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Online Social Networks and 
Media 

Graph ML
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Graph Machine Learning

Outline

Part I: Introduction, Traditional ML
Part II: Graph Embeddings
Part III: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on: 

 CS224W: Machine Learning with Graphs

 Jure Leskovec, Stanford University
http://cs224w.stanford.edu

http://cs224w.stanford.edu/
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Example Tasks

Tasks we will be able to solve:

• Node classification

– Predict the type of a given node

• Link prediction

– Predict whether two nodes are linked

• Community detection

– Identify densely linked clusters of nodes

• Network similarity

– How similar are two (sub)networks
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Recap: Node Embeddings

Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the graph 
are embedded close together 

f (    ) =
Input graph 2D node embeddings

How to learn mapping function 𝒇?



Recap: Node Embeddings
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Goal:

Need to define!

Input network d-dimensional 

embedding space

similarity 𝑢, 𝑣  ≈  𝐳𝑣
Τ𝐳𝑢



Recap: Two Key Components

• Encoder: Maps each node to a low-dimensional 
vector

• Similarity function: Specifies how the 
relationships in vector space map to the 
relationships in the original network
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Similarity of 𝑢 and 𝑣 in 

the original network
dot product between node 

embeddings

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣  ≈  𝐳𝑣
Τ𝐳𝑢

node in the input graph

d-dimensional 

embedding



Recap: “Shallow” Encoding

Simplest encoding approach: Encoder is just an 
embedding-lookup
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Dimension/size 

of embeddings

one column per node 

embedding 

matrix

embedding vector for a 

specific node

𝐙 =



Recap: Shallow Encoders

Limitations of shallow embedding methods:
– 𝑶(|𝑽|𝒅) parameters are needed: 

• No sharing of parameters between nodes

• Every node has its own unique embedding  

– Inherently “transductive”: 
• Cannot generate embeddings for nodes that are not 

seen during training

– Do not incorporate node features:
• Nodes in many graphs have features that we can and 

should leverage 
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Deep Graph Encoders

• Deep learning methods based on graph neural 
networks (GNNs):

Note: All these deep encoders can be combined 
with node similarity functions defined in 
previous lectures
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multiple layers of 
non-linear transformations 
based on graph structure

ENC 𝑣 =



11

Part III:
General Framework

A single GNN layer: Aggregation and Message
Layer connectivity: Stacking

Graph manipulations
Learning objectives

 



OVERVIEW AND GENERAL FRAMEWORK  
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Deep Graph Encoders
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…

Output: Node embeddings. 

Also, we can embed subgraphs, 

and graphs



Basics of Deep Learning
• Loss function:

min
Θ

ℒ(𝒚, 𝑓Θ 𝒙 )

• 𝑓 can be a simple linear layer, an MLP, or other neural 
networks (e.g., a GNN)

• Sample a minibatch of input 𝒙

• Forward propagation: Compute ℒ given 𝒙

• Back-propagation: Obtain gradient ∇Θℒ using a chain 
rule.

• Use stochastic gradient descent (SGD) to optimize 
ℒ for Θ over many iterations.
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Setup

Assume we have a graph 𝑮:
– 𝑉 is the set  of nodes 

– 𝑨 is the adjacency matrix (assume binary)

– 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.

𝑿 ∈ ℝ 𝑉 ×𝑚 is a matrix of node features

– Node features:

• Social networks: User profile, User image

• Biological networks: Gene expression profiles, gene 
functional information

• When there is no node feature in the graph dataset:
– Indicator vectors (one-hot encoding of a node)

– Vector of constant 1: [1, 1, …, 1]
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Idea: Convolutional Networks
CNN on an image:
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Can we generalize convolutions beyond simple lattices?

Leverage node features/attributes (e.g., text, images)

Nice description of CNNs: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53



Why is it hard?
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vs.

Networks Images

Text

Graphs are far more complex!

▪ No fixed notion of (spatial) locality or sliding window on the graph
▪ No fixed node ordering or reference point
▪ Often dynamic and have multimodal features

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

What if our data looks like this?

or this:

Graphs look like this:

arbitrary size and complex 
topological structure



A Naïve Approach

• Join adjacency matrix and features

• Feed them into a deep neural net:

• Issues with this idea:

• Issues with this idea:
– 𝑂(|𝑉|) parameters

– Not applicable to graphs of different sizes

– Sensitive to node ordering
18

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach
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• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]



Permutation Invariance
• Graph does not have a canonical order of the nodes!

