
Online Social Networks and 
Media 

Community detection
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Real networks are not random graphs

Communities
aka: groups, clusters, cohesive subgroups, modules

(informal) Definition: groups of vertices which probably 
share common properties and/or play similar roles 
within the graph

Some are explicit (emic) (e.g., Facebook (groups), 
LinkedIn (groups, associations), etc), we are interested 
in implicit (etic) ones

Introduction
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Nodes: Football Teams
Edges: Games played

Can we identify node 
groups?

(communities, 
modules, clusters)



NCAA Football Network
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NCAA conferences

Nodes: Football Teams
Edges: Games played



Protein-Protein Interactions
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Can we identify 
functional 
modules?

Nodes: Proteins
Edges: Physical interactions



Protein-Protein Interactions
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Functional modules

Nodes: Proteins
Edges: Physical interactions



Protein-Protein Interactions
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Facebook Network
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Can we identify social 
communities?

Nodes: Facebook Users
Edges: Friendships



Facebook Network
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High school Summer
internship

Stanford (Squash) Stanford (Basketball)

Social communities

Nodes: Facebook Users
Edges: Friendships



Twitter & Facebook

social circles, circles of trust
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Collaboration network 
between scientists 
working at the         
Santa Fe Institute. 

The colors indicate high 
level communities and 
correspond to research 
divisions of the institute

Collaboration Network



PART I
1. Introduction: what, why, types?

2. Cliques

3. Background: How it relates to “cluster analysis”  
(node/edge similarity)

4. Betweeness centrality

5. Modularity, label propagation

Outline
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PART II (next lecture)
Cuts and Spectral clustering, 
Denser subgraphs
How to evaluate

We will revisit the issue when we talk about 
Graph ML

Outline
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Why? (some applications)

▪ Knowledge discovery
▪ Groups based on common interests, behavior, etc 

(e.g., Canadians who call USA, readings tastes, etc)

▪ Recommendations, marketing

▪ Collective behavior observable at the group, not the 
individual level, local view is noisy and ad hoc

▪ Classification of the nodes by identifying modules 
and their boundaries

▪ To improve performance: partition a large graph into 
many machines, assigning web clients to web 
servers, routing in ad hoc networks, etc

▪ Summary, visual representation of the graph
14
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59% Flemish, speaking Dutch  40% Walloons speaking French
Community structure in Belgium

Example: communities in Belgium

2 million mobile phone users
Nodes correspond to communities (only if > 100 
members) 
Red French, Green Dutch
Connecting community Brussels



Community Types

Non-overlapping vs. overlapping  communities
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Non-overlapping Communities

17

Network

Adjacency matrix

Nodes

N
o

d
es



Overlapping Communities
What is the structure of community overlaps:
Edge density in the overlaps is higher!
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Communities as “tiles”



Community Types

Member-based (local) vs. group-based
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Community Detection

Given a graph 𝐺(𝑉, 𝐸), find subsets 𝐶𝑖  of V, such that ڂ𝑖 𝐶𝑖   V

Assumptions
▪ Undirected graphs
▪ Edges may have

▪ weights, (easily extended)
▪ labels 
▪ content or attributes shared by individuals (in the same 

location, of the same gender, etc)
▪ Nodes may have labels, attributed, or labeled graphs

Multipartite graphs – e.g., affiliation networks, citation 
networks, customers-products: reduced to unipartited 
projections of each vertex class 

20



Hardness

21

Bell Number
Number of all possible partitions of N 
nodes

N

For N = 50, 1040 partitions

For example, 𝐵3 = 5 



Community Detection

We will see three approaches
▪ Node degree (familiarity)
▪ Cliques
▪ Density (next lecture)

▪ Similarity
▪ Cluster

▪ Node reachability
▪ Betweeness

22



PART I
1. Introduction: what, why, types?

2. Cliques
3. Background: cluster analysis (node/edge similarity)

4. Hierarchical clustering (betweenness)

5. Modularity

Outline
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Cliques (degree similarity)

Clique: a maximum complete subgraph in which all pairs of 
vertices are connected by an edge. 

A clique of size k is a subgraph of k vertices where the degree 
of all vertices in the induced subgraph is k -1 .

