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Introduction

Diffusion: process by which a piece of information is 
spread and reaches individuals through interactions
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Why do we care?
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Why do we care?

Modeling epidemics
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Viral marketing
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Why do we care?

Spread of innovation



Outline

▪ Epidemic models

▪ Influence maximization



EPIDEMIC SPREAD
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Epidemics

Understanding the spread of viruses 
and epidemics is of great interest to 
• Health officials
• Sociologists
• Mathematicians
• Hollywood 

The underlying contact network clearly affects the 
spread of an epidemic
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Epidemics

• Model epidemic spread as a random process 
on the graph and study its properties

• Questions that we can answer: 

– What is the projected growth of the infected 
population?

– Will the epidemic take over most of the network?

– How can we contain the epidemic spread?

Diffusion of  ideas and the spread of influence 
can also be modeled as epidemics
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Basic Reproductive Number 𝑅0

• Basic Reproductive Number (𝑅0): the expected number of 
new cases of the disease caused by a single individual

• This is a dimensionless number (it does not have units) and 
it characterizes the spread of the virus. 

• General computation:

𝑅0 ∝
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒

𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑅0 = 𝜏 ҧ𝑐 𝑑

• In general, we want 𝑅0 < 1 since this usually (but not 
always) implies that the infection will die out. 
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𝑅0 and 𝑅𝑡

• The computation of 𝑅0assumes that 
everyone is susceptible to infection

• For monitoring the real-time development of 
an infection the real-time or effective 𝑅𝑡 is 
used

• It takes into account the current state of the 
disease, who is sick, and who is immune

• We definitely want 𝑅𝑡 < 1

• It is very hard to compute and depends on 
multiple factors.
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A simple model

▪ Branching process: A person transmits the disease to each 
people she meets independently with a probability p 

▪  An infected person meets k (new) people while she is 
contagious

▪ Infection proceeds in waves. 

Contact network is a 
tree with branching 
factor k
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Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p 
and the branching factor k

An aggressive 
epidemic with high 
infection probability

The epidemic survives 
after three steps
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Infection Spread

• We are interested in the number of people 
infected (spread) and the duration of the 
infection

• This depends on the infection probability p 
and the branching factor k A mild epidemic with 

low infection 
probability

The epidemic dies out 
after two steps
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Basic Reproductive Number

• Basic Reproductive Number (𝑅0): the expected number of new 
cases of the disease caused by a single individual

𝑅0 = 𝑘𝑝

• Claim: 
a) If R0 < 1, then with probability 1, the disease dies out after a finite 

number of waves.  
In this case each person infects less than one person in expectation. 
The infection eventually dies out.

b) If R0 > 1, then with probability greater than 0 the disease persists by 
infecting at least one person in each wave. 
In this case each person infects more than one person in 
expectation. The infection persists.
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Application: Reduce k, or p to combat an epidemic



Analysis

• 𝑋𝑛 : random variable indicating the number of 
infected nodes at level n (after n steps)

• 𝑞𝑛 = Pr[𝑋𝑛 ≥ 1] : probability that there exists 
at least 1 infected node after 𝑛 steps

• 𝑞∗ = lim 𝑞𝑛 : the probability of having 
infected nodes as 𝑛 → ∞

We want to show that 

 a 𝑅0 < 1 ⇒ 𝑞∗ = 0 

  (b) 𝑅0 > 1=> 𝑞∗ > 0.
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Proof

▪ At level n, kn nodes

▪ Ynj: 1 if node j at level n is infected, 0 otherwise 

   E[Ynj] = pn  

▪ E[Xn] = R0
n

▪ E[Xn] ≥ Pr[Xn ≥ 1] => qn ≤ R0
n

This proves (a) but not (b)

19



Proof

n-1

p p p

𝑞𝑛−1 𝑞𝑛−1 𝑞𝑛−1

𝑞𝑛

Each child of the root starts a 
branching process of length n-1

𝑞𝑛 = 1 − 1 − 𝑝𝑞𝑛−1
𝑘

if 
𝑓 𝑥 = 1 − 1 − 𝑝𝑥 𝑘

then
𝑞𝑛 = 𝑓(𝑞𝑛−1)

We also have: 𝑞0 = 1.

So we obtain a series of values: 1, 𝑓 1 , 𝑓 𝑓 1 , …

We want to find where this series converges 20



Proof

• Properties of the function 𝑓(𝑥):

1. 𝑓 0 = 0 and 𝑓 1 = 1 − 1 − 𝑝 𝑘 < 1.

passes through (0, 0); below y = x, once x = 1

2. 𝑓′ 𝑥 = 𝑝𝑘 1 − 𝑝𝑥 𝑘−1 > 0, in the interval 
[0,1] but decreasing. Our function is increasing 
and concave.

3. 𝑓′ 0 = 𝑝𝑘 = 𝑅0

Slope at x = 0
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Proof

• Case 1: 𝑅0 = 𝑝𝑘 > 1. The function starts 
above the line 𝑦 = 𝑥 but then drops below 
the line.

𝑓 𝑥  crosses the line 𝑦 = 𝑥 at some point
22



Proof

• Starting from the value 1, repeated 
applications of the function 𝑓 𝑥  will converge 
to the value 𝑞∗ = 𝑞𝑛 = 𝑓(𝑞𝑛)
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Proof

• Case 2: 𝑅0 = 𝑝𝑘 < 1. The function starts with 
below the line 𝑦 = 𝑥. Repeated applications of 
𝑓(𝑥) converge to zero.
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Branching process

• Assumes no network structure, no triangles or 
shared neighbors
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The SIR model

• Each node may be in the following states

– Susceptible: healthy but not immune

– Infected: has the virus and can actively propagate it

– Removed: (Immune or Dead) had the virus but it is no 
longer active

• Parameter p: the probability of an Infected node to 
infect a Susceptible neighbor
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The SIR process

• Initially all nodes are in state S(usceptible), 
except for a few nodes in state I(nfected).