• We can have many different order plans.
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Permutation Invariance
• Graph does not have a canonical order of the nodes!
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A B C D E FOrder plan 1



Permutation Invariance
• Graph does not have a canonical order of the nodes!
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A

B

C

D

E

F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E

F

A B C D E FOrder plan 2



Permutation Invariance
• Graph does not have a canonical order of the nodes!
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A
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D
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F

Node features 𝑿𝟏 Adjacency matrix 𝑨𝟏
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Node feature 𝑿𝟐 Adjacency matrix 𝑨𝟐

A

B

C

D

E
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A B C D E FOrder plan 2

Graph and node representations 
should be the same for Order plan 1 

and Order plan 2



Invariance and Equivariance

• Permutation-invariant 

𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇, 𝑃𝑋

• Permutation-equivariant

𝑃𝑓 𝐴, 𝑋 = 𝑓 𝑃𝐴𝑃𝑇 , 𝑃𝑋
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Permute the input, the output 

stays the same.

Permute the input, output also 

permutes accordingly.



Graph Neural Network Overview

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

• No

24

Switching the order of the input 
leads to different outputs!



Graph Neural Network Overview

Are other neural network architectures, e.g., 
MLPs, permutation invariant / equivariant?

• No.
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This explains why the naïve MLP approach 
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]



Graph Neural Network Overview
• Graph neural networks consist of multiple 

permutation equivariant/invariant functions.

26

[Bronstein, ICLR 2021 keynote]



Graph Convolutional Networks
Idea: The neighborhood of a node defines a 

computation graph

27

Determine node 
computation graph

Propagate and
transform information

𝑖

Learn how to propagate information across the graph 
to compute node features

[Kipf and Welling, ICLR 2017]



Idea: Aggregate Neighbors

Key idea: Generate node embeddings based on 
local network neighborhoods 
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Idea: Aggregate Neighbors

• Intuition: Nodes aggregate information from 
their neighbors using neural networks

29

Neural networks



Idea: Aggregate Neighbors

• Intuition: Network neighborhood defines a 
computation graph

30

Every node defines a computation 
graph based on its neighborhood!



Deep Model: Many Layers

• Model can be of arbitrary depth:
– Nodes have embeddings at each layer

– Layer-0 embedding of node 𝑣 is its input feature, 𝑥𝑣

– Layer-𝑘 embedding gets information from nodes that 
are 𝑘 hops away

31

Layer-2

Layer-1
Layer-0



Neighborhood Aggregation 
• Neighborhood aggregation: Key distinctions 

are in how different approaches aggregate 
information across the layers

32

?

?

?

?

What is in the box?



Neighborhood Aggregation

• Basic approach: Average information from 
neighbors and apply a neural network

33

(1) average messages 
from neighbors 

(2) apply neural network



The Math: Deep Encoder

• Basic approach: Average neighbor messages 
and apply a neural network
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Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after K 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣 at layer 𝑘

h𝑣
0 = x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘 

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0, … , 𝐾 − 1}

Notice summation is a permutation 
invariant pooling/aggregation.



Model Parameters

We can feed these embeddings into any loss function and 
run SGD to train the weight parameters

ℎ𝑣
𝑘: the hidden representation of node 𝑣 at layer 𝑘

• 𝑊𝑘: weight matrix for neighborhood aggregation

• 𝐵𝑘: weight matrix for transforming hidden vector of self
35

Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h𝑣
(0)

= x𝑣

z𝑣 = h𝑣
(𝐾)

h𝑣
(𝑘+1)

= 𝜎(W𝑘 

𝑢∈N(𝑣)

h𝑢
(𝑘)

N(𝑣)
+ B𝑘h𝑣

(𝑘)
), ∀𝑘 ∈ {0. . 𝐾 − 1}

weight matrices are 
shared 



GCN: Invariance and Equivariance

What are the invariance and equivariance 
properties for a GCN?

• Given a node, the GCN that computes its 
embedding is permutation invariant
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A
C

B

E
F

D

Target Node

D A

D

B

C

Shared NN weights

Average of neighbor’s previous layer 
embeddings - Permutation invariant 



𝒛𝐴

Training the Model

How do we train the GCN to 
generate embeddings?