✓ Cliques vs complete graphs
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Cliques (degree similarity)

Search for: 
▪ the maximum clique: the one with the largest number of 

vertices) or 
▪ all maximal cliques: cliques that are not subgraphs of a larger 

clique; i.e., cannot be expanded further.

Both problems are NP-hard, as is verifying whether a graph
contains a clique larger than size k. 
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Cliques

Enumerate all cliques (in alphabetical order)
Checks all permutations! 
For (complete graph) 100 vertices, 299- 1 different cliques

26

/* Check all neighbors of last node sequentially 
            if connected with all members in the clique        

new clique -> push */



Cliques
Pruning
▪ Prune all vertices (and incident edges) with degrees less than 

k - 1. 

▪ Effective due to the power-law distribution of vertex degrees 

27

Example. to find a clique ≥ 4, remove all nodes 
with degree ≤ (4 − 1) − 1 = 2

Remove nodes 2 and 9

Remove nodes 1 and 3

Remove node 4



Relaxing Cliques

Exact cliques are rarely observed in real networks. 

E.g., a clique of 1,000 vertices has (999x1000)/2  = 499,500 
edges. 
▪ A single edge removal results in a subgraph that is no longer 

a clique. 
▪ That represents less than 0.0002% of the edges

28



Relaxing Cliques I
All vertices have a minimum degree but not necessarily k -1 

k-plex
For a set of vertices V0, for all u, du ≥  |V0| - k
where du is the degree of v in the induced subgraph 

What is k for a clique? Maximal

29

k-core 
a maximal connected subgraph in which all vertices have degree at least k



Relaxing Cliques II

30

Clique

Weak community

Strong community

∀ 𝑖 ∈ 𝐶, 𝑑𝑖
𝑖𝑛𝑡 = 𝐶 − 1

∀ 𝑖 ∈ 𝐶, 𝑑𝑖
𝑖𝑛𝑡 > 𝑑𝑖

𝑒𝑥𝑡



𝑖 ∈ 𝐶

𝑑𝑖
𝑖𝑛𝑡 >  

𝑖 ∈ 𝐶

𝑑𝑖
𝑒𝑥𝑡

𝑑𝑖
𝑖𝑛𝑡 degree (#edges) of node i 

with nodes inside C

𝑑𝑖
𝑒𝑥𝑡 degree (#edges) of node i 

with nodes outside C



Clique Percolation Method (CPM): 
Using cliques as seeds

Assumption: communities are formed from a set of cliques and 
edges that connect these cliques. 

31

k = 4



Clique Percolation Method (CPM): 
Using cliques as seeds

1. Given k,  find all cliques of size k. 
2. Create graph (clique graph) where all cliques are vertices, 

and two cliques that share k - 1 vertices are connected via 
an edge. 

3. Communities are the connected components of this graph. 
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Clique Percolation Method (CPM): 
Using cliques as seeds

Input graph, let k = 3
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Clique Percolation Method (CPM): 
Using cliques as seeds

Clique  graph for k = 3

34

(v1,  v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7,  v8)



Clique Percolation Method (CPM): 
Using cliques as seeds

35

(v1,  v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7,  v8)

Result

Note: the example protein network was detected using a CPM algorithm



Clique Percolation Method (CPM)

▪ By construction, overlapping communities

▪ Instead of k = 3, maximal cliques

▪ Theoretical complexity grows exponential 
with size, but efficient on sparse graphs

36



PART I
1. Introduction: what, why, types?

2. Cliques
3. Background: cluster analysis (vertex/edge similarity)

4. Hierarchical clustering (betweenness)

5. Modularity

Outline
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What is Cluster Analysis?
Finding groups of objects such that the objects in a group 
are similar (or related) to one another and different from 
(or unrelated to) the objects in other groups

Inter-cluster 
distances are 

maximized
Intra-cluster 
distances are 

minimized

38

Based on similarity (distance)



Types of Clustering

• Important distinction between hierarchical 
and partitional sets of clusters 

• Partitional Clustering
– Division of data objects into subsets (clusters)

– Assumes that the number of clusters is given

• Hierarchical clustering
– A set of nested clusters organized as a hierarchical tree 

39



Partitional Clustering

Original Points A Partitional  Clustering

40



Example Partitioning:
K-means Clustering

• Input: Number of clusters, K

• Each cluster is associated with a centroid (center point) 

• Each point is assigned to the cluster with the closest 
centroid

41



Example
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• Initial centroids are often chosen randomly.

