
Online Social Networks and
Media

Community detection

1

Real networks are not random graphs

Communities
aka: groups, clusters, cohesive subgroups, modules

(informal) Definition: groups of vertices which probably
share common properties and/or play similar roles
within the graph

Some are explicit (emic) (e.g., Facebook (groups),
LinkedIn (groups, associations), etc), we are interested
in implicit (etic) ones

Introduction

2

3

Nodes: Football Teams
Edges: Games played

Can we identify node
groups?

(communities,
modules, clusters)

NCAA Football Network

4

NCAA conferences

Nodes: Football Teams
Edges: Games played

Protein-Protein Interactions

5

Can we identify
functional
modules?

Nodes: Proteins
Edges: Physical interactions

Protein-Protein Interactions

6

Functional modules

Nodes: Proteins
Edges: Physical interactions

Protein-Protein Interactions

7

Facebook Network

8

Can we identify social
communities?

Nodes: Facebook Users
Edges: Friendships

Facebook Network

9

High school Summer
internship

Stanford (Squash) Stanford (Basketball)

Social communities

Nodes: Facebook Users
Edges: Friendships

Twitter & Facebook

social circles, circles of trust

10

Collaboration network
between scientists
working at the
Santa Fe Institute.

The colors indicate high
level communities and
correspond to research
divisions of the institute

Collaboration Network

PART I
1. Introduction: what, why, types?

2. Cliques

3. Background: How it relates to “cluster analysis”
(node/edge similarity)

4. Betweeness centrality

5. Modularity, label propagation

Outline

12

PART II (next lecture)
Cuts and Spectral clustering,
Denser subgraphs
How to evaluate

We will revisit the issue when we talk about
Graph ML

Outline

13

Why? (some applications)

▪ Knowledge discovery
▪ Groups based on common interests, behavior, etc

(e.g., Canadians who call USA, readings tastes, etc)

▪ Recommendations, marketing

▪ Collective behavior observable at the group, not the
individual level, local view is noisy and ad hoc

▪ Classification of the nodes by identifying modules
and their boundaries

▪ To improve performance: partition a large graph into
many machines, assigning web clients to web
servers, routing in ad hoc networks, etc

▪ Summary, visual representation of the graph
14

15

59% Flemish, speaking Dutch 40% Walloons speaking French
Community structure in Belgium

Example: communities in Belgium

2 million mobile phone users
Nodes correspond to communities (only if > 100
members)
Red French, Green Dutch
Connecting community Brussels

Community Types

Non-overlapping vs. overlapping communities

16

Non-overlapping Communities

17

Network

Adjacency matrix

Nodes

N
o

d
es

Overlapping Communities
What is the structure of community overlaps:
Edge density in the overlaps is higher!

18

Communities as “tiles”

Community Types

Member-based (local) vs. group-based

19

Community Detection

Given a graph 𝐺(𝑉, 𝐸), find subsets 𝐶𝑖 of V, such that ڂ𝑖 𝐶𝑖 V

Assumptions
▪ Undirected graphs
▪ Edges may have

▪ weights, (easily extended)
▪ labels
▪ content or attributes shared by individuals (in the same

location, of the same gender, etc)
▪ Nodes may have labels, attributed, or labeled graphs

Multipartite graphs – e.g., affiliation networks, citation
networks, customers-products: reduced to unipartited
projections of each vertex class

20

Hardness

21

Bell Number
Number of all possible partitions of N
nodes

N

For N = 50, 1040 partitions

For example, 𝐵3 = 5

Community Detection

We will see three approaches
▪ Node degree (familiarity)
▪ Cliques
▪ Density (next lecture)

▪ Similarity
▪ Cluster

▪ Node reachability
▪ Betweeness

22

PART I
1. Introduction: what, why, types?

2. Cliques
3. Background: cluster analysis (node/edge similarity)

4. Hierarchical clustering (betweenness)

5. Modularity

Outline

23

Cliques (degree similarity)

Clique: a maximum complete subgraph in which all pairs of
vertices are connected by an edge.