Need to define a loss function on the embeddings.
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• Node embedding 𝒛𝑣 is a function of input graph
• Supervised setting: We want to minimize loss ℒ:

min
Θ

ℒ(𝒚, 𝑓Θ 𝒛𝑣 )

– 𝒚: node label
– ℒ could be L2 if 𝒚 is real number, or cross entropy if 𝒚 is 

categorical (loss in Maximum Likelihood Estimation)
• Cross entropy loss (CE):

– CE 𝒚, 𝑓 𝒙 = − σ𝑖=1
𝐶 (𝑦𝑖 log 𝑓Θ(𝑥)𝑖)

– 𝑦𝑖  and 𝑓Θ(𝑥)𝑖 are the actual and predicted values of the 𝑖-th class
– Intuition: the lower the loss, the closer the prediction is to one-hot 

• Unsupervised setting:
– No node label available
– Use the graph structure as the supervision!
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Unsupervised Training

One possible idea: “Similar” nodes have similar embeddings:

𝐦𝐢𝐧𝚯 ℒ = 

𝑧𝑢,𝑧𝑣

CE(𝑦𝑢,𝑣 , DEC 𝑧𝑢, 𝑧𝑣 )

• where 𝑦𝑢,𝑣 = 1 when node 𝑢 and 𝑣 are similar 

• 𝑧𝑢 = 𝑓Θ 𝑢  and DEC(⋅,⋅) is the dot product

Node similarity can be anything from embeddings, e.g., a 
loss based on:

– Random walks (node2vec, DeepWalk, struc2vec)

– Matrix factorization
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Supervised Training

Directly train the model for a supervised task 
(e.g., node classification)

40

Safe or toxic 
drug?

Safe or toxic 
drug?

E.g., a drug-drug 
interaction network



Supervised Training
Directly train the model for a supervised task 
(e.g., node classification)

Use cross entropy loss

41

Encoder output: 
node embedding

Classification 
weights

Node class 
label

Safe or toxic drug?

ℒ = − 

𝑣∈𝑉

𝑦𝑣log(𝜎(z𝑣
T𝜃)) + 1 − 𝑦𝑣 log(1 − 𝜎 z𝑣

T𝜃 )



Model Design: Overview

42

(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛𝐴



Model Design: Overview
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(3) Train on a set of nodes, i.e., 
a batch of compute graphs



Model Design: Overview

44

(4) Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!



Inductive Capability

• The same aggregation parameters are shared 
for all nodes:

– The number of model parameters is sublinear in 
|𝑉| and we can generalize to unseen nodes!

45

𝑊𝑘 𝐵𝑘



Inductive Capability: New Graphs
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Inductive node embedding          Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate 
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

z𝑢



Inductive Capability: New Nodes

47

Train with snapshot New node arrives
Generate embedding 

for new node

• Many application settings constantly encounter 
previously unseen nodes:

• E.g., Reddit, YouTube, Google Scholar

• Need to generate new embeddings “on the fly”

z𝑢



Summary so far

▪ How to build CNNs for graphs

use local neighborhood of a node

▪ Next: more details using a general GNN 
framework
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(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer 1

(4) Graph augmentation

(3) Layer 
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf
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▪ General Framework
▪ A single GNN layer: Aggregation and 

Message
▪ Layer Connectivity: Stacking
▪ Graph manipulations
▪ Learning objectives

Outline



A SINGLE GNN LAYER
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A GNN Layer
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(2) Aggregation

(1) Message

GNN Layer 2

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


A Single GNN Layer

• Idea of a GNN Layer:

– Compress a set of vectors into a single vector

– Two-step process:

• (1) Message

• (2) Aggregation

53

Input node embedding 𝐡𝑣
𝑙−1

 , 𝐡𝑢∈𝑁(𝑣)
𝑙−1

(from node itself + neighboring nodes)

𝒍-th GNN Layer

Output node embedding 𝐡𝑣
𝑙

 

(2) Aggregation

(1) Message

Node 𝒗



Message Computation

(1) Message computation

– Message function: 

• Intuition: Each node will create a message, which will 
be sent to other nodes

• Example: A Linear layer 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

– Multiply node features with weight matrix 𝐖 𝑙
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(2) Aggregation

(1) Message

Node 𝒗

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1



(2) Aggregation
• Intuition: Node 𝑣 will aggregate the messages from its 

neighbors 𝑢:

• Example: Sum(⋅), Mean ⋅ , or Max(⋅) aggregator

– 𝐡𝑣
𝑙

= Sum({𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁(𝑣)})

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙 , 𝑢 ∈ 𝑁 𝑣

Message Aggregation

55

(2) Aggregation

(1) Message

Node 𝒗



𝐡𝑣
𝑙

= CONCAT AGG 𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁 𝑣 , 𝐦𝑣
𝑙

Message Aggregation: Issue
Issue: Information from node 𝑣 itself could get lost

– Computation of 𝐡𝑣
(𝑙)

 does not directly depend on 𝐡𝑣
(𝑙−1)