– Clusters produced vary from one run to another.

• The centroid is (typically) the mean of the points in the 
cluster.

• Closeness - Similarity  is measured by Euclidean distance, 
cosine similarity, correlation, etc.

• K-means will converge for common similarity measures 
mentioned above.

• Most of the convergence happens in the first few iterations.

• Often the stopping condition is changed to ‘Until relatively few points change 
clusters’

• Complexity is O( n * K * I * d )
– n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes (cost of 
computing similarity)

K-means Clustering

43



K-means Clusters

• Most common measure is Sum of Squared Error (SSE)
– For each point, the error is the distance to the nearest cluster

– To get SSE, we square these errors and sum them.

– x is a data point in cluster Ci and mi is the representative point for 
cluster Ci 

•  can show that mi corresponds to the center (mean) of the cluster

– Given two clusters, we can choose the one with the smallest error

– One easy way to reduce SSE is to increase K, the number of clusters
•  A good clustering with smaller K can have a lower SSE than a poor 

clustering with higher K


= 

=
K
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i

i

xmdistSSE
1

2 ),(

44



Vertex similarity

▪ Define similarity between two vertices
▪ Place similar vertices in the same 

cluster

▪ Use traditional cluster analysis

45



Vertex similarity

▪ Structural equivalence: based on the 
overlap between  their neighborhoods

46

▪ Normalized to [0, 1], e.g.,



Vertex similarity

47



Other definitions of vertex similarity

48

Use the adjacency matrix A, 

We can also use 𝐴2  

Common neighbors 
(paths of length two)



Other definitions of vertex similarity
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If we map vertices u, v to n-dimensional points  A, B in the 
Euclidean space, 



Other definitions of vertex similarity

50

Many more – we shall revisit this issue when we talk about 
graph embeddings

Useful when there are attributes associated with nodes or 
edges to combine distances



Hierarchical Clustering 

• Produces a set of nested clusters organized as 
a hierarchical tree

• Can be visualized as a dendrogram

– A tree like diagram that records the sequences of 
merges or splits
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Hierarchical Clustering

• Two main types of hierarchical clustering
– Agglomerative:  

•  Start with each node as an individual cluster (called singletons)

•  At each step, merge the closest pair of clusters until only one cluster (or k 
clusters) is left

– Divisive:  
•  Start with one, all-inclusive cluster = the whole graph

•  At each step, split a cluster until each cluster contains a single node (or 
there are k clusters)

• Traditional hierarchical algorithms use a similarity or distance 
matrix
– Merge or split one cluster at a time

52



Agglomerative Clustering Algorithm

Popular hierarchical clustering technique

Basic algorithm is straightforward

1. [Compute the proximity matrix]
2. Let each node be a cluster
3. Repeat
4.  Merge the two closest clusters
5.  [Update the proximity matrix]
6. Until only a single cluster remains
 

53
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative
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Agglomerative



Strengths of Hierarchical Clustering

• Do not have to assume a specific number of 
clusters
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendogram at the proper level

• They may correspond to meaningful 
taxonomies
– Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …)

67



Where to cut?



Agglomerative Clustering Algorithm

Key operation is the computation of the proximity of 
two clusters

– Different approaches to defining the distance 
between clusters distinguish the different 
algorithms

69



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

Proximity Matrix

70



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

MIN  or single link

 The two most similar (closest) 
points in the different clusters

sensitive to outliers

71



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

MAX or complete linkage 

 The two least similar (most distant) 
points in the different clusters

72

Tends to break large clusters
Biased towards globular clusters



How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

Group Average

 The average of pairwise proximity 
between points in the two clusters.

73



Clustering

• Data is often non-linked (matrix rows)

• Clustering works on the distance or similarity matrix, 
e.g., 𝑘-means.