A clique of size k is a subgraph of k vertices where the degree
of all vertices in the induced subgraph is k -1 .

✓ Cliques vs complete graphs

24

Cliques (degree similarity)

Search for:
▪ the maximum clique: the one with the largest number of

vertices) or
▪ all maximal cliques: cliques that are not subgraphs of a larger

clique; i.e., cannot be expanded further.

Both problems are NP-hard, as is verifying whether a graph
contains a clique larger than size k.

25

Cliques

Enumerate all cliques (in alphabetical order)
Checks all permutations!
For (complete graph) 100 vertices, 299- 1 different cliques

26

/* Check all neighbors of last node sequentially
 if connected with all members in the clique

new clique -> push */

Cliques
Pruning
▪ Prune all vertices (and incident edges) with degrees less than

k - 1.

▪ Effective due to the power-law distribution of vertex degrees

27

Example. to find a clique ≥ 4, remove all nodes
with degree ≤ (4 − 1) − 1 = 2

Remove nodes 2 and 9

Remove nodes 1 and 3

Remove node 4

Relaxing Cliques

Exact cliques are rarely observed in real networks.

E.g., a clique of 1,000 vertices has (999x1000)/2 = 499,500
edges.
▪ A single edge removal results in a subgraph that is no longer

a clique.
▪ That represents less than 0.0002% of the edges

28

Relaxing Cliques I
All vertices have a minimum degree but not necessarily k -1

k-plex
For a set of vertices V0, for all u, du ≥ |V0| - k
where du is the degree of v in the induced subgraph

What is k for a clique? Maximal

29

k-core
a maximal connected subgraph in which all vertices have degree at least k

Relaxing Cliques II

30

Clique

Weak community

Strong community

∀ 𝑖 ∈ 𝐶, 𝑑𝑖
𝑖𝑛𝑡 = 𝐶 − 1

∀ 𝑖 ∈ 𝐶, 𝑑𝑖
𝑖𝑛𝑡 > 𝑑𝑖

𝑒𝑥𝑡

𝑖 ∈ 𝐶

𝑑𝑖
𝑖𝑛𝑡 >

𝑖 ∈ 𝐶

𝑑𝑖
𝑒𝑥𝑡

𝑑𝑖
𝑖𝑛𝑡 degree (#edges) of node i

with nodes inside C

𝑑𝑖
𝑒𝑥𝑡 degree (#edges) of node i

with nodes outside C

Clique Percolation Method (CPM):
Using cliques as seeds

Assumption: communities are formed from a set of cliques and
edges that connect these cliques.

31

k = 4

Clique Percolation Method (CPM):
Using cliques as seeds

1. Given k, find all cliques of size k.
2. Create graph (clique graph) where all cliques are vertices,

and two cliques that share k - 1 vertices are connected via
an edge.

3. Communities are the connected components of this graph.

32

Clique Percolation Method (CPM):
Using cliques as seeds

Input graph, let k = 3

33

Clique Percolation Method (CPM):
Using cliques as seeds

Clique graph for k = 3

34

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Clique Percolation Method (CPM):
Using cliques as seeds

35

(v1, v2, ,v3), (v8, v9, v10), and (v3, v4, v5, v6, v7, v8)

Result

Note: the example protein network was detected using a CPM algorithm

Clique Percolation Method (CPM)

▪ By construction, overlapping communities

▪ Instead of k = 3, maximal cliques

▪ Theoretical complexity grows exponential
with size, but efficient on sparse graphs

36

PART I
1. Introduction: what, why, types?