Solution: Include 𝐡𝑣
(𝑙−1)

 when computing 𝐡𝑣
(𝑙)

– (1) Message: compute message from node 𝒗 itself

• Usually, a different message computation will be performed

– (2) Aggregation: After aggregating from neighbors, we can 
aggregate the message from node 𝒗 itself

• Via concatenation or summation
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𝐦𝑣
(𝑙)

= 𝐁 𝑙 𝐡𝑣
𝑙−1

𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

First aggregate from neighbors

Then aggregate from node itself



(2) Aggregation

(1) Message

A Single GNN Layer

Putting things together:

– (1) Message: each node computes a message

– (2) Aggregation: aggregate messages from neighbors

– Nonlinearity (activation): Adds expressiveness

• Often written as 𝜎(⋅). Examples: ReLU(⋅), Sigmoid(⋅), …

• Can be added to message or aggregation

57

𝐦𝑢
(𝑙)

= MSG 𝑙 𝐡𝑢
𝑙−1

, 𝑢 ∈ {𝑁 𝑣 ∪ 𝑣}

𝐡𝑣
(𝑙)

= AGG 𝑙 𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁 𝑣 , 𝐦𝑣
𝑙



Classical GNN Layers: GCN (1)
(1) Graph Convolutional Networks (GCN)

• How to write this as Message + Aggregation?
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𝐡𝑣
(𝑙)

= 𝜎 𝐖 𝑙 

𝑢∈𝑁 𝑣

𝐡𝑢
𝑙−1

𝑁 𝑣
 

𝐡𝑣
(𝑙)

= 𝜎 

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣
 

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf


Classical GNN Layers: GCN (2)
(1) Graph Convolutional Networks (GCN)

• Message: 

– Each Neighbor: 𝐦𝑢
(𝑙)

=
1

𝑁 𝑣
𝐖 𝑙 𝐡𝑢

𝑙−1

• Aggregation:

– Sum over messages from neighbors, then apply activation

– 𝐡𝑣
𝑙

= 𝜎 Sum 𝐦𝑢
𝑙

, 𝑢 ∈ 𝑁 𝑣
59

Normalized by node degree
(In the GCN paper they use a slightly 
different normalization)

𝐡𝑣
(𝑙)

= 𝜎 

𝑢∈𝑁 𝑣

𝐖 𝑙
𝐡𝑢

𝑙−1

𝑁 𝑣
 

(2) Aggregation

(1) Message

In GCN the input graph is 

assumed to have self-edges that 

are included in the summation.



Classical GNN Layers: GraphSAGE

(2) GraphSAGE

• How to write this as Message + Aggregation?

– Message is computed within the AGG ⋅

– Two-stage aggregation
• Stage 1: Aggregate from node neighbors

• Stage 2: Further aggregate over the node itself
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𝐡𝑣
(𝑙)

= 𝜎 𝐖(𝑙) ∙ CONCAT 𝐡𝑣
𝑙−1

, AGG 𝐡𝑢
𝑙−1

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑁(𝑣)
(𝑙)

← AGG 𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝑁 𝑣

𝐡𝑣
(𝑙)

← 𝜎 𝐖(𝑙) ⋅ CONCAT(𝐡𝑣
𝑙−1

, 𝐡𝑁(𝑣)
(𝑙)

)

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


• Mean: Take a weighted average of neighbors

• Pool: Transform neighbor vectors and apply 
symmetric vector function Mean(⋅) or Max(⋅)

• LSTM: Apply LSTM to reshuffled of neighbors

AGG = 

𝑢∈𝑁(𝑣)

𝐡𝑢
(𝑙−1)

𝑁(𝑣)

GraphSAGE Neighbor Aggregation

61

AGG = Mean({MLP(𝐡𝑢
(𝑙−1)

), ∀𝑢 ∈ 𝑁(𝑣)})

AGG = LSTM([𝐡𝑢
(𝑙−1)

, ∀𝑢 ∈ 𝝅 𝑁 𝑣 ])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

applied to a 
random 
permutation



GraphSAGE: L2 Normalization

ℓ2 Normalization: 

– Optional: Apply ℓ2 normalization to 𝐡𝑣
(𝑙)

 at every layer

– 𝐡𝑣
(𝑙)

←
𝐡𝑣

(𝑙)

𝐡𝑣
(𝑙)