• If you use 𝑘-means with adjacency matrix rows, you 
are only considering the ego-centric network

Community detection

• Data is linked (a graph)

• Network data tends to be “discrete”, leading to 
algorithms using the graph property directly 

– 𝑘-clique, quasi-clique, or edge-betweenness 

– But wait for embeddings



PART I
1. Introduction: what, why, types?

2. Cliques

3. Background: How it relates to “cluster analysis”  
(node/edge similarity)

4. Betweeness centrality

5. Modularity, label propagation

Outline
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Example of a Hierarchically Structured 
Graph

76
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Divisive Algorithms

Which edge to 
remove?



The Girvan Newman method

78

Hierarchical divisive method
▪ Start with the whole graph
▪ Find edges whose removal  “partitions” the graph
▪ Repeat with each subgraph until single vertices

Which edge?



Use bridges or cut-edge (if removed, the nodes 
become disconnected)

Which one to choose?

79

The Girvan Newman method



80

The Girvan Newman method

There may be none!



Strength of Weak Ties
• Edge betweenness: Number of 

shortest paths passing over the edge
• Intuition:

81

Edge betweenness 
in a real network

Assuming communication through 
shortest paths, captures traffic



Edge Betweenness
Betweenness of an edge (a, b): number of pairs of nodes x and y such that the edge (a, b) 
lies on their shortest path 
There can be multiple shortest paths, take the fraction that includes (a, b)

7x7 = 49

3x11 = 33

1

1x12 = 12

edges that have a high probability to occur on a randomly chosen shortest path 
between two randomly chosen nodes

82

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑎, 𝑏 =  

𝑥,𝑦 ∈ 𝐸

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 𝑥, 𝑦 _𝑡ℎ𝑟𝑜𝑢𝑔ℎ(𝑎, 𝑏)

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝑥, 𝑦)



Edge Betweenness
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b=16
b=7.5

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑎, 𝑏 =  

𝑥,𝑦 ∈ 𝐸

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 𝑥, 𝑦 _𝑡ℎ𝑟𝑜𝑢𝑔ℎ(𝑎, 𝑏)

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝑥, 𝑦)



» Undirected unweighted networks

– Repeat until no edges are left:

• Calculate betweenness of edges

• Remove edges with highest betweenness

– Connected components are communities

– Gives a hierarchical decomposition of the network

84

[Girvan-Newman ‘02]

The Girvan Newman method



Girvan Newman method: An example

Betweenness(7, 8)= 7x7 = 49

Betweenness(3, 7)=Betweenness(6, 7)=Betweenness(8, 9) = Betweenness(8, 12)= 3x11=33

Betweenness(1, 3) = 1x12=12 85



Girvan-Newman: Example

86

Need to re-compute betweenness at every step

49
33

12
1



Girvan Newman method: An example

Betweenness(3,7)=Betweenness(6,7)=Betweenness(8,9) = Betweenness(8,12)= 3x4=12

Betweenness(1, 3) = 1x5=5

87



Girvan Newman method: An example

Betweenness of every edge = 1

88



Girvan Newman method: An example

89



Girvan-Newman: Example

90

Step 1: Step 2:

Step 3: Hierarchical network decomposition:



Another example

5x5=25

91



Another example

5x6=305x6=30

92



Another example

93



• The club members split into two groups (gray and white)

• Disagreement between the administrator of the club (node 34) and the 
club’s instructor of the club(node 1), 

• The members of one group left to start their own club

The same communities can be found 
using community detection

Zachary's 
karate club

Interactions between 34 
members of a karate club 
for over two years



Girvan-Newman: Results

• Zachary’s Karate club: 
Hierarchical decomposition

95



Girvan-Newman: Results

96
Communities in physics collaborations 



How to Compute Betweenness?