2. Cliques
3. Background: cluster analysis (vertex/edge similarity)

4. Hierarchical clustering (betweenness)

5. Modularity

Outline

37

What is Cluster Analysis?
Finding groups of objects such that the objects in a group
are similar (or related) to one another and different from
(or unrelated to) the objects in other groups

Inter-cluster
distances are

maximized
Intra-cluster
distances are

minimized

38

Based on similarity (distance)

Types of Clustering

• Important distinction between hierarchical
and partitional sets of clusters

• Partitional Clustering
– Division of data objects into subsets (clusters)

– Assumes that the number of clusters is given

• Hierarchical clustering
– A set of nested clusters organized as a hierarchical tree

39

Partitional Clustering

Original Points A Partitional Clustering

40

Example Partitioning:
K-means Clustering

• Input: Number of clusters, K

• Each cluster is associated with a centroid (center point)

• Each point is assigned to the cluster with the closest
centroid

41

Example

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

42

• Initial centroids are often chosen randomly.

– Clusters produced vary from one run to another.

• The centroid is (typically) the mean of the points in the
cluster.

• Closeness - Similarity is measured by Euclidean distance,
cosine similarity, correlation, etc.

• K-means will converge for common similarity measures
mentioned above.

• Most of the convergence happens in the first few iterations.

• Often the stopping condition is changed to ‘Until relatively few points change
clusters’

• Complexity is O(n * K * I * d)
– n = number of points, K = number of clusters,

I = number of iterations, d = number of attributes (cost of
computing similarity)

K-means Clustering

43

K-means Clusters

• Most common measure is Sum of Squared Error (SSE)
– For each point, the error is the distance to the nearest cluster

– To get SSE, we square these errors and sum them.

– x is a data point in cluster Ci and mi is the representative point for
cluster Ci

• can show that mi corresponds to the center (mean) of the cluster

– Given two clusters, we can choose the one with the smallest error

– One easy way to reduce SSE is to increase K, the number of clusters
• A good clustering with smaller K can have a lower SSE than a poor

clustering with higher K

=

=
K

i Cx

i

i

xmdistSSE
1

2),(

44

Vertex similarity

▪ Define similarity between two vertices
▪ Place similar vertices in the same

cluster

▪ Use traditional cluster analysis

45

Vertex similarity

▪ Structural equivalence: based on the
overlap between their neighborhoods

46

▪ Normalized to [0, 1], e.g.,

Vertex similarity

47

Other definitions of vertex similarity

48

Use the adjacency matrix A,

We can also use 𝐴2

Common neighbors
(paths of length two)

Other definitions of vertex similarity

49

If we map vertices u, v to n-dimensional points A, B in the
Euclidean space,

Other definitions of vertex similarity

50

Many more – we shall revisit this issue when we talk about
graph embeddings

Useful when there are attributes associated with nodes or
edges to combine distances

Hierarchical Clustering

• Produces a set of nested clusters organized as
a hierarchical tree

• Can be visualized as a dendrogram

– A tree like diagram that records the sequences of
merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5

51

Hierarchical Clustering

• Two main types of hierarchical clustering
– Agglomerative:

• Start with each node as an individual cluster (called singletons)

• At each step, merge the closest pair of clusters until only one cluster (or k
clusters) is left

– Divisive:
• Start with one, all-inclusive cluster = the whole graph

• At each step, split a cluster until each cluster contains a single node (or
there are k clusters)

• Traditional hierarchical algorithms use a similarity or distance
matrix
– Merge or split one cluster at a time

52

Agglomerative Clustering Algorithm

Popular hierarchical clustering technique

Basic algorithm is straightforward

1. [Compute the proximity matrix]
2. Let each node be a cluster
3. Repeat
4. Merge the two closest clusters
5. [Update the proximity matrix]
6. Until only a single cluster remains

53

54

Agglomerative

55

Agglomerative

56

Agglomerative

57

Agglomerative

58

Agglomerative

59

Agglomerative

60

Agglomerative

61

Agglomerative

62

Agglomerative

63

Agglomerative

64

Agglomerative

65

Agglomerative

66

Agglomerative

Strengths of Hierarchical Clustering

• Do not have to assume a specific number of
clusters
– Any desired number of clusters can be obtained

by ‘cutting’ the dendogram at the proper level

• They may correspond to meaningful
taxonomies
– Example in biological sciences (e.g., animal

kingdom, phylogeny reconstruction, …)

67

Where to cut?