2

 ∀𝑣 ∈ 𝑉 where 𝑢 2 = σ𝑖 𝑢𝑖
2 (ℓ2-

norm)

• Without ℓ2 normalization, the embedding vectors have 
different scales (ℓ2-norm) for vectors

• In some cases (not always), normalization of embedding 
results in performance improvement 

62



(3) Graph Attention Networks

▪ weighting factor (importance) of the message of node 𝑢 to 
node 𝑣

▪ In GCN and GraphSAGE:

– 𝛼𝑣𝑢 =
1

𝑁 𝑣
  defined explicitly based on the structural properties of the 

graph (node degree)

– All neighbors 𝑢 ∈ 𝑁(𝑣) are equally important to node 𝑣 

𝐡𝑣
(𝑙)

= 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

Classical GNN Layers: GAT (1)
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Attention weights

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]



(3) Graph Attention Networks

Not all node’s neighbors are equally important
– Attention is inspired by cognitive attention. 

– The attention 𝜶𝒗𝒖 focuses on the important parts of 
the input data and fades out the rest. 
• Idea: the NN should devote more computing power on that 

small but important part of the data. 

• Which part of the data is more important depends on the 
context and is learned through training.

𝐡𝑣
(𝑙)

= 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢
(𝑙−1)

)

Classical GNN Layers: GAT (2)
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Attention weights



Graph Attention Networks

Can weighting factors 𝛼𝑣𝑢 be learned?
 

• Goal: Specify arbitrary importance to different 
neighbors of each node in the graph

• Idea: Compute embedding 𝒉𝑣
(𝑙)

 of each node in 
the graph following an attention strategy:

– Nodes attend over their neighborhoods’ message

– Implicitly specifying different weights to different 
nodes in a neighborhood
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[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]



Attention Mechanism (1)
Let 𝛼𝑣𝑢 be computed as a byproduct of an 
attention mechanism 𝒂:

– (1) Let 𝑎 compute attention coefficients 𝒆𝒗𝒖 across 
pairs of nodes 𝑢, 𝑣 based on their messages:

𝑒𝑣𝑢 = 𝑎(𝐖(𝑙)𝐡𝑢
(𝑙−1)

, 𝐖(𝑙)𝒉𝑣
(𝑙−1)

)

• 𝒆𝒗𝒖 indicates the importance of 𝒖′𝐬 message to node 𝒗
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𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

𝑒𝐴𝐵

𝑒𝐴𝐵 = 𝑎(𝐖(𝑙)𝐡𝐴
(𝑙−1)

, 𝐖(𝑙)𝐡𝐵
(𝑙−1)

)



Attention Mechanism (2)
– Normalize 𝑒𝑣𝑢 into the final attention weight 𝜶𝒗𝒖 

• Use the softmax function, so that σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢 = 1:

𝛼𝑣𝑢 =
exp(𝑒𝑣𝑢)

σ𝑘∈𝑁 𝑣 exp(𝑒𝑣𝑘)

– Weighted sum based on the final attention weight 
𝜶𝒗𝒖:

𝐡𝑣
(𝑙)

= 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢𝐖(𝑙)𝐡𝑢
(𝑙−1)

)
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𝛼𝐴𝐵

Weighted sum using 𝛼𝐴𝐵, 𝛼𝐴𝐶, 𝛼𝐴𝐷:

𝐡𝐴
(𝑙)

= 𝜎(𝛼𝐴𝐵𝐖(𝑙)𝐡𝐵
(𝑙−1)

+𝛼𝐴𝐶𝐖(𝑙)𝐡𝐶
(𝑙−1)

+ 

𝛼𝐴𝐷𝐖(𝑙)𝐡𝐷
(𝑙−1)

)

𝐡𝐵
(𝑙−1)

𝐡𝐶
(𝑙−1)

𝛼𝐴𝐶

𝛼𝐴𝐷



Attention Mechanism (3)
What is the form of attention mechanism 𝒂?