• Want to compute  betweenness of 
paths starting at node 𝐴

97



Computing Betweenness

1.Perform a BFS starting from A
2.Determine the number of shortest path 

from A to each other node
3.Based on these numbers, determine the 

amount of flow from A to all other nodes 
that uses each edge

98



Initial network BFS on A

99

Computing Betweenness: 
step 1



Count how many shortest paths from A to a specific 
node

100

Computing Betweenness: step 2

Top-down



Compute betweenness by working up the tree: If there 
are multiple paths count them fractionally

Bottom-up

101

Computing Betweenness: step 3



Count the flow through each 
edge

Portion of the 
shortest paths to K 
that go through (I, K) 
= 3/6 = 1/2

Portion of the shortest paths 
to  I that go through (F, I) = 2/3 
+  
Portion of the shortest paths 
to K that go through (F, I)
(2/3) (1/2) = 1/3
= 1

1/3+(1/3)1/2 = 1/2

102

Computing Betweenness: step 3



(X, Y) X

Y

pX

pY

.. .

Y1 Ym

103

Computing Betweenness: step 3

𝑓𝑙𝑜𝑤 𝑋, 𝑌 =
𝑝𝑋

𝑝𝑌
+  

𝑌𝑖 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑌

𝑝𝑋

𝑝𝑌
 𝑓𝑙𝑜𝑤(𝑌, 𝑌𝑖)



Computing Betweenness

Repeat the process for all nodes

Sum over all BFSs

104



Example

105



Example

106



Computing Betweenness

Issues

▪  Test for connectivity?

▪  Re-compute all paths, or only those affected

▪  Parallel computation

▪  Sampling

107



108

Centrality measures

Degree centrality
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PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Betweeness centrality

5. Modularity, label propagation

6. How to evaluate

Outline
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Modularity
• Communities: sets of 

tightly connected nodes

• Define: Modularity 𝑸

– A measure of how well 
a network is partitioned 
into communities

– Given a partitioning of the 
network into groups 𝑠

 
 𝑆:

 Q    ∑s S [ (# edges within group s) – 

                      (expected # edges within group s) ]

111

Need a null model!
a copy of the original graph keeping some of its structural 
properties but without community structure



Null Model: Configuration Model

• Given real 𝐺 on 𝑛 nodes and 𝑚 edges, 
construct rewired network 𝐺’

– Same degree distribution but 
random connections

– Consider 𝑮’ as a multigraph

– The expected number of edges between nodes 

𝑖 and 𝑗 of degrees 𝒅𝒊 and 𝒅𝒋 equals to: 𝒅𝒊 ⋅
𝒅𝒋

𝟐𝒎
=

𝒅𝒊𝒅𝒋

𝟐𝒎

112

j

i



𝑢∈𝑁

𝑑𝑢 = 2𝑚

Note:

For any edge going out of i randomly, the probability of this 

edge getting connected to node j is 
𝒅𝒋

𝟐𝒎

Because the degree for i is di, we have di number of such edges



Null Model: Configuration Model

• The expected number of edges in (multigraph) G’:

– =
𝟏

𝟐
σ𝒊∈𝑵 σ𝒋∈𝑵

𝒅𝒊𝒅𝒋

𝟐𝒎
=

𝟏

𝟐
⋅

𝟏

𝟐𝒎
σ𝒊∈𝑵 𝒅𝒊 σ𝒋∈𝑵 𝒅𝒋 =

–  =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎

113

j

i



▪ Given a degree distribution, we know the expected 
number of edges between any pairs of vertices 

▪ We assume that real-world networks should be far 
from random. 

▪ The more distant they are from this randomly 
generated network, the more structural they are.

▪ Modularity defines this distance and modularity 
maximization tries to maximize this distance

Modularity



Consider a partitioning of the data into S = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑘)

For partition 𝑠𝑥, this distance can 
be defined as

𝑠𝑥



Modularity

• Modularity of partitioning S of graph G:
– Q  ∑s S [ (# edges within group s) – 

                   (expected # edges within group s) ]

– 𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆 σ𝑖∈𝑠 σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚

• Modularity values take range [−1, 1]
– It is positive if the number of edges within 

groups exceeds the expected number

– 0.3-0.7 < Q means significant community structure

116

Aij = 1 if i→j, 

        0 elseNormalizing cost.: -1<Q<1



Modularity

117

Greedy method of Newman (one of the many ways 
to use modularity)

Agglomerative hierarchical clustering method 

1. Start with a state in which each vertex is the sole 
member of one of n communities

2. Repeatedly join communities together in pairs, 
choosing at each step the join that results in the 
greatest increase (or smallest decrease) in Q.

