpy-friendly) PageRank algorithm
	Slide 58: PageRank history
	Slide 59: THE HITS ALGORITHM
	Slide 60: The HITS algorithm
	Slide 61: Query dependent input
	Slide 62: Query dependent input
	Slide 63: Query dependent input
	Slide 64: Query dependent input
	Slide 65: Hubs and Authorities [K98]
	Slide 66: Hubs and Authorities
	Slide 67: HITS Algorithm
	Slide 68: Example
	Slide 69: Example
	Slide 70: Example
	Slide 71: Example
	Slide 72: Example
	Slide 73: Example
	Slide 74: Example
	Slide 75: Example
	Slide 76: HITS and eigenvectors
	Slide 77: Singular Value Decomposition
	Slide 78: Why does the Power Method work?
	Slide 79: The SALSA algorithm
	Slide 80: The SALSA algorithm
	Slide 81
	Slide 82: The SALSA algorithm
	Slide 83: The SALSA algorithm
	Slide 84: The SALSA algorithm [LM00]