– The approach is agnostic to the choice of 𝑎

• E.g., use a simple single-layer neural network
– 𝑎 have trainable parameters (weights in the Linear layer)

– Parameters of 𝑎 are trained jointly:

• Learn the parameters together with weight matrices (i.e., 

other parameter of the neural net 𝐖(𝑙)) in an end-to-end 
fashion
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𝑒𝐴𝐵 = 𝑎 𝐖(𝑙)𝐡𝐴
(𝑙−1)

, 𝐖(𝑙)𝐡𝐵
(𝑙−1)

= Linear Concat 𝐖(𝑙)𝐡𝐴
(𝑙−1)

, 𝐖(𝑙)𝐡𝐵
(𝑙−1)

𝐡𝐴
(𝑙−1)

𝐡𝐵
(𝑙−1)

Concatenate Linear
𝑒𝐴𝐵



Attention Mechanism (4)

• Multi-head attention: Stabilizes the learning process of 
attention mechanism
– Create multiple attention scores (each replica with a 

different set of parameters):

– 0utputs are aggregated:
• By concatenation or summation

• 𝐡𝑣
(𝑙)

= AGG(𝐡𝑣
(𝑙)

1 , 𝐡𝑣
(𝑙)

2 , 𝐡𝑣
(𝑙)

3 )
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𝐡𝑣
(𝑙)

[1] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢
1 𝐖(𝑙)𝐡𝑢

(𝑙−1)
)

𝐡𝑣
(𝑙)

[2] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢
2 𝐖(𝑙)𝐡𝑢

(𝑙−1)
)

𝐡𝑣
(𝑙)

[3] = 𝜎(σ𝑢∈𝑁 𝑣 𝛼𝑣𝑢
3 𝐖(𝑙)𝐡𝑢

(𝑙−1)
)



Benefits of Attention Mechanism

• Key benefit: Allows for (implicitly) specifying different 
importance values (𝜶𝒗𝒖) to different neighbors

• Computationally efficient: 
– Computation of attentional coefficients can be parallelized across all 

edges of the graph
– Aggregation may be parallelized across all nodes

• Storage efficient: 
– Sparse matrix operations do not require more than

𝑂(𝑉 + 𝐸) entries to be stored
– Fixed number of parameters, irrespective of graph size

• Localized:
– Only attends over local network neighborhoods

• Inductive capability: 
– It is a shared edge-wise mechanism
– It does not depend on the global graph structure
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GNN Layer in Practice

• In practice, these classic GNN 
layers are a great starting point

– We can often get better 
performance by considering a 
general GNN layer design 

– Concretely, we can include 
modern deep learning modules 
that proved to be useful in many 
domains
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf


GNN Layer in Practice

• Many modern deep learning modules can be 
incorporated into a GNN layer

– Attention/Gating:
• Control the importance of a message

– Batch Normalization:
• Stabilize neural network training

– Dropout:
• Prevent overfitting

– More:
• Any other useful deep learning modules
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J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf


Batch Normalization
• Goal: Stabilize neural networks training

• Idea: Given a batch of inputs (node embeddings)

– Re-center the node embeddings into zero mean 

– Re-scale the variance into unit variance

𝛍𝑗 =
1

𝑁


𝑖=1

𝑁

𝐗𝑖,𝑗Input: 𝐗 ∈ ℝ𝑁×𝑑

𝑁 node embeddings

Trainable Parameters: 
𝛄, 𝛃 ∈ ℝ𝐷

Output: 𝐘 ∈ ℝ𝑁×𝑑

Normalized node embeddings

𝛔𝑗
2 =

1

𝑁


𝑖=1

𝑁

𝐗𝑖,𝑗 − 𝛍𝑗
2

𝐗𝑖,𝑗 =
𝐗𝑖,𝑗 − 𝛍𝑗

𝛔𝑗
2 + 𝜖

𝐘𝑖,𝑗 = 𝛄𝑗
𝐗𝑖,𝑗 + 𝛃𝑗

Step 1: 
Compute the
mean and variance 
over 𝑵 embeddings

Step 2:
Normalize the feature 
using computed mean 
and variance

S. Loffe, C.Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, ICML 2015

https://arxiv.org/pdf/1502.03167.pdf


Dropout
• Goal: Regularize a neural net to prevent overfitting.

• Idea: 

– During training: with some probability 𝑝, randomly set 
neurons to zero (turn off)

– During testing: Use all the neurons for computation
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Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com


Dropout for GNNs
• In GNN, Dropout is applied to the 

linear layer in the message function

– A simple message function with linear 

layer: 𝐦𝑢
(𝑙)

= 𝐖 𝑙 𝐡𝑢
𝑙−1

75

Dropout
𝐡𝑢

𝑙−1
𝐦𝑢

(𝑙)

𝐖 𝑙

Visualization of a linear layer

(2) Aggregation

(1) Message



Activation (Non-linearity)

Apply activation to 𝒊-th dimension of 
embedding 𝐱

• Rectified linear unit (ReLU)
 ReLU 𝐱𝑖 = max(𝐱𝑖 , 0)