Since the joining of a pair of communities between which there are no 
edges can never result in an increase in modularity, we need only consider 
those pairs between which there are edges, of which there will at any time 
be at most m



– A greedy modularity optimization method for community 
detection

• Invented when all authors affiliated with      Université catholique 
de Louvain (UCL)

Louvain Algorithm



The algorithm has multiple passes
Each pass has two phases 

1. Modularity Optimization
2. Community Aggregation

Image from 
Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. "Fast unfolding of communities in large 
networks." Journal of statistical mechanics: theory and experiment 2008, no. 10 (2008): P10008.
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Start with a weighted network where all nodes are in their own communities (i.e., 
n communities)

First Phase:
• For each node 𝑣𝑖,

– For all neighbors 𝑣𝑗 ∈ 𝑁(𝑣𝑖): 

• compute the modularity gain if 𝑣𝑖 is removed from its community and 
placed in the community of 𝑣𝑗. 

– Find the community with the maximum modularity gain

– If the maximum gain is positive, remove 𝑣𝑖 from its community, and place 
it in that community

– If no positive gain, do not change communities

• Repeat until no node changes its community

Louvain Algorithm



• A point can be considered multiple times

• A local minima of modularity maximization is 
achieved in phase I

• Phase I is order dependent

– The modularity achieved is more or less stable and is less 
dependent on the initial order

– The computation time depends on the initial order.

Louvain Algorithm



Second Phase:

– Build a new network
• Nodes are communities

• Edges are the edges between nodes in the corresponding 
communities (weights are sum of the weights)

• Self-loops represent edges within the community

• The algorithm creates hierarchies of communities

• It usually ends in less than 10 passes

Louvain Algorithm



Modularity

• Modularity of partitioning S of graph G:

– 𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆 σ𝑖∈𝑠 σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚
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𝑖 ∈𝑆



𝑗 ∈𝑆

 𝐴𝑖𝑗 −
𝑑𝑖 𝑑𝑗

2𝑚
= 

𝑖 ∈𝑆



𝑗 ∈𝑆

𝐴𝑖𝑗  − 

𝑖 ∈𝑆



𝑗 ∈𝑆

𝑑𝑖 𝑑𝑗

2𝑚
= 𝐿𝑖𝑛 −

(𝑠𝑢𝑚𝑑𝑒𝑔𝑟𝑒𝑒)2

2𝑚
 



Modularity: Number of clusters
• Modularity is useful for selecting the 

number of clusters:
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Modularity: Cluster quality
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When a given clustering is “good”?

Also, it is both a local (per individual cluster) 
and global measure



PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Betweeness centrality

5. Modularity, label propagation

Outline
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Label propagation
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Vertices are initially given unique labels (e.g., their vertex labels). 

At each iteration,  
sweep over all vertices, in random sequential order: 

 each vertex takes the label shared by the majority of its 
neighbors.
 If no unique majority, one of the majority label is picked at 
random. 

Stop (convergence) when each vertex has the majority label of its 
neighbors

Communities: groups of vertices having identical labels at 
convergence  



Label propagation
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▪ Labels propagate across the graph: most labels will disappear, 
others will dominate.

▪ By construction, each vertex has more neighbors in its community 
than in any other community.

▪ Due to many possible ties, different partitions 
▪ Perform many propagations from the same initial condition, 

with different random seeds
▪ Aggregate  partition label each vertex with the set of all labels 

it has in different partitions → overlapping communities
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▪ Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets,  
Chapter 10, http://www.mmds.org/

▪ Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An 
Introduction, Chapter 6, http://www.socialmediamining.info/

▪ Santo Fortunato: Community detection in graphs. CoRR 
abs/0906.0612v2 (2010)

▪ Pang-Ning Tan, Michael Steinbach, Vipin Kumar,  Introduction to Data 
Mining, Chapter 8, 
http://www.users.cs.umn.edu/~kumar/dmbook/index.php

▪ Albert-László Barabasi, Network Science, Chapter 9, 
http://networksciencebook.com/

Basic References

http://www.socialmediamining.info/
http://www.users.cs.umn.edu/~kumar/dmbook/index.php
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Questions?
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