• An infected node stays infected for 𝑡𝐼 steps.
– Simplest case: 𝑡𝐼 = 1

• At each of the 𝑡𝐼 steps the infected node has 
probability p of infecting any of its susceptible 
neighbors
– p: Infection probability

• After 𝑡𝐼 steps the node is Removed
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Example
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Example
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Example
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Example
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Extensions

33

▪ Probability per pair of nodes

▪ Sequence of several states (e.g. early, middle, 
and late periods of the infection), and 
allowing the contagion probabilities to vary 
across these states

▪ Mutating, change the characteristics



Continuous case

• We can analyze the SIR model assuming a continuous 
change in the number of Susceptible (S), Infected (I), 
and Removed (R) nodes.

• In the continuous model the infection probability is 
replaced by the infection rate 𝛽

• We also have the recovery (or removal) rate 𝛾 = 1/𝑡𝐼 
which is the rate by which nodes recover (or die)

• Let 𝑠 =
𝑆

𝑁
, 𝑖 =

𝐼

𝑁
, 𝑟 =

𝑅

𝑁
, the fraction of S, I, R nodes, 

where 𝑁 the size of the population

• We assumed that initially 𝑠 ≈ 1

• We assume that we have 𝑠𝑖 contacts (random contacts)
34



Continuous case

• We can describe SIR with the following system of differential equations:
𝜕𝑠

𝜕𝑡
= −𝛽𝑠𝑖

𝜕𝑟

𝜕𝑡
= 𝛾𝑖 

𝜕𝑖

𝜕𝑡
= 𝛽𝑠𝑖 − 𝛾𝑖

• The epidemic persists if 
𝜕𝑖

𝜕𝑡
> 0 ⇒

𝛽

𝛾
> 1 

 

35

𝑅0 =
𝛽

𝛾



SIR and the Branching process

• The branching process is a special case 
where the graph is a tree (and the 
infected node is the root)
– The existence of triangles shared neighbors 

makes a big difference

• The basic reproductive number is not 
necessarily informative in the general 
case
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SIR and the Branching process

37

Example
R0 the expected number of new cases caused by a single node
assume 
p = 2/3, 
R0 = 4/3 > 1
Probability to fail at each level and stop (1/3)4 = 1/81



Percolation

• Percolation: we have a network of “pipes” 
which can carry liquids, and they can be either 
open, or closed with some probability

– The pipes can be pathways within a material

• If liquid enters the network from some nodes, 
does it reach most of the network?

– The network percolates
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SIR and Percolation

• There is a connection between SIR model and 
percolation

• When a virus is transmitted from u to v, the edge (u, v) 
is activated with probability p

• We can assume that all edge activations have 
happened in advance, and the input graph has only the 
active edges.

• Which nodes will be infected?
– The nodes reachable from the initial infected nodes

• In this way we transformed the dynamic SIR process 
into a static one.
– This is essentially percolation in the graph.
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Example
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The SIS model

• Susceptible-Infected-Susceptible
– Susceptible: healthy but not immune
– Infected: has the virus and can actively propagate it

• An Infected node infects a Susceptible neighbor 
with probability p

• An Infected node becomes Susceptible again with 
probability q (or after 𝑡𝐼 steps)
– In a simplified version of the model q = 1

• Nodes alternate between Susceptible and 
Infected status

41



Example

• When no Infected nodes, virus dies out

• Question: will the virus die out?
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An eigenvalue point of view

• If A is the adjacency matrix of the network, then the 
virus dies out if

𝜆1 𝐴 ≤
𝑞

𝑝

• Where 𝜆1(𝐴) is the first eigenvalue of A

Y. Wang, D. Chakrabarti, C. Wang, C. Faloutsos. Epidemic Spreading in Real 
Networks: An Eigenvalue Viewpoint. SRDS 2003
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SIS and SIR

44

Time expanded 
network



Including time

• Infection can only happen within the active 
window 
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Concurrency

• Importance of concurrency – enables 
branching
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• Initially, some nodes are in the I state and all others 
in the S state.

• Each node u that enters the I state remains infectious 
for a fixed number of steps tI During each of these tI 
steps, u has a probability p of infected each of its 
susceptible neighbors.

• After tI steps, u is no longer infectious. Enters the R 
state for a fixed number of steps tR. During each of 
these tR steps, u cannot be infected nor  transmit the 
disease. 

• After tR steps in the R state, node u returns to the S 
state.

47
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INFLUENCE MAXIMIZATION
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Maximizing spread

• Suppose that instead of a virus we have an item 
(product, idea, video) that propagates through contact
– Word of mouth propagation.

• An advertiser is interested in maximizing the spread of 
the item in the network
– The holy grail of “viral marketing”

• Question: which nodes should we “infect” so that we 
maximize the spread? [KKT2003]
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Independent cascade model

51

• Each node may be active (has the item) or 
inactive (does not have the item)

• Time proceeds at discrete time-steps. 

• At time t, every node v that became active in 
time t-1 activates a non-active neighbor w 
with probability 𝑝𝑢𝑤. If it fails, it does not try 
again

• The same as the simple SIR model
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Independent cascade



Influence maximization

• Influence function: for a set of nodes A (target set) 
the influence s(A) (spread) is the expected number of 
active nodes at the end of the diffusion process if the 
item is originally placed in the nodes in A. 

• Influence maximization problem [KKT03]: Given a 
network, a diffusion model, and a value k, identify a 
set A of k nodes in the network that maximizes s(A).

• The problem is NP-hard
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• What is a simple algorithm for selecting the set A?

• Computing s(A): perform multiple Monte-Carlo simulations of 
the process and take the average.

• How good is the solution of this algorithm compared to the 
optimal solution?