– Most commonly used

• Sigmoid

𝜎 𝐱𝑖 =
1

1 + 𝑒−𝐱𝑖

– Used only when you want to restrict the 
range of your embeddings

• Parametric ReLU
PReLU 𝐱𝑖 = max 𝐱𝑖 , 0 + 𝑎𝑖min(𝐱𝑖 , 0)

 𝑎𝑖  is a trainable parameter

– Empirically performs better than ReLU 76

𝑥

𝑦

0
𝑥

𝑦

0

1

𝑥

𝑦

0
𝑦 = 𝑎𝑥

𝑦 = 𝑥

𝑦 = 𝑥

𝑦 =
1

1 + 𝑒−𝑥



GNN Layer in Practice

• Summary: Modern deep learning 
modules can be included into a GNN 
layer for better performance

• Designing novel GNN layers is still 
an active research frontier

• You can explore diverse GNN designs 
or try out your own ideas in 
GraphGym
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A GNN Layer

https://github.com/snap-stanford/GraphGym


Summary

▪ Single GNN layer: 
▪ Message

▪ Aggregation

Apply ML modules
▪ Attention

▪ Drop out

▪ Normalization

▪ Non-linearity
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▪ General Framework
▪ A single GNN layer: Aggregation and 

Message
▪ Layer Connectivity: Stacking
▪ Graph manipulations
▪ Learning objectives

Outline



STACKING LAYERS
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Stacking GNN Layers
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GNN Layer 2

GNN Layer 1

(3) Layer 
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf


Stacking GNN Layers

• How to construct a Graph Neural Network?

– The standard way: Stack GNN layers sequentially

– Input: Initial raw node feature 𝐱𝑣

– Output: Node embeddings  𝐡𝑣
(𝐿)

 after 𝐿 GNN layers
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𝐡𝑣
(0)

= 𝐱𝑣

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)



The Over-Smoothing Problem

• The issue of stacking many GNN layers

– GNN suffers from the over-smoothing problem

• The over-smoothing problem: all the node 
embeddings converge to the same value

– This is bad because we want to use node 
embeddings to differentiate nodes

• Why does the over-smoothing problem 
happen?
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Receptive Field of a GNN

• Receptive field: the set of nodes that determine 
the embedding of a node of interest

– In a 𝑲-layer GNN, each node has a receptive field 
of 𝑲-hop neighborhood
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Receptive field for 
1-layer GNN

Receptive field for 
2-layer GNN

Receptive field for 
3-layer GNN



Receptive Field of a GNN

• Receptive field overlap for two nodes

– The shared neighbors quickly grows when we 
increase the number of hops (num of GNN layers)
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1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!



Receptive Field & Over-smoothing

• We can explain over-smoothing via the notion 
of the receptive field
– We know the embedding of a node is determined 

by its receptive field
• If two nodes have highly-overlapped receptive fields, 

then their embeddings are highly similar

– Stack many GNN layers → nodes will have highly-
overlapped receptive fields → node embeddings 
will be highly similar → suffer from the over-
smoothing problem

How do we overcome over-smoothing problem?
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Design GNN Layer Connectivity
What do we learn from the over-smoothing problem? 

• Lesson 1: Be cautious when adding GNN layers

– Unlike neural networks in other domains (CNN for image 
classification), adding more GNN layers do not always help

– Step 1: Analyze the necessary receptive field to solve your 
problem. E.g., by computing the diameter of the graph

– Step 2: Set number of GNN layers 𝐿 to be a bit more than the 
receptive field we like. Do not set 𝑳 to be unnecessarily 
large!

Question: How to enhance the expressive power of a 
GNN, if the number of GNN layers is small?
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Expressive Power for Shallow GNNs

• How to make a shallow GNN more expressive?

Solution 1: Increase the expressive power within each 
GNN layer

– In our previous examples, each transformation or 
aggregation function only include one linear layer

– We can make aggregation/transformation become a deep 
neural network!
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(2) Aggregation

(1) Transformation

If needed, each box could 
include a 3-layer MLP



Expressive Power for Shallow GNNs
• How to make a shallow GNN more expressive?

Solution 2: Add layers that do not pass messages

– A GNN does not necessarily only contain GNN layers
• E.g., we can add MLP layers (applied to each node) before and 

after GNN layers, as pre-process layers and post-process layers
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Pre-processing layers: Important when 
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when 
reasoning/transformation over node 
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!



Design GNN Layer Connectivity
• What if my problem still requires many GNN layers?

