Online Social Networks and Media

Community detection

Introduction

Real networks are not random graphs

Communities
aka: groups, clusters, cohesive subgroups, modules
(informal) Definition: groups of vertices which probably share common properties and/or play similar roles within the graph

Some are explicit (emic) (e.g., Facebook (groups), Linkedln (groups, associations), etc), we are interested in implicit (etic) ones

NCAA Football Network

Protein-Protein Interactions

Protein-Protein Interactions

Protein-Protein Interactions

Facebook Network

Facebook Network

Nodes: Facebook Users
Edges: Friendships

Twitter \& Facebook

friends under the same advisor

social circles, circles of trust

Collaboration Network

Collaboration network between scientists
working at the Santa Fe Institute.

The colors indicate high level communities and correspond to research divisions of the institute

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques
3. Background: How it relates to "cluster analysis" (node/edge similarity)
4. Betweeness centrality
5. Modularity, label propagation

Outline

PART II (next lecture)
Cuts and Spectral clustering,
Denser subgraphs
How to evaluate

We will revisit the issue when we talk about Graph ML

Why? (some applications)

- Knowledge discovery
- Groups based on common interests, behavior, etc (e.g., Canadians who call USA, readings tastes, etc)
- Recommendations, marketing
- Collective behavior observable at the group, not the individual level, local view is noisy and ad hoc
- Classification of the nodes by identifying modules and their boundaries
- To improve performance: partition a large graph into many machines, assigning web clients to web servers, routing in ad hoc networks, etc
- Summary, visual representation of the graph

Example: communities in Belgium

59\% Flemish, speaking Dutch 40\% Walloons speaking French

Community structure in Belgium

2 million mobile phone users
Nodes correspond to communities (only if > 100 members)
Red French, Green Dutch Connecting community Brussels

Community Types

Non-overlapping vs. overlapping communities

Non-overlapping Communities

Adjacency matrix

Overlapping Communities

What is the structure of community overlaps: Edge density in the overlaps is higher!

Communities as "tiles"

Community Types

Member-based (local) vs. group-based

Community Detection

Given a graph $G(V, E)$, find subsets C_{i} of V , such that $\mathrm{U}_{i} C_{i} \subseteq \mathrm{~V}$

Assumptions

- Undirected graphs
- Edges may have
- weights, (easily extended)
- labels
- content or attributes shared by individuals (in the same location, of the same gender, etc)
- Nodes may have labels, attributed, or labeled graphs

Multipartite graphs - e.g., affiliation networks, citation networks, customers-products: reduced to unipartited projections of each vertex class

Hardness

Bell Number

Number of all possible partitions of N nodes

For example, $B_{3}=5$

$$
B_{N}=\frac{1}{e} \sum_{j=0}^{\infty} \frac{j^{N}}{j!}
$$

For $N=50,1040$ partitions

Community Detection

We will see three approaches

- Node degree (familiarity)
- Cliques
- Density (next lecture)
- Similarity
- Cluster
- Node reachability
- Betweeness

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques
3. Background: cluster analysis (node/edge similarity)
4. Hierarchical clustering (betweenness)
5. Modularity

Cliques (degree similarity)

Clique: a maximum complete subgraph in which all pairs of vertices are connected by an edge.

A clique of size k is a subgraph of k vertices where the degree of all vertices in the induced subgraph is $k-1$.

\checkmark Cliques vs complete graphs

Cliques (degree similarity)

Search for:

- the maximum clique: the one with the largest number of vertices) or
- all maximal cliques: cliques that are not subgraphs of a larger clique; i.e., cannot be expanded further.

Both problems are NP-hard, as is verifying whether a graph contains a clique larger than size k.