A Greedy algorithm

Greedy algorithm
Start with an empty set A
Proceed in k steps

At each step add the node u to the set A the maximizes the 
increase in function s(A)

• The node that activates the most additional nodes
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Approximation Algorithms

• Suppose we have a (combinatorial) optimization 
problem, and X is an instance of the problem, 
OPT(X) is the value of the optimal solution for X, 
and ALG(X) is the value of the solution of an 
algorithm ALG for X
– In our case: X = (G, k) is the input instance, OPT(X) is 

the spread s(A*) of the optimal solution, GREEDY(X) is 
the spread s(A) of the solution of the Greedy 
algorithm

• ALG is a good approximation algorithm if the ratio 
of OPT and ALG is bounded.
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Approximation Ratio

• For a maximization problem, the algorithm ALG 
is an 𝛼-approximation algorithm, for 𝛼 < 1, if 
for all input instances X, 

𝐴𝐿𝐺 𝑋 ≥ 𝛼𝑂𝑃𝑇 𝑋

• The solution of ALG(X) has value at least α%
that of the optimal

• α is the approximation ratio of the algorithm

– Ideally, we would like α to be a constant close to 1
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Approximation Ratio for Influence 
Maximization

• The GREEDY algorithm has approximation 

ratio 𝛼 = 1 −
1

𝑒

𝐺𝑅𝐸𝐸𝐷𝑌 𝑋 ≥ 1 −
1

𝑒
𝑂𝑃𝑇 𝑋 , for all X
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Proof of approximation ratio

• The spread function s has two properties:

• s is monotone:
𝑠(𝐴) ≤ 𝑠 𝐵  if 𝐴 ⊆ 𝐵

• s is submodular:
𝑠 𝐴 ∪ 𝑥 − 𝑠 𝐴 ≥ 𝑠 𝐵 ∪ 𝑥 − 𝑠 𝐵  𝑖𝑓 𝐴 ⊆ 𝐵

• The addition of node x to a set of nodes has greater 
effect (more activations) for a smaller set.
– The diminishing returns property
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Optimizing submodular functions

• Theorem: A greedy algorithm that optimizes a 
monotone and submodular function s, each 
time adding to the solution A, the node x that 
maximizes the gain 𝑠 𝐴 ∪ 𝑥 − 𝑠(𝐴)has 

approximation ratio 𝛼 = 1 −
1

𝑒

• The spread of the Greedy solution is at least 
63% that of the optimal
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Submodularity of influence

• Why is s(A) submodular?

– How do we deal with the fact that influence is defined 
as an expectation?

• We will use the fact that probabilistic propagation 
on a fixed graph can be viewed as deterministic 
propagation over a randomized graph

– Express s(A) as an expectation over the input graph 
rather than the choices of the algorithm
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Independent cascade model

• Each edge (𝑢, 𝑣) is considered only once, and it is 
“activated” with probability 𝑝𝑢𝑣.

• We can assume that all random choices have been made in 
advance 
– generate a sample subgraph of the input graph where edge 

(𝑢, 𝑣) is included with probability 𝑝𝑢𝑣

– propagate the item deterministically on the input graph
– the active nodes at the end of the process are the nodes reachable 

from the target set 𝐴

• The influence function is obviously(?) submodular when 
propagation is deterministic

• The linear combination of submodular functions is also a 
submodular function
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Computation of Expected Spread
Computing s(A): perform multiple Monte-Carlo 
simulations of the process and take the average.

To estimate the influence 
spread of S ∪ {u}, R repeated 
simulations of RanCas(S ∪ {u}) 
are used
Each run takes O(m)
Complexity for computing the 
marginal gain of adding u:
O(Rm)

For each k, all n nodes are 
tested, thus

O(knRm)



Computation of Expected Spread

• Performing simulations for estimating the spread 
on multiple instances is very slow. Several 
techniques have been developed for speeding up 
the process.
– CELF: exploiting the submodularity property: 

• the marginal gain of a node in the current iteration cannot 
be better than its marginal gain in the previous iteration

– Maximum Influence Paths: store paths for 
computation

– Sketches: compute sketches for each node for 
approximate estimation of spread

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen, N. S. Glance. Cost-effective outbreak 
detection in networks. KDD 2007

W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in large-
scale social networks. KDD 2010.

Edith Cohen, Daniel Delling, Thomas Pajor, Renato F. Werneck. Sketch-based Influence Maximization and 
Computation: Scaling up with Guarantees. CIKM 2014
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Degree discount

64

General idea
▪ Select seed nodes based on their degree
▪ If node v is selected, decrease the degree of all its 

neighbors

Wei Chen, Yajun Wang, Siyu Yang: Efficient influence maximization in social networks. 
KDD 2009: 199-208
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Maximum influence path

Wei Chen, Chi Wang, Yajun Wang: Scalable influence maximization for prevalent viral 
marketing in large-scale social networks. KDD 2010: 1029-1038

General idea
▪ For each node, use the maximum influence paths 

(paths with the largest probability) to all other 
nodes
▪ Shortest weighted path

▪ Assumption: influence propagates through these 
paths

▪ Given this assumption, estimate the probability 
that a node is activated 



Reverse Reachable Sets

66

Construct graph X from G by activating edges with 
probability 𝑝(𝑒). 

Let v be a node in G, the reverse reachable (RR) set for 
v in X is the set of nodes in X that can reach v. 

That is, for each node u in the RR set, there is a 
directed path from u to v in X.

Youze Tang, Xiaokui Xiao, Yanchen Shi: Influence maximization: near-optimal time 
complexity meets practical efficiency. SIGMOD Conference 2014: 75-86



Reverse Reachable Sets

67

A random RR set is an RR set generated on an instance 
of X randomly sampled from G, for a node selected 
uniformly at random from X.