Agglomerative Clustering Algorithm

Key operation is the computation of the proximity of
two clusters

– Different approaches to defining the distance
between clusters distinguish the different
algorithms

69

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

Proximity Matrix

70

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

MIN or single link

 The two most similar (closest)
points in the different clusters

sensitive to outliers

71

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

MAX or complete linkage

 The two least similar (most distant)
points in the different clusters

72

Tends to break large clusters
Biased towards globular clusters

How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

Group Average

 The average of pairwise proximity
between points in the two clusters.

73

Clustering

• Data is often non-linked (matrix rows)

• Clustering works on the distance or similarity matrix,
e.g., 𝑘-means.

• If you use 𝑘-means with adjacency matrix rows, you
are only considering the ego-centric network

Community detection

• Data is linked (a graph)

• Network data tends to be “discrete”, leading to
algorithms using the graph property directly

– 𝑘-clique, quasi-clique, or edge-betweenness

– But wait for embeddings

PART I
1. Introduction: what, why, types?

2. Cliques

3. Background: How it relates to “cluster analysis”
(node/edge similarity)

4. Betweeness centrality

5. Modularity, label propagation

Outline

75

Example of a Hierarchically Structured
Graph

76

77

Divisive Algorithms

Which edge to
remove?

The Girvan Newman method

78

Hierarchical divisive method
▪ Start with the whole graph
▪ Find edges whose removal “partitions” the graph
▪ Repeat with each subgraph until single vertices

Which edge?

Use bridges or cut-edge (if removed, the nodes
become disconnected)

Which one to choose?

79

The Girvan Newman method

80

The Girvan Newman method

There may be none!

Strength of Weak Ties
• Edge betweenness: Number of

shortest paths passing over the edge
• Intuition:

81

Edge betweenness
in a real network

Assuming communication through
shortest paths, captures traffic

Edge Betweenness
Betweenness of an edge (a, b): number of pairs of nodes x and y such that the edge (a, b)
lies on their shortest path
There can be multiple shortest paths, take the fraction that includes (a, b)

7x7 = 49

3x11 = 33

1

1x12 = 12

edges that have a high probability to occur on a randomly chosen shortest path
between two randomly chosen nodes

82

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑎, 𝑏 =

𝑥,𝑦 ∈ 𝐸

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 𝑥, 𝑦 _𝑡ℎ𝑟𝑜𝑢𝑔ℎ(𝑎, 𝑏)

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝑥, 𝑦)

Edge Betweenness

83

b=16
b=7.5

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑒𝑠𝑠 𝑎, 𝑏 =

𝑥,𝑦 ∈ 𝐸

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠 𝑥, 𝑦 _𝑡ℎ𝑟𝑜𝑢𝑔ℎ(𝑎, 𝑏)

#𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡_𝑝𝑎𝑡ℎ𝑠(𝑥, 𝑦)

» Undirected unweighted networks

– Repeat until no edges are left:

• Calculate betweenness of edges

• Remove edges with highest betweenness

– Connected components are communities

– Gives a hierarchical decomposition of the network

84

[Girvan-Newman ‘02]

The Girvan Newman method

Girvan Newman method: An example

Betweenness(7, 8)= 7x7 = 49

Betweenness(3, 7)=Betweenness(6, 7)=Betweenness(8, 9) = Betweenness(8, 12)= 3x11=33

Betweenness(1, 3) = 1x12=12 85

Girvan-Newman: Example

86

Need to re-compute betweenness at every step

49
33

12
1

Girvan Newman method: An example

Betweenness(3,7)=Betweenness(6,7)=Betweenness(8,9) = Betweenness(8,12)= 3x4=12

Betweenness(1, 3) = 1x5=5

87

Girvan Newman method: An example

Betweenness of every edge = 1

88

Girvan Newman method: An example

89

Girvan-Newman: Example

90

Step 1: Step 2:

Step 3: Hierarchical network decomposition:

Another example

5x5=25

91

Another example

5x6=305x6=30

92

Another example

93

• The club members split into two groups (gray and white)

• Disagreement between the administrator of the club (node 34) and the
club’s instructor of the club(node 1),

• The members of one group left to start their own club

The same communities can be found
using community detection

Zachary's
karate club

Interactions between 34
members of a karate club
for over two years

Girvan-Newman: Results

• Zachary’s Karate club:
Hierarchical decomposition

95

Girvan-Newman: Results

96
Communities in physics collaborations

How to Compute Betweenness?