Cliques

```
Algorithm 6.1 Brute-Force Clique Identification
Require: Adjacency Matrix \(A\), Vertex \(v_{x}\)
    1: return Maximal Clique \(C\) containing \(v_{x}\)
    2: CliqueStack \(=\left\{\left\{v_{x}\right\}\right\}\), Processed \(=\{ \}\);
    3: while CliqueStack not empty do
    4: \(\quad \mathrm{C}=\) pop(CliqueStack); push(Processed,C);
    5: \(\quad v_{\text {last }}=\) Last node added to C;
    6: \(\quad N\left(v_{\text {last }}\right)=\left\{v_{i} \mid A_{v_{\text {lass }}, v_{i}}=1\right\}\). /* Check all neighbors of last node sequentially
    7: for all \(v_{\text {temp }} \in N\left(v_{\text {last }}\right)\) do if connected with all members in the clique
    8. if \(C \backslash\) new clique \(->\) push */
    8: \(\quad\) if \(C \bigcup\left\{v_{\text {temp }}\right\}\) is a clique then
    9: \(\quad \operatorname{push}\left(\right.\) CliqueStack, \(\left.C \cup\left\{v_{\text {temp }}\right\}\right)\);
10: end if
11: end for
12: end while
13: Return the largest clique from Processed
```

Enumerate all cliques (in alphabetical order)
Checks all permutations!
For (complete graph) 100 vertices, $2^{99}-1$ different cliques

Cliques

Pruning

- Prune all vertices (and incident edges) with degrees less than $k-1$.
- Effective due to the power-law distribution of vertex degrees

Example. to find a clique ≥ 4, remove all nodes with degree $\leq(4-1)-1=2$

Remove nodes 2 and 9
Remove nodes 1 and 3
Remove node 4

Relaxing Cliques

Exact cliques are rarely observed in real networks.
E.g., a clique of 1,000 vertices has $(999 \times 1000) / 2=499,500$ edges.

- A single edge removal results in a subgraph that is no longer a clique.
- That represents less than 0.0002% of the edges

Relaxing Cliques I

All vertices have a minimum degree but not necessarily $k-1$
k-plex
For a set of vertices V_{0}, for all $u, d_{u} \geq\left|V_{0}\right|-k$ where d_{u} is the degree of v in the induced subgraph

What is k for a clique?

Maximal

$$
\begin{aligned}
& \text { 1-plex : }\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\} \\
& \text { 2-plex }:\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\},\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\} \\
& \text { 3-plex }:\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
\end{aligned}
$$

k-core

a maximal connected subgraph in which all vertices have degree at least k

Relaxing Cliques II

Clique $\quad \forall i \in C, d_{i}^{\text {int }}=|C|-1$
Strong community $\quad \forall i \in C, d_{i}^{\text {int }}>d_{i}^{\text {ext }}$
Weak community $\quad \sum_{i \in C} d_{i}^{\text {int }}>\sum_{i \in C} d_{i}^{\text {ext }}$

$d_{i}^{\text {int }}$ degree (\#edges) of node i with nodes inside C $d_{i}^{\text {ext }}$ degree (\#edges) of node i with nodes outside C

Clique Percolation Method (CPM): Using cliques as seeds

Assumption: communities are formed from a set of cliques and edges that connect these cliques.

Clique Percolation Method (CPM): Using cliques as seeds

```
Algorithm 6.2 Clique Percolation Method (CPM)
Require: parameter \(k\)
    1: return Overlapping Communities
    2: Cliques \(_{k}=\) find all cliques of size \(k\)
    3: Construct clique graph \(G(V, E)\), where \(|V|=\mid\) Cliques \(_{k} \mid\)
    4: \(E=\left\{e_{i j} \mid\right.\) clique \(i\) and clique \(j\) share \(k-1\) nodes \(\}\)
    5: Return all connected components of \(G\)
```

1. Given k, find all cliques of size k.
2. Create graph (clique graph) where all cliques are vertices, and two cliques that share $k-1$ vertices are connected via an edge.
3. Communities are the connected components of this graph.

Clique Percolation Method (CPM): Using cliques as seeds

Input graph, let $k=3$

Clique Percolation Method (CPM): Using cliques as seeds

Clique graph for $k=3$

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Clique Percolation Method (CPM): Using cliques as seeds

Result

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Note: the example protein network was detected using a CPM algorithm

Clique Percolation Method (CPM)

- By construction, overlapping communities
- Instead of $k=3$, maximal cliques
- Theoretical complexity grows exponential with size, but efficient on sparse graphs

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques
3. Background: cluster analysis (vertex/edge similarity)
4. Hierarchical clustering (betweenness)
5. Modularity

What is Cluster Analysis?