Let p be the probability for an RR set generated for v 
to overlap with a node set A, then when we use A as 
the seed set to run an influence propagation process 
on G, we have probability p to activate v 



Reverse Reachable Sets

68

1. Generate a certain number of random RR sets 
from G.

2. Select k nodes to cover the maximum number of 
RR sets generated. (maximum coverage)

3. Return the k nodes as seed



Linear threshold model 

• Again, each node may be active or inactive 
• Every directed edge (v,u) in the graph has a weight bvu, such 

that



𝑣 is a neighbor of 𝑢

𝑏𝑣𝑢 ≤ 1

• Each node u has a randomly generated threshold value Tu 

• Time proceeds in discrete time-steps. At time t  an inactive 
node u becomes active if



𝑣 is an active neighbor of 𝑢

𝑏𝑣𝑢 ≥ 𝑇𝑢

• Related to the game-theoretic model of adoption.
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Linear threshold model 



Influence Maximization

• KKT03 showed that in this case the influence 
s(A) is still a submodular function, using a 
similar technique

– Assumes uniform random thresholds

• The Greedy algorithm achieves a (1-1/e) 
approximation 
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Proof idea

• For each node 𝑢, pick one of the edges 
(𝑣, 𝑢) incoming to 𝑢 with probability 𝑏𝑣𝑢and 
make it live. With probability 1 − σ 𝑏𝑣𝑢 it picks 
no edge to make live

• Claim: Given a set of seed nodes A, the following 
two distributions are the same:
– The distribution over the set of activated nodes using 

the Linear Threshold model and seed set A 

– The distribution over the set of reachable nodes from 
A using live edges.
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Proof idea (submodularity LT model)

• Consider the special case of a DAG (Directed Acyclic Graph)
– There is a topological ordering of the nodes 𝑣0, 𝑣1, … , 𝑣𝑛 such 

that edges go from left to right

• Consider node 𝑣𝑖  in this ordering and assume that 𝑆𝑖 is the 
set of incoming neighbors of 𝑣𝑖  that are active. 

• What is the probability that node 𝑣𝑖  becomes active in 
either of the two models?
– In the Linear Threshold model the random threshold 𝜃𝑖 must be  

σ𝑢∈𝑆𝑖
𝑏𝑢𝑖 ≥ 𝜃𝑖

– In the live-edge model we should pick one of the edges in 𝑆𝑖

• This proof idea generalizes to general graphs
– Note: if we know the thresholds in advance submodularity does 

not hold!
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Assume that all edge weights incoming to any node sum to 1
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The nodes select a single incoming edge with probability 
equal to the weight (uniformly at random in this case)

75



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣1 is the seed

76



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Node 𝑣3 has a single incoming neighbor, therefore for 
any threshold it will be activated
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Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The probability that node 𝑣4 gets activated is 2/3 since it has 
incoming edges from two active nodes.
The probability that node 𝑣4 picks one of the two edges to 
these nodes is also 2/3 78



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

Similarly the probability that node 𝑣6 gets activated is 2/3 
since it has incoming edges from two active nodes.
The probability that node 𝑣6 picks one of the two edges to 
these nodes is also 2/3 79



Example

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

The set of active nodes is the set of nodes reachable from 𝑣1 
with live edges (orange). 
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One-slide summary

• Influence maximization: Given a graph 𝐺 and a budget 𝑘, 
for some diffusion model, find a subset of 𝑘 nodes 𝐴, such 
that when activating these nodes, the spread of the 
diffusion 𝑠(𝐴) in the network is maximized.

• Diffusion models:
– Independent Cascade model
– Linear Threshold model

• Algorithm: Greedy algorithm that adds to the set each time 
the node with the maximum marginal gain, i.e., the node 
that causes the maximum increase in the diffusion spread.

• The Greedy algorithm gives a 1 −
1

𝑒
 approximation of the 

optimal solution 
– Follows from the fact that the spread function 𝑠 𝐴  is 

• Monotone
• Submodular 

𝑠 𝐴 ≤ 𝑠 𝐵 , if 𝐴 ⊆ 𝐵

𝑠 𝐴 ∪ {𝑥} − 𝑠 𝐴 ≥ 𝑠 𝐵 ∪ 𝑥 − 𝑠 𝐵 , ∀𝑥 if 𝐴 ⊆ 𝐵
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Extensions

• Other models for diffusion
– Deadline model: There is a deadline by which a node can be 

infected

– Time-decay model: The probability of an infected node to infect 
its neighbors decays over time

– Timed influence: Each edge has a speed of infection, and you 
want to maximize the speed by which nodes are infected.

• Competing diffusions
– Maximize the spread while competing with other products that 

are being diffused. 

A. Borodin, Y. Filmus, and J. Oren. Threshold models for competitive influence in social networks. WINE, 2010.
M. Draief and H. Heidari. M. Kearns. New Models for Competitive Contagion. AAAI 2014.

N. Du, L. Song, M. Gomez-Rodriguez, H. Zha. Scalable influence estimation in continuous-time diffusion networks. NIPS 2013.

W. Chen, W. Lu, N. Zhang. Time-critical influence maximization in social networks with time-delayed diffusion process. AAAI, 2012.

B. Liu, G. Cong, D. Xu, and Y. Zeng. Time constrained influence maximization in social networks. ICDM 2012.
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Extensions

• Reverse problems:
– Initiator discovery: Given the state of the 

diffusion, find the nodes most likely to have 
initiated the diffusion

– Diffusion trees: Identify the most likely tree of 
diffusion tree given the output

– Infection probabilities: estimate the true infection 
probabilities
M. Gomez-Rodriguez, D. Balduzzi, B. Scholkopf. Uncovering the temporal dynamics of diffusion 
networks. ICML, 2011.

M. Gomez Rodriguez, J. Leskovec, A. Krause. Inferring networks of diffusion and influence. KDD 
2010

H. Mannila, E. Terzi. Finding Links and Initiators: A Graph-Reconstruction Problem. SDM 2009
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OPINION FORMATION IN SOCIAL 
NETWORKS
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Diffusion of items

• So far we have assumed that what is being 
diffused in the network is some discrete item:
– E.g., a virus, a product, a video, an image, a link etc.

• For each network user a binary decision is being 
made about the item being diffused
– Being infected by the virus, adopt the product, watch 

the video, save the image, retweet the link, etc.

– This decision may happen with some probability, but 
the probability is over the discrete values {0,1} and 
the decisions usually do not change



Diffusion of opinions

• The network can also diffuse opinions.
– What people believe about an issue, a person, an 

item, is shaped by their social network 

• People hold opinions that may change due to 
social influence

• Opinions may assume a continuous range of 
values, from completely negative to completely 
positive.
– Opinion diffusion is different from item diffusion

– It is often referred to as opinion formation.