• Want to compute betweenness of
paths starting at node 𝐴

97

Computing Betweenness

1.Perform a BFS starting from A
2.Determine the number of shortest path

from A to each other node
3.Based on these numbers, determine the

amount of flow from A to all other nodes
that uses each edge

98

Initial network BFS on A

99

Computing Betweenness:
step 1

Count how many shortest paths from A to a specific
node

100

Computing Betweenness: step 2

Top-down

Compute betweenness by working up the tree: If there
are multiple paths count them fractionally

Bottom-up

101

Computing Betweenness: step 3

Count the flow through each
edge

Portion of the
shortest paths to K
that go through (I, K)
= 3/6 = 1/2

Portion of the shortest paths
to I that go through (F, I) = 2/3
+
Portion of the shortest paths
to K that go through (F, I)
(2/3) (1/2) = 1/3
= 1

1/3+(1/3)1/2 = 1/2

102

Computing Betweenness: step 3

(X, Y) X

Y

pX

pY

.. .

Y1 Ym

103

Computing Betweenness: step 3

𝑓𝑙𝑜𝑤 𝑋, 𝑌 =
𝑝𝑋

𝑝𝑌
+

𝑌𝑖 𝑐ℎ𝑖𝑙𝑑 𝑜𝑓 𝑌

𝑝𝑋

𝑝𝑌
 𝑓𝑙𝑜𝑤(𝑌, 𝑌𝑖)

Computing Betweenness

Repeat the process for all nodes

Sum over all BFSs

104

Example

105

Example

106

Computing Betweenness

Issues

▪ Test for connectivity?

▪ Re-compute all paths, or only those affected

▪ Parallel computation

▪ Sampling

107

108

Centrality measures

Degree centrality

109

PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Betweeness centrality

5. Modularity, label propagation

6. How to evaluate

Outline

110

Modularity
• Communities: sets of

tightly connected nodes

• Define: Modularity 𝑸

– A measure of how well
a network is partitioned
into communities

– Given a partitioning of the
network into groups 𝑠

 𝑆:

 Q ∑s S [(# edges within group s) –

 (expected # edges within group s)]

111

Need a null model!
a copy of the original graph keeping some of its structural
properties but without community structure

Null Model: Configuration Model

• Given real 𝐺 on 𝑛 nodes and 𝑚 edges,
construct rewired network 𝐺’

– Same degree distribution but
random connections

– Consider 𝑮’ as a multigraph

– The expected number of edges between nodes

𝑖 and 𝑗 of degrees 𝒅𝒊 and 𝒅𝒋 equals to: 𝒅𝒊 ⋅
𝒅𝒋

𝟐𝒎
=

𝒅𝒊𝒅𝒋

𝟐𝒎

112

j

i

𝑢∈𝑁

𝑑𝑢 = 2𝑚

Note:

For any edge going out of i randomly, the probability of this

edge getting connected to node j is
𝒅𝒋

𝟐𝒎

Because the degree for i is di, we have di number of such edges

Null Model: Configuration Model

• The expected number of edges in (multigraph) G’:

– =
𝟏

𝟐
σ𝒊∈𝑵 σ𝒋∈𝑵

𝒅𝒊𝒅𝒋

𝟐𝒎
=

𝟏

𝟐
⋅

𝟏

𝟐𝒎
σ𝒊∈𝑵 𝒅𝒊 σ𝒋∈𝑵 𝒅𝒋 =

– =
𝟏

𝟒𝒎
𝟐𝒎 ⋅ 𝟐𝒎 = 𝒎

113

j

i

▪ Given a degree distribution, we know the expected
number of edges between any pairs of vertices

▪ We assume that real-world networks should be far
from random.