Finding groups of objects such that the objects in a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Types of Clustering

- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
- Division of data objects into subsets (clusters)
- Assumes that the number of clusters is given
- Hierarchical clustering
- A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Example Partitioning: K-means Clustering

1: Select K points as the initial centroids.
2: repeat
3: Form K clusters by assigning all points to the closest centroid.
4: Recompute the centroid of each cluster.
5: until The centroids don't change

- Input: Number of clusters, K
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid

Example

K-means Clustering

- Initial centroids are often chosen randomly.
- Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- Closeness - Similarity is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
- Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is $\mathrm{O}\left(\mathrm{n}^{*} \mathrm{~K} * \mathrm{I}^{*} \mathrm{~d}\right)$
- $n=$ number of points, $K=$ number of clusters,
$\mathrm{I}=$ number of iterations, $\mathrm{d}=$ number of attributes (cost of computing similarity)

K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
- For each point, the error is the distance to the nearest cluster
- To get SSE, we square these errors and sum them.

$$
S S E=\sum_{i=1}^{K} \sum_{x \in C_{i}} d i s t^{2}\left(m_{i}, x\right)
$$

$-x$ is a data point in cluster C_{i} and m_{i} is the representative point for cluster C_{i}

- can show that m_{i} corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Vertex similarity

- Define similarity between two vertices
- Place similar vertices in the same cluster
- Use traditional cluster analysis

Vertex similarity

- Structural equivalence: based on the overlap between their neighborhoods

$$
\sigma\left(v_{i}, v_{j}\right)=\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|
$$

- Normalized to [0, 1], e.g.,

$$
\sigma_{\text {Iaccard }}\left(v_{i}, v_{j}\right)=\frac{\left|N\left(v_{i}\right) \cap N\left(v_{j}\right)\right|}{\left|N\left(v_{i}\right) \cup N\left(v_{j}\right)\right|}
$$

Vertex similarity

$$
\sigma_{\text {Jaccard }}\left(v_{2}, v_{5}\right)=\frac{\left|\left\{v_{1}, v_{3}, v_{4}\right\} \cap\left\{v_{3}, v_{6}\right\}\right|}{\left|\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}\right|}=0.25
$$

Other definitions of vertex similarity

Use the adjacency matrix A,

$$
d_{i j}=\sqrt{\sum_{k \neq i, j}\left(A_{i k}-A_{j k}\right)^{2}}
$$

Common neighbors (paths of length two)

We can also use A^{2}

Other definitions of vertex similarity

If we map vertices u, v to n-dimensional points A, B in the Euclidean space,

$$
\begin{aligned}
& d_{A B}^{E}=\sum_{k=1}^{n} \sqrt{\left(a_{k}-b_{k}\right)^{2}} \\
& d_{A B}^{M}=\sum_{k=1}^{n}\left|a_{k}-b_{k}\right| \\
& d_{A B}^{\infty}=\max _{k \in[1, n]}\left|a_{k}-b_{k}\right| \\
& \rho_{A B}=\arccos \frac{\mathbf{a} \cdot \mathbf{b}}{\sqrt{\sum_{k=1}^{n} a_{k}^{2}} \sqrt{\sum_{k=1}^{n} b_{k}^{2}}}
\end{aligned}
$$

Other definitions of vertex similarity

Many more - we shall revisit this issue when we talk about graph embeddings

Useful when there are attributes associated with nodes or edges to combine distances

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
- A tree like diagram that records the sequences of merges or splits

Hierarchical Clustering

- Two main types of hierarchical clustering
- Agglomerative:
- Start with each node as an individual cluster (called singletons)
- At each step, merge the closest pair of clusters until only one cluster (or k clusters) is left
- Divisive:
- Start with one, all-inclusive cluster = the whole graph
- At each step, split a cluster until each cluster contains a single node (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
- Merge or split one cluster at a time

Agglomerative Clustering Algorithm

Popular hierarchical clustering technique

Basic algorithm is straightforward

1. [Compute the proximity matrix]
2. Let each node be a cluster
3. Repeat
4. Merge the two closest clusters
5. [Update the proximity matrix]
6. Until only a single cluster remains

Agglomerative

dendrogram
current clustering

Agglomerative

dendrogram

current clustering

Agglomerative

dendrogram
d.........ว..
current clustering

Agglomerative

Agglomerative

dendrogram
current clustering

Agglomerative

dendrogram
current clustering

Agglomerative

dendrogram
current clustering

Agglomerative

dendrogram

current clustering

Agglomerative

dendrogram :inl. 1.1
current clustering

Agglomerative

dendrogram

current clustering

Strengths of Hierarchical Clustering

- Do not have to assume a specific number of clusters
- Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
- Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Where to cut?