Modeling opinion formation

• There is a lot of work from different perspectives:
– Psychologists/Sociologists: field experiments and decades 

of observations
– Statistical Physicists: model humans as particles and 

predict their behavior
– Mathematicians/Economists: Use game theory to model 

human behavior
– Computer Scientists: build algorithms on top of the models

• Questions asked:
– How do societies reach consensus?

• Not always the case, but necessary for many issues in order for 
society to function

– When do we get polarization or opinion clusters?
• More realistic in the real world where consensus tends to be local



Opinion formation models

• An opinion is a real value

– E.g., a value in the interval [0,1], or [-1,1]

• Opinions are shaped through our interactions 
with our social network



Social Influence

• There are two main types of social influence:

– Normative Influence: Users influenced by opinion 
of neighbors due to social norms, conformity, 
group acceptance, avoiding ridicule, etc

– Informational Influence: Users lacking necessary 
information, or not trusting their information, use 
opinion of neighbors to form their opinions

• Asch’s conformity experiment:



Opinion formation models literature

• Long list of models
– Ising model

• Claudio Castellano, Santo Fortunato, and Vittorio Loreto. 2009. Statistical physics. of social 
dynamics. Rev. Mod. Phys. 81 (May 2009), 591–646.

– Voter model
• Holley and Liggett. 1975. Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter 

Model. The Annals of Probability 3, 4 (1975), 643–663.

– DeGroot Model
• DeGroot. 1974. Reaching a consensus. JASA 69, 345 (1974), 118–121

– Friedkin-Johnson model
• Friedkin and Johnsen. 1990. Social influence and opinions. Journal of Mathematical Sociology 15, 

3-4 (1990), 193–206.

– Bounded Confidence models
• Deffuant, Neau, Amblard, and Weisbuch. Mixing beliefs among interacting agents.Advances in 

Complex Systems. 2000. 
• Krause. A discrete nonlinear and non–autonomous model of consensus formation. 

Communications in difference equations. 2000. 

– Axelrod cultural dynamics
• Axelrod. The dissemination of culture: A model with local convergence and global polarization. 

Journal of conflict resolution. 1997.

– … and multiple variants of those…

91



De Groot opinion formation model 

• Every user 𝑖 has an opinion 𝑧𝑖 ∈ [0,1]

• The opinion of each user in the network is 
iteratively updated, each time taking the 
average of the opinions of its neighbors and 
herself

𝑧𝑖
𝑡 =

𝑤𝑖𝑖𝑧𝑖
𝑡−1 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗𝑧𝑗

𝑡−1

𝑤𝑖𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗

– where 𝑁(𝑖) is the set of neighbors of user 𝑖.



DeGroot opinion formation model

• This iterative process converges

𝑧𝑖 =
𝑤𝑖𝑖𝑧𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗𝑧𝑗

𝑤𝑖𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗

• We can show that the process will converge to 
consensus

• At convergence 𝑧𝑖 = 𝑧∗ for all nodes 𝑖
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What about personal biases?

• People tend to cling on to their personal 
opinions



The Friedkin and Johnsen opinion 
formation model

• Every user 𝑖 has an intrinsic opinion 𝑠𝑖 ∈ [0,1] 
and an expressed opinion 𝑧𝑖 ∈ [0,1]

• The public opinion 𝑧𝑖  of each user in the 
network is iteratively updated, each time 
taking the average of the expressed opinions 
of its neighbors and the intrinsic opinion of 
herself

𝑧𝑖
𝑡 =

𝑤𝑖𝑖𝑠𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗𝑧𝑗
𝑡−1

𝑤𝑖𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗



The Friedkin and Johnsen opinion 
formation model

• The FJ model also converges but not to a 
consensus 

• At convergence:

𝑧𝑖 =
𝑤𝑖𝑖𝑠𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗𝑧𝑗

𝑤𝑖𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗
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Opinion formation as a game

• Assume that network users are rational (selfish) agents
• Each user has a personal cost for expressing an opinion

𝑐 𝑧𝑖 = 𝑤𝑖𝑖 𝑧𝑖 − 𝑠𝑖
2 + 

𝑗∈𝑁(𝑖)

𝑤𝑖𝑗 𝑧𝑖 − 𝑧𝑗
2

• Each user is selfishly trying to minimize her personal 
cost.

Inconsistency cost: The cost for 
deviating from one’s intrinsic opinion

Conflict cost: The cost for 
disagreeing with the opinions 

in one’s social network

D. Bindel, J. Kleinberg, S. Oren. How Bad is Forming Your Own Opinion? Proc. 52nd 
IEEE Symposium on Foundations of Computer Science, 2011.



Opinion formation as a game

• The opinion 𝑧𝑖  that minimizes the personal 
cost of user 𝑖 

𝑧𝑖 =
𝑤𝑖𝑖𝑠𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗𝑧𝑗

𝑤𝑖𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗

• In linear algebra terms (assume 0/1 weights):
𝐿 + 𝐼 𝒛 = 𝒔 ⇒ 𝒛 = 𝐿 + 𝐼 −1𝒔

where 𝐿 is the Laplacian of the graph.

Reminder: The Laplacian is the negated adjacency matrix with the degree on the diagonal
𝐿 = 𝐷 − 𝐴, where 𝐷 is a diagonal matrix with the degrees



Understanding opinion formation

• To better study the opinion formation process 
we will show a connection between opinion 
formation and absorbing random walks.



Random Walks on Graphs

• A random walk is a stochastic process performed on a 
graph

• Random walk:
– Start from a node chosen uniformly at random with 

probability 
1

𝑛
.

– Pick one of the outgoing edges uniformly at random

– Move to the destination of the edge

– Repeat.

• Made very popular with Google’s PageRank algorithm.



The Transition Probability matrix
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00010

10000
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P
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01001

00111

00010

10000

00110

A

𝑃 𝑖, 𝑗 = 1/𝑑𝑜𝑢𝑡(𝑖): Probability of 
transitioning from node 𝑖 to node 𝑗.