▪ The more distant they are from this randomly
generated network, the more structural they are.

▪ Modularity defines this distance and modularity
maximization tries to maximize this distance

Modularity

Consider a partitioning of the data into S = (𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑘)

For partition 𝑠𝑥, this distance can
be defined as

𝑠𝑥

Modularity

• Modularity of partitioning S of graph G:
– Q ∑s S [(# edges within group s) –

 (expected # edges within group s)]

– 𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆 σ𝑖∈𝑠 σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚

• Modularity values take range [−1, 1]
– It is positive if the number of edges within

groups exceeds the expected number

– 0.3-0.7 < Q means significant community structure

116

Aij = 1 if i→j,

 0 elseNormalizing cost.: -1<Q<1

Modularity

117

Greedy method of Newman (one of the many ways
to use modularity)

Agglomerative hierarchical clustering method

1. Start with a state in which each vertex is the sole
member of one of n communities

2. Repeatedly join communities together in pairs,
choosing at each step the join that results in the
greatest increase (or smallest decrease) in Q.

Since the joining of a pair of communities between which there are no
edges can never result in an increase in modularity, we need only consider
those pairs between which there are edges, of which there will at any time
be at most m

– A greedy modularity optimization method for community
detection

• Invented when all authors affiliated with Université catholique
de Louvain (UCL)

Louvain Algorithm

The algorithm has multiple passes
Each pass has two phases

1. Modularity Optimization
2. Community Aggregation

Image from
Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. "Fast unfolding of communities in large
networks." Journal of statistical mechanics: theory and experiment 2008, no. 10 (2008): P10008.

Louvain Algorithm

Start with a weighted network where all nodes are in their own communities (i.e.,
n communities)

First Phase:
• For each node 𝑣𝑖,

– For all neighbors 𝑣𝑗 ∈ 𝑁(𝑣𝑖):

• compute the modularity gain if 𝑣𝑖 is removed from its community and
placed in the community of 𝑣𝑗.

– Find the community with the maximum modularity gain

– If the maximum gain is positive, remove 𝑣𝑖 from its community, and place
it in that community

– If no positive gain, do not change communities

• Repeat until no node changes its community

Louvain Algorithm

• A point can be considered multiple times

• A local minima of modularity maximization is
achieved in phase I

• Phase I is order dependent

– The modularity achieved is more or less stable and is less
dependent on the initial order

– The computation time depends on the initial order.

Louvain Algorithm

Second Phase:

– Build a new network
• Nodes are communities

• Edges are the edges between nodes in the corresponding
communities (weights are sum of the weights)

• Self-loops represent edges within the community

• The algorithm creates hierarchies of communities

• It usually ends in less than 10 passes

Louvain Algorithm

Modularity

• Modularity of partitioning S of graph G:

– 𝑄 𝐺, 𝑆 =
1

2𝑚
σ𝑠∈𝑆 σ𝑖∈𝑠 σ𝑗∈𝑠 𝐴𝑖𝑗 −

𝑑𝑖𝑑𝑗

2𝑚

123

𝑖 ∈𝑆

𝑗 ∈𝑆

 𝐴𝑖𝑗 −
𝑑𝑖 𝑑𝑗

2𝑚
=

𝑖 ∈𝑆

𝑗 ∈𝑆

𝐴𝑖𝑗 −

𝑖 ∈𝑆

𝑗 ∈𝑆

𝑑𝑖 𝑑𝑗

2𝑚
= 𝐿𝑖𝑛 −

(𝑠𝑢𝑚𝑑𝑒𝑔𝑟𝑒𝑒)2

2𝑚

Modularity: Number of clusters
• Modularity is useful for selecting the

number of clusters:

124

Q

Modularity: Cluster quality

125

When a given clustering is “good”?

Also, it is both a local (per individual cluster)
and global measure

PART I
1. Introduction: what, why, types?