Agglomerative Clustering Algorithm

Key operation is the computation of the proximity of two clusters

- Different approaches to defining the distance between clusters distinguish the different algorithms

How to Define Inter-Cluster Similarity

	p 1	p 2	p 3	p 4	p 5	\ldots
p 1						
p 2						
p 3						
p 4						
p 5						
.						

How to Define Inter-Cluster Similarity

MIN or single link

The two most similar (closest) points in the different clusters

Proximity Matrix
sensitive to outliers

How to Define Inter-Cluster Similarity

MAX or complete linkage

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

The two least similar (most distant) points in the different clusters

Proximity Matrix

Tends to break large clusters Biased towards globular clusters

How to Define Inter-Cluster Similarity

	p1	p2	p3	p4	p5	\ldots
p1						
p2						
p3						
p4						
p5						
.						

Group Average

The average of pairwise proximity
Proximity Matrix between points in the two clusters.

Clustering

- Data is often non-linked (matrix rows)
- Clustering works on the distance or similarity matrix, e.g., k-means.
- If you use k-means with adjacency matrix rows, you are only considering the ego-centric network

Community detection

- Data is linked (a graph)
- Network data tends to be "discrete", leading to algorithms using the graph property directly
- k-clique, quasi-clique, or edge-betweenness
- But wait for embeddings

Outline

PART I

1. Introduction: what, why, types?
2. Cliques
3. Background: How it relates to "cluster analysis" (node/edge similarity)
4. Betweeness centrality
5. Modularity, label propagation

Example of a Hierarchically Structured Graph

Divisive Algorithms

c.
d. (A) B

Which edge to remove?

The Girvan Newman method

Hierarchical divisive method

- Start with the whole graph
- Find edges whose removal "partitions" the graph
- Repeat with each subgraph until single vertices

Which edge?

The Girvan Newman method

Use bridges or cut-edge (if removed, the nodes become disconnected)

Which one to choose?

The Girvan Newman method

There may be none!

Strength of Weak Ties

- Edge betweenness: Number of shortest paths passing over the edge
- Intuition: Assuming communication through shortest paths, captures traffic

> Edge betweenness in a real network

Edge Betweenness

Betweenness of an edge (a, b): number of pairs of nodes x and y such that the edge (a, b) lies on their shortest path
There can be multiple shortest paths, take the fraction that includes (a, b)

$$
\left.\operatorname{betweeness}(a, b)=\sum_{(x, y) \in E} \frac{\# s h o r t e s t _p a t h s}{}(x, y)_{_} \text {through }(a, b)\right)
$$

edges that have a high probability to occur on a randomly chosen shortest path between two randomly chosen nodes

Edge Betweenness

$$
\left.\operatorname{betweeness}(a, b)=\sum_{(x, y) \in E} \frac{\# s h o r t e s t _p a t h s}{}(x, y)_{_} \text {through }(a, b)\right)
$$

The Girvan Newman method

" Undirected unweighted networks

- Repeat until no edges are left:
- Calculate betweenness of edges
- Remove edges with highest betweenness
- Connected components are communities
- Gives a hierarchical decomposition of the network

Girvan Newman method: An example

Betweenness $(7,8)=7 \times 7=49$
$\operatorname{Betweenness(3,~7)=Betweenness(6,~7)=Betweenness(8,~9)~=~Betweenness(8,~12)=3\times 11=33~}$

Girvan-Newman: Example

Need to re-compute betweenness at every step

Girvan Newman method: An example

(a) Step 1

Betweenness $(1,3)=1 \times 5=5$
Betweenness(3,7)=Betweenness(6,7)=Betweenness(8,9) = Betweenness(8,12)=3x4=12

Girvan Newman method: An example

(8)

(b) Step 2

Betweenness of every edge = 1

Girvan Newman method: An example

Girvan-Newman: Example

Step 1:

Step 3:

(7) (8)

Step 2:

©
(8)

Hierarchical network decomposition:

Another example

Another example

(a) Step 1

Another example

(b) Step 2

Zachary's karate club

Interactions between 34 members of a karate club for over two years

- The club members split into two groups (gray and white)
- Disagreement between the administrator of the club (node 34) and the club's instructor of the club(node 1),
- The members of one group left to start their own club

The same communities can be found using community detection

Girvan-Newman: Results

- Zachary's Karate club: Hierarchical decomposition

Girvan-Newman: Results

Communities in physics collaborations

How to Compute Betweenness?