Node Probability vector

• The vector 𝑝𝑡 =  (𝑝1
𝑡 , 𝑝2

𝑡 , … , 𝑝𝑛
𝑡 ) that stores 

the probability of being at node 𝑣𝑖  at step 𝑡

– 𝑝𝑖
0= the probability of starting from state 

𝑖 (usually) set to uniform

• We can compute the vector 𝑝𝑡 at step t using a 
vector-matrix multiplication

• After many steps 𝑝𝑡 → 𝜋 the probability 
converges to the stationary distribution 𝜋

𝑝𝑡 = 𝑝𝑡−1 𝑃 = 𝑝0𝑃𝑡



Stationary distribution
• The stationary distribution of a random walk with 

transition matrix 𝑃, is a probability distribution 𝜋, 
such that 𝜋 =  𝜋𝑃

• The stationary distribution is independent of the 
initial vector if the graph is strongly connected, 
and not bipartite. 

• All the rows of the matrix 𝑃∞ are equal to the 
stationary distribution 𝜋

• The stationary distribution is an eigenvector of 
matrix 𝑃
– the principal left eigenvector of P – stochastic matrices 

have maximum eigenvalue 1
• The probability 𝜋𝑖 is the fraction of times that we 

visited  state 𝑖 as 𝑡 →  ∞ 



Random walk with absorbing nodes

• Absorbing nodes: nodes from which the 
random walk cannot escape.

• Two absorbing nodes: the red and the blue.
P. G. Doyle, J. L. Snell. Random Walks and Electrical Networks. 1984



Absorption probability

• In a graph with more than one absorbing 
nodes a random walk that starts from a non-
absorbing (transient) node t will be absorbed 
in one of them with some probability

– For a transient node t we can compute the 
probability of absorption at an absorbing node s



Absorption probabilities

• Computing the probability of being absorbed:
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors 
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)

𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝑅𝑒𝑑|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4

𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 =
2

3

2

2

1

1

1
2

1



Absorption probabilities

𝑃 𝐵𝑙𝑢𝑒 𝑃𝑖𝑛𝑘 =
2

3
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

3
𝑃(𝐵𝑙𝑢𝑒|𝐺𝑟𝑒𝑒𝑛)

𝑃 𝐵𝑙𝑢𝑒 𝐺𝑟𝑒𝑒𝑛 =
1

4
𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

2

𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 =
1

3

2

2

1

1

1
2

1

• Computing the probability of being absorbed:
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors 
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)



Absorption probabilities

𝑃 𝑎 𝑡 = 

𝑡,𝑥 ∈𝐸

𝑃[𝑡, 𝑥]𝑃(𝑎|𝑥)

General equation for the probability of 
transient node 𝑡 being absorbed at 
absorbing node 𝑎

The weighted average of the neighbors

• Computing the probability of being absorbed:
– The absorbing nodes have probability 1 of being absorbed 

in themselves and zero of being absorbed in another node.
– For the non-absorbing nodes, take the (weighted) average 

of the absorption probabilities of your neighbors 
• if one of the neighbors is the absorbing node, it has probability 1

– Repeat until convergence (= very small change in probs)
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Absorption probabilities

• Compute the absorption probabilities for red 
and blue

0.52
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Absorption probabilities

• The absorption probability has several practical uses.

• Given a graph (directed or undirected) we can choose 
to make some nodes absorbing.
– Simply direct all edges incident on the chosen nodes 

towards them and create a self-loop.

• The absorbing random walk provides a measure of 
proximity of transient nodes to the chosen nodes.
– Useful for understanding proximity in graphs

– Useful for propagation in the graph
• E.g, on a social network some nodes are malicious, while some are 

certified, to which class is a transient node closer?



Penalizing long paths

• The orange node has the same probability of 
reaching red and blue as the yellow one

• Intuitively though it is further away

• The probability does not capture proximity
0.52
0.48

0.42
0.58

0.57
0.43 2

2

1

1

1
2

1𝑃 𝐵𝑙𝑢𝑒 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝐵𝑙𝑢𝑒 𝑌𝑒𝑙𝑙𝑜𝑤 1

𝑃 𝑅𝑒𝑑 𝑂𝑟𝑎𝑛𝑔𝑒 = 𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤
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Penalizing long paths

• Add a universal absorbing node to which each 
node gets absorbed with probability α. 

1-α
α

α

α α

1-α
1-α

1-α

𝑃 𝑅𝑒𝑑 𝐺𝑟𝑒𝑒𝑛 = (1 − 𝛼)
1

4
𝑃 𝑅𝑒𝑑 𝑌𝑒𝑙𝑙𝑜𝑤 +

1

4
𝑃 𝑅𝑒𝑑 𝑃𝑖𝑛𝑘 +

1

4

With probability α the random walk dies

With probability (1-α) the random walk 
continues as before

The longer the path from a node to an  
absorbing node the more likely the random 
walk dies along the way, the lower the 
absorbtion probability



Linear Algebra

• The transition matrix of the absorbing random walk 
looks like this

• 𝑃𝑇𝑇: transition probabilities between transient nodes

• 𝑃𝑇𝐴: transition probabilities from transient to 
absorbing nodes

• Computing the absorption probabilities corresponds to 
iteratively multiplying matrix 𝑃 with itself

𝑃 =
𝑃𝑇𝑇 𝑃𝑇𝐴

0 𝐼
T: transient

A: absorbing

T A



Linear Algebra

• After many iterations:

𝑃∞ =
0 𝑄
0 𝐼

• The matrix 𝑄 holds the absorption 
probabilities
– 𝑄 𝑖, 𝑘 = The probability of being absorbed in 

absorbing state 𝑎𝑘 when starting from transient 
state 𝑡𝑖 

𝑄 = 𝑃𝑇𝐴 + 𝑃𝑇𝑇𝑃𝑇𝐴 + 𝑃𝑇𝑇
2 𝑃𝑇𝐴 + ⋯
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Linear algebra

• The fundamental matrix

𝐹 = 𝑃𝑇𝑇 + 𝑃𝑇𝑇
2 + ⋯ = 

𝑖=1

∞

𝑃𝑇𝑇
𝑖 = 1 − 𝑃𝑇𝑇

−1

• 𝐹 𝑖, 𝑗 =The sum of probabilities of visiting transient 
state 𝑡𝑗 when starting from state 𝑡𝑖 after any number of 
steps