2. Cliques and vertex similarity

3. Background: Cluster analysis

4. Betweeness centrality

5. Modularity, label propagation

Outline

126

Label propagation

127

Vertices are initially given unique labels (e.g., their vertex labels).

At each iteration,
sweep over all vertices, in random sequential order:

 each vertex takes the label shared by the majority of its
neighbors.
 If no unique majority, one of the majority label is picked at
random.

Stop (convergence) when each vertex has the majority label of its
neighbors

Communities: groups of vertices having identical labels at
convergence

Label propagation

128

▪ Labels propagate across the graph: most labels will disappear,
others will dominate.

▪ By construction, each vertex has more neighbors in its community
than in any other community.

▪ Due to many possible ties, different partitions
▪ Perform many propagations from the same initial condition,

with different random seeds
▪ Aggregate partition label each vertex with the set of all labels

it has in different partitions → overlapping communities

129

▪ Jure Leskovec, Anand Rajaraman, Jeff Ullman, Mining of Massive Datasets,
Chapter 10, http://www.mmds.org/

▪ Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, Social Media Mining: An
Introduction, Chapter 6, http://www.socialmediamining.info/

▪ Santo Fortunato: Community detection in graphs. CoRR
abs/0906.0612v2 (2010)

▪ Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data
Mining, Chapter 8,
http://www.users.cs.umn.edu/~kumar/dmbook/index.php

▪ Albert-László Barabasi, Network Science, Chapter 9,
http://networksciencebook.com/

Basic References

http://www.socialmediamining.info/
http://www.users.cs.umn.edu/~kumar/dmbook/index.php

130

Questions?

	Slide 1: Online Social Networks and Media
	Slide 2
	Slide 3
	Slide 4: NCAA Football Network
	Slide 5: Protein-Protein Interactions
	Slide 6: Protein-Protein Interactions
	Slide 7: Protein-Protein Interactions
	Slide 8: Facebook Network
	Slide 9: Facebook Network
	Slide 10: Twitter & Facebook
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Community Types
	Slide 17: Non-overlapping Communities
	Slide 18: Overlapping Communities
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: What is Cluster Analysis?
	Slide 39: Types of Clustering
	Slide 40: Partitional Clustering
	Slide 41: Example Partitioning: K-means Clustering
	Slide 42: Example
	Slide 43: K-means Clustering
	Slide 44: K-means Clusters
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Hierarchical Clustering
	Slide 52: Hierarchical Clustering
	Slide 53: Agglomerative Clustering Algorithm
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Strengths of Hierarchical Clustering
	Slide 68: Where to cut?
	Slide 69: Agglomerative Clustering Algorithm
	Slide 70: How to Define Inter-Cluster Similarity
	Slide 71: How to Define Inter-Cluster Similarity
	Slide 72: How to Define Inter-Cluster Similarity
	Slide 73: How to Define Inter-Cluster Similarity
	Slide 74
	Slide 75
	Slide 76: Example of a Hierarchically Structured Graph
	Slide 77
	Slide 78: The Girvan Newman method
	Slide 79
	Slide 80
	Slide 81: Strength of Weak Ties
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Girvan Newman method: An example
	Slide 86: Girvan-Newman: Example
	Slide 87: Girvan Newman method: An example
	Slide 88: Girvan Newman method: An example
	Slide 89: Girvan Newman method: An example
	Slide 90: Girvan-Newman: Example
	Slide 91: Another example
	Slide 92: Another example
	Slide 93: Another example
	Slide 94
	Slide 95: Girvan-Newman: Results
	Slide 96: Girvan-Newman: Results
	Slide 97: How to Compute Betweenness?
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: Modularity
	Slide 112: Null Model: Configuration Model
	Slide 113: Null Model: Configuration Model
	Slide 114
	Slide 115
	Slide 116: Modularity
	Slide 117: Modularity
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: Modularity
	Slide 124: Modularity: Number of clusters
	Slide 125: Modularity: Cluster quality
	Slide 126
	Slide 127: Label propagation
	Slide 128: Label propagation
	Slide 129
	Slide 130