- Want to compute betweenness of paths starting at node A

Computing Betweenness

1. Perform a BFS starting from A
2. Determine the number of shortest path from A to each other node
3. Based on these numbers, determine the amount of flow from A to all other nodes that uses each edge

Computing Betweenness: step 1

Initial network

BFS on A

Computing Betweenness: step 2

Count how many shortest paths from A to a specific node

Computing Betweenness: step 3

Compute betweenness by working up the tree: If there are multiple paths count them fractionally

Computing Betweenness: step 3

Count the flow through each edge

Computing Betweenness: step 3

Computing Betweenness

Repeat the process for all nodes

Sum over all BFSs

Example

Example

Computing Betweenness

Issues

- Test for connectivity?
- Re-compute all paths, or only those affected
- Parallel computation
- Sampling

Centrality measures

Degree centrality

$\operatorname{closeness}(u)=\frac{1}{\sum_{v \in V, v \neq u} d(u, v)}$

A: Degree

B: Closeness

C: Betweenness

D: PageRank

Outline

PARTI

1. Introduction: what, why, types?
2. Cliques and vertex similarity
3. Background: Cluster analysis
4. Betweeness centrality
5. Modularity, label propagation
6. How to evaluate

Modularity

- Communities: sets of tightly connected nodes
- Define: Modularity Q
- A measure of how well a network is partitioned into communities

- Given a partitioning of the network into groups $s \in S$:
$Q \propto \sum_{s \in S}$ [(\# edges within group $\left.s\right)$ (expected \# edges within group s)]

Null Model: Configuration Model

- Given real G on n nodes and m edges, construct rewired network G^{\prime}
- Same degree distribution but random connections
- Consider \boldsymbol{G}^{\prime} as a multigraph

- The expected number of edges between nodes
i and j of degrees $\boldsymbol{d}_{\boldsymbol{i}}$ and $\boldsymbol{d}_{\boldsymbol{j}}$ equals to: $\boldsymbol{d}_{\boldsymbol{i}} \cdot \frac{\boldsymbol{d}_{\boldsymbol{j}}}{2 \boldsymbol{m}}=\frac{\boldsymbol{d}_{\boldsymbol{i}} \boldsymbol{d}_{\boldsymbol{j}}}{2 m}$
For any edge going out of i randomly, the probability of this
edge getting connected to node j is $\frac{d_{j}}{2 m}$
Note:
Because the degree for i is d_{j} we have d_{i} number of such edges
$\sum_{\text {an }}^{40-2 m}$

Null Model: Configuration Model

- The expected number of edges in (multigraph) G':

$$
\begin{aligned}
& -=\frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{d_{i} d_{j}}{2 m}=\frac{1}{2} \cdot \frac{1}{2 m} \sum_{i \in N} d_{i}\left(\sum_{j \in N} d_{j}\right)= \\
& -=\frac{1}{4 m} 2 m \cdot 2 m=m
\end{aligned}
$$

Modularity

- Given a degree distribution, we know the expected number of edges between any pairs of vertices
- We assume that real-world networks should be far from random.
- The more distant they are from this randomly generated network, the more structural they are.
- Modularity defines this distance and modularity maximization tries to maximize this distance

Consider a partitioning of the data into $\mathrm{S}=\left(s_{1}, s_{2}, s_{3}, \ldots, s_{k}\right)$

For partition s_{x}, this distance can be defined as

$$
\sum_{i, j \in s_{x}} A_{i j}-\frac{d_{i} d_{j}}{2 m}
$$

Modularity

- Modularity of partitioning S of graph G:
$-\mathrm{Q} \propto \sum_{s \in S}$ [(\# edges within group s) -
(expected \# edges within group s)]
$-Q(G, S)=\underbrace{\frac{1}{2 m}}_{\text {Normalizing cost.: - }-1<Q<1} \sum_{s \in S} \sum_{i \in s} \sum_{j \in s}\left(A_{i j}-\frac{d_{i} d_{j}}{2 m}\right)$
- Modularity values take range $[-1,1]$
- It is positive if the number of edges within groups exceeds the expected number
$-0.3-0.7<Q$ means significant community structure

Modularity

Greedy method of Newman (one of the many ways to use modularity)
Agglomerative hierarchical clustering method

1. Start with a state in which each vertex is the sole member of one of n communities
2. Repeatedly join communities together in pairs, choosing at each step the join that results in the greatest increase (or smallest decrease) in Q.