• Also: The expected number of visits to transient state 
𝑡𝑗 when starting from state 𝑡𝑖 after any number of 
steps 

• The transient-to-absorbing matrix 𝑄
𝑄 = 𝐹𝑃𝑇Α



Propagating values

• Assume that Red has a positive value and Blue a 
negative value

• We can compute a value for all transient nodes in the 
same way we compute probabilities
– This is the expected value at the absorbing node for the 

random walk that starts from a transient node
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1

5
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2

5
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 −

1

6
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Propagating values

• Assume that Red has a positive value and Blue a 
negative value

• We can compute a value for all transient nodes in the 
same way we compute probabilities
– This is the expected value at the absorbing node for the 

non-absorbing node

+1

-1

0.05 -0.16

0.16 2

2

1

1

1
2

1

General equation for value propagation:

𝑣 𝑖 = 

𝑖,𝑗 ∈𝐸

𝑃 𝑖, 𝑗 𝑣(𝑗)

The value of 𝑖 is the weighted average of 
the values of its neighbors



Linear algebra

• Computation of values is essentially 
multiplication of the matrix 𝑄 with the vector 
of values of the absorbing nodes

𝒗 = 𝑄𝒔

– 𝒔: vector of values of the absorbing nodes

– 𝒗: vector of values of the transient nodes



Electrical networks and random walks

• Our graph corresponds to an electrical network
• There is a positive voltage of +1 at the Red node, and a negative 

voltage -1 at the Blue node
• There are resistances on the edges inversely proportional to the 

weights (or conductance proportional to the weights)
• The computed values are the voltages at the nodes

+1
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Springs and random walks

• Our graph corresponds to a spring system
• The Red node is pinned at position +1, while the Blue node is 

pinned at position -1 on a line. 
• There are springs on the edges with hardness proportional to the 

weights 
• The computed values are the positions of the nodes on the line



Springs and random walks

• Our graph corresponds to a spring system
• The Red node is pinned at position +1, while the Blue node is 

pinned at position -1 on a line. 
• There are springs on the edges with hardness proportional to the 

weights 
• The computed values are the positions of the nodes on the line

0.05-0.16

0.16



Label Propagation and 
Transductive Learning

• If we have a graph of relationships and some labels on some nodes 
we can propagate them to the remaining nodes 
– Make the labeled nodes to be absorbing and compute the absorption 

probabilities for the rest of the graph
– E.g., a social network where some people are tagged as spammers
– E.g., the movie-actor graph where some movies are tagged as action 

or comedy. 

• This is a form of semi-supervised learning/classification 
– We make use of the unlabeled data, and the relationships

• It is also called transductive learning because it does not produce a 
model, but just labels the unlabeled data that is at hand.
– Contrast to inductive learning that learns a model and can label any 

new example



Back to opinion formation

• The value propagation we described is closely related 
to the opinion formation process/game we defined.
– Can you see how we can use absorbing random walks to 

model the opinion formation for the network below?
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s = +0.5

s = -0.3

s = -0.1s = +0.2

s = +0.8
Reminder:

𝑧𝑖 =
𝑠𝑖 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗𝑧𝑗

1 + σ𝑗∈𝑁(𝑖) 𝑤𝑖𝑗



Opinion formation and absorbing 
random walks

2

2

1

1

1
2

1

1

1

1 1

1

s = +0.5

s = -0.3

s = -0.1s = -0.5

s = +0.8

The expressed opinion for each 
node is computed using the 
value propagation we described

• Repeated averaging

Add to the network one 
absorbing node per user with 
value the intrinsic opinion of 
the user

z = +0.22z = +0.17

z = -0.03
z = 0.04

z = -0.01

Connect each transient node 
to her absorbing node with 
weight 𝑤𝑖𝑖

It is equal to the expected intrinsic opinion at the place of absorption

𝑣 𝑟𝑒𝑑 =
0.5 + 2 ⋅ 𝑣 𝑦𝑒𝑙𝑙𝑜𝑤 + 𝑣(𝑔𝑟𝑒𝑒𝑛)

4
𝑧𝑟𝑒𝑑 =

0.5 + 2 ⋅ 𝑧𝑦𝑒𝑙𝑙𝑜𝑤 + 𝑧𝑔𝑟𝑒𝑒𝑛

4



Opinion of a user

• For an individual user u

– u’s absorbing node is a stationary point 

– u’s transient node is connected to the absorbing 
node with a spring. 

– The neighbors of u pull with their own springs.





Opinion maximization problem

• Public opinion:

𝑔 𝑧 = 

𝑖∈𝑉

𝑧𝑖

• Problem: Given a graph G, the given opinion formation 
model, the intrinsic opinions of the users, and a budget 
k, perform k interventions such that the public opinion 
is maximized.

• Useful for image control campaign.

• What kind of interventions should we do?



Possible interventions

1. Fix the expressed opinion of k nodes to the maximum value 1.
– Essentially, make these nodes absorbing, and give them value 1.

2. Fix the intrinsic opinion of k nodes to the maximum value 1.
– Easy to solve, we know exactly the contribution of each node to the 

overall public opinion.

3. Change the underlying network to facilitate the propagation of 
positive opinions.
– For undirected graphs this is not possible

𝑔 𝑧 = 

𝑖

𝑧𝑖 = 

𝑖

𝑠𝑖

– The overall public opinion does not depend on the graph structure!
– What does this mean for the wisdom of crowds?



Fixing the expressed opinion
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Fixing the expressed opinion
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Opinion maximization problem

• The opinion maximization problem is NP-hard.

• The public opinion function is monotone and 
submodular

– The Greedy algorithm gives a 1 −
1

𝑒
-approximate 

solution

• In practice Greedy is slow. Heuristics that use 
random walks perform well.