Since the joining of a pair of communities between which there are no edges can never result in an increase in modularity, we need only consider those pairs between which there are edges, of which there will at any time be at most m

Louvain Algorithm

- A greedy modularity optimization method for community detection
- Invented when all authors affiliated with Université catholique de Louvain (UCL)

Louvain Algorithm

Image from
Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. "Fast unfolding of communities in large networks." Journal of statistical mechanics: theory and experiment 2008, no. 10 (2008): P10008.

Louvain Algorithm

Start with a weighted network where all nodes are in their own communities (i.e., n communities)

First Phase:

- For each node v_{i},
- For all neighbors $v_{j} \in N\left(v_{i}\right)$:
- compute the modularity gain if v_{i} is removed from its community and placed in the community of v_{j}.
- Find the community with the maximum modularity gain
- If the maximum gain is positive, remove v_{i} from its community, and place it in that community
- If no positive gain, do not change communities
- Repeat until no node changes its community

Louvain Algorithm

- A point can be considered multiple times
- A local minima of modularity maximization is achieved in phase I
- Phase I is order dependent
- The modularity achieved is more or less stable and is less dependent on the initial order
- The computation time depends on the initial order.

Louvain Algorithm

Second Phase:

- Build a new network
- Nodes are communities
- Edges are the edges between nodes in the corresponding communities (weights are sum of the weights)
- Self-loops represent edges within the community
- The algorithm creates hierarchies of communities
- It usually ends in less than 10 passes

Modularity

- Modularity of partitioning S of graph G:

$$
\begin{aligned}
& -Q(G, S)=\frac{1}{2 m} \sum_{s \in S} \sum_{i \in S} \sum_{j \in S}\left(A_{i j}-\frac{d_{i} d_{j}}{2 m}\right) \\
& \sum_{i \in S j \in S} \sum_{]_{S}}\left(A_{i j}-\frac{d_{i} d_{j}}{2 m}\right)=\sum_{i \in S} \sum_{j \in S} A_{i j}-\sum_{i \in S} \sum_{\epsilon \in S} \frac{d_{i} d_{j}}{2 m}=L_{i n}-\frac{\left(s u m_{\text {degree }}\right)^{2}}{2 m}
\end{aligned}
$$

Modularity: Number of clusters

- Modularity is useful for selecting the number of clusters:

- i- i i i is ir

Modularity: Cluster quality

When a given clustering is "good"?

Also, it is both a local (per individual cluster) and global measure

Outline

PART I

1. Introduction: what, why, types?
2. Cliques and vertex similarity
3. Background: Cluster analysis
4. Betweeness centrality
5. Modularity, label propagation

Label propagation

Vertices are initially given unique labels (e.g., their vertex labels).

At each iteration, sweep over all vertices, in random sequential order: each vertex takes the label shared by the majority of its neighbors.
If no unique majority, one of the majority label is picked at random.
Stop (convergence) when each vertex has the majority label of its neighbors

Communities: groups of vertices having identical labels at convergence

Label propagation

- Labels propagate across the graph: most labels will disappear, others will dominate.
- By construction, each vertex has more neighbors in its community than in any other community.
- Due to many possible ties, different partitions
- Perform many propagations from the same initial condition, with different random seeds
- Aggregate partition label each vertex with the set of all labels it has in different partitions \rightarrow overlapping communities

Basic References

- Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets, Chapter 10, http://www.mmds.org/
- Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An Introduction, Chapter 6, http://www.socialmediamining.info/
- Santo Fortunato: Community detection in graphs. CoRR abs/0906.0612v2 (2010)
- Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Chapter 8, http://www.users.cs.umn.edu/~kumar/dmbook/index.php
- Albert-László Barabasi, Network Science, Chapter 9, http://networksciencebook.com/

Questions?