A. Gionis, E. Terzi, P. Tsaparas. Opinion Maximization in Social Networks. SDM 2013



Additional models

• Ising model

• Voter model

• Bounded confidence models

• Axelrod cultural dynamics model



A Physics-based model

• The Ising ferromagnet model:
– A user 𝑖 is a “spin” 𝑠𝑖 that can assume two values: ±1
– The total energy of the system is 

𝐻 = −
1

2


𝑖,𝑗

𝑠𝑖𝑠𝑗

Defined over the neighboring pairs

– A spin is flipped with probability exp(−
ΔE

T
) where Δ𝐸 is the 

change in energy, and T is the “temperature” of the system.

• The model assumes no topology
– Complete graph (all-with-all), or regular lattice.

• For low temperatures, the system converges to a single 
opinion



The Voter model

• Each user has an opinion that is an integer value 

– Usually opinions are in {0,1} but multiple opinion 
values are also possible.

• Opinion formation process:

– At each step we select a user at random

– The user selects one of its neighbors at random 
(including herself) and adopts their opinion

• The model can be proven to converge for certain 
topologies. 



Bounded confidence model

• Confirmation bias: People tend to accept 
opinions that agree with them

– “Why facts don’t change our minds” (New Yorker)

• Bounded Confidence model: A user 𝑖 is 
influenced by a neighbor 𝑗 only if

𝑧𝑖 − 𝑧𝑗 ≤ 𝜖

for some parameter 𝜖

https://www.newyorker.com/magazine/2017/02/27/why-facts-dont-change-our-minds


Bounded Confidence models

• Defuant model: Given a parameter 𝜇 at time 𝑡, a randomly 
selected user 𝑖 selects a neighbor 𝑗 at random, and if 
𝑧𝑖

𝑡 − 𝑧𝑗
𝑡 ≤ 𝜖 their opinions are updated as:

𝑧𝑖
𝑡+1 = 𝑧𝑖

𝑡 + 𝜇(𝑧𝑗
𝑡 − 𝑧𝑖

𝑡)

𝑧𝑗
𝑡+1 = 𝑧𝑗

𝑡 + 𝜇(𝑧𝑖
𝑡 − 𝑧𝑗

𝑡)

• Hegselmann-Krause (HK) model: Each node 𝑖 updates their 
opinions as the average of the opinions of the neighbors 
that agree with them

𝑧𝑖
𝑡 =

𝑤𝑖𝑖𝑧𝑖
𝑡−1 + σ

𝑗∈𝑁 𝑖 : 𝑧𝑖
𝑡−𝑧𝑗

𝑡 ≤𝜖
𝑤𝑖𝑗𝑧𝑗

𝑡−1

𝑤𝑖𝑖 + σ
𝑗∈𝑁 𝑖 : 𝑧𝑖

𝑡−𝑧𝑗
𝑡 ≤𝜖

𝑤𝑖𝑗

Similar to Voter model

Similar to DeGroot model



Bounded Confidence models
• Depending on the parameter 𝜖 and the initial opinions, bounded 

confidence models can lead to plurality (multiple opinions), polarization 
(two competing opinions), or consensus (single opinion)



Axelrod model

• Cultural dynamics: Goes beyond single opinions, and looks 
at different features/habits/traits
– Tries to model the effects of social influence and homophily.

• Model: 
– Each user 𝑖 has a vector 𝜎𝑖  of 𝐹 features
– A user 𝑖 decides to interact with user 𝑗 with probability 

𝜔𝑖𝑗 =
1

F


𝑓=1

𝐹

𝛿(𝜎𝑖 𝑓 , 𝜎𝑗(𝑓))

– If there is interaction, the user changes one of the disagreeing 
features to the value of the neighbor

• The state where all users have the same features is an 
equilibrium, but it is not always reached (cultural pockets) 

Fraction of common features



Empirical measurements

• There have been various experiments for validating the 
different models in practice

• Das, Gollapudi, Munagala (WSDM 2014)
– User surveys: 

• estimate number of dots in images
• Estimate annual sales of various brands.

– For each survey:
• Users asked to provide initial answers on all questions in the 

survey
• Then, each user shown varying number of (synthetic) neighboring 

answers.
• Users given opportunity to update their answers



Online User Studies

• Define 𝑠 =
|𝑜𝑖−𝑜𝑓|

|𝑜𝑖−𝑜𝑒|
 

– (𝑜𝑖: original opinion, 𝑜𝑓: final opinion, 𝑜𝑒: closest neighboring opinion)

• User behavior categorized as: 
– Stubborn (𝑠 < 0.1)
– DeGroot (0.1 < 𝑠 <  0.9)
– Voter (𝑠 >  0.9)  

?



Voter vs DeGroot

Distribution over stubborn, deGroot and voter

• Voter model is prevalent for large number of neighbors, 

• DeGroot becomes more prevalent for smaller number of 
neighbors

Effect of number of neighboring opinions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Dots Cars/Soda

Stubborn

deGroot

VoterModel

0

0.1

0.2

0.3

0.4

0.5

0.6

20N 10N 5N 1N

Stubborn

deGroot

VoterModel



Biased Conforming Behavior

• Adoption of neighboring opinions not uniform random (unlike 
Voter Model)

• Users give higher weights to “close by” opinions



Biased Voter Model

• Users update their opinions iteratively

• At each iteration, a user sorts the opinions of her 
neighbors in increasing order of distance from her own 
opinion

• With probability 𝑝 she adopts the 1st  closest, else with 
probability 𝑝 she adopts the 2nd closest, else …

• If no opinion has been adopted, with probability 𝛼 she 
keeps her own opinion

• With probability 1 − 𝛼 she adopts an opinion chosen 
uniformly at random between her own opinion and the 
closest neighboring opinion

143



Other problems related to opinion 
formation

• Modeling polarization
– Understand why extreme opinions are formed and people 

cluster around them

• Modeling herding/flocking
– Understand under what conditions people tend to follow 

the crowd

• Modeling the backfire effect
– Understand when opposite opinions lead to strengthening 

your opinion, rather than moderating it

• Computational Sociology
– Use big data for studying and  modeling human social 

behavior.
R. Hegselmann, U. Krause. Opinion Dynamics and Bounded Confidence. Models, 
Analysis, and Simulation. Journal of Artificial Societies and Social Simulation (JASSS) 
vol.5, no. 3, 2002
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