Lesson 2: Add skip connections in GNNs

– Observation from over-smoothing: Node embeddings in 
earlier GNN layers can sometimes better differentiate nodes

– Solution: We can increase the impact of earlier layers on the 
final node embeddings, by adding shortcuts in GNN

12/12/2023 90

Idea of skip connections:
Before adding shortcuts: 

𝑭 𝐱
After adding shortcuts: 

𝑭 𝐱 + 𝐱

Duplicate 
into two 
branches

Sum two 
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf


Idea of Skip Connections
• Why do skip connections work?

– Intuition: Skip connections create a mixture of models

– 𝑁 skip connections → 2𝑁 possible paths

– Each path could have up to 𝑁 modules

91Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 23 = 8

▪ We automatically get a mixture 
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431


Example: GCN with Skip Connections

• A standard GCN layer 

• 𝐡𝑣
(𝑙)

= 𝜎 σ𝑢∈𝑁 𝑣 𝐖 𝑙 𝐡𝑢
𝑙−1

𝑁 𝑣
 

• A GCN layer with skip connection

• 𝐡𝑣
(𝑙)

= 𝜎 σ𝑢∈𝑁 𝑣 𝐖 𝑙 𝐡𝑢
𝑙−1

𝑁 𝑣
 + 𝐡𝑣

(𝑙−1)
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This is our 𝑭 𝐱

𝑭(𝐱) + 𝐱



Other Options of Skip Connections

• Other options: Directly 
skip to the last layer

– The final layer directly 
aggregates from the all 
the node embeddings in 
the previous layers
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Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

𝐡𝑣
(1)

𝐡𝑣
(2)

𝐡𝑣
(3)

Input: 𝐡𝑣
(0)

Output: 𝐡𝑣
(𝑓𝑖𝑛𝑎𝑙)

https://arxiv.org/abs/1806.03536


Summary so far

A general perspective for GNNs

– GNN Layer: 

• Transformation + Aggregation

• Classic GNN layers: GCN, GraphSAGE, GAT

– Layer connectivity: 

• Deciding number of layers

• Skip connections
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▪ General Framework
▪ A single GNN layer: Aggregation and 

Message
▪ Layer Connectivity: Stacking
▪ Graph manipulations
▪ Learning objectives

Outline



GRAPH MANIPULATIONS
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General GNN Framework

97
(4) Graph manipulation

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

Idea: Raw input graph ≠ computational graph
• Graph feature augmentation
• Graph structure manipulation

https://arxiv.org/pdf/2011.08843.pdf


Why Manipulate Graphs
Our assumption so far has been 

• Raw input graph = computational graph

Reasons for breaking this assumption
– Feature level: 

• The input graph lacks features → feature augmentation

– Structure level:
• The graph is too sparse → inefficient message passing

• The graph is too dense → message passing is too costly

• The graph is too large → cannot fit the computational 
graph into a GPU

– It is just unlikely that the input graph happens to be 
the optimal computation graph for embeddings
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Graph Manipulation Approaches
• Graph Feature manipulation

– The input graph lacks features → feature 
augmentation

• Graph Structure manipulation

– The graph is too sparse → Add virtual nodes/edges

– The graph is too dense → Sample neighbors when 
doing message passing

– The graph is too large → Sample subgraphs to 
compute embeddings 
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Feature Augmentation on Graphs

Why do we need feature augmentation?

• (1) Input graph does not have node features

– This is common when we only have the adjacency 
matrix

Standard approaches:

(a) Assign constant values to nodes
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1

1

1

1

1

1



Feature Augmentation on Graphs

(b) Assign unique IDs to nodes

– These IDs are converted into one-hot vectors
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1

4

2

3

6

5

[0, 0, 0, 0, 1, 0]

Total number of IDs = 6

ID = 5

One-hot vector for node with ID=5



Feature Augmentation on Graphs

Feature augmentation: constant vs. one-hot

Constant node feature One-hot node feature

Expressive power Medium. All the nodes are 
identical, but GNN can still learn 
from the graph structure

High. Each node has a unique ID, 
so node-specific information can 
be stored

Inductive learning
(Generalize to 
unseen nodes)

High. Simple to generalize to new 
nodes: we assign constant 
feature to them, then apply our 
GNN

Low. Cannot generalize to new 
nodes: new nodes introduce new 
IDs, GNN doesn’t know how to 
embed unseen IDs

Computational 
cost

Low. Only 1 dimensional feature High. High dimensional feature, 
cannot apply to large graphs

Use cases Any graph, inductive settings 
(generalize to new nodes)

Small graph, transductive settings 
(no new nodes)

1

4

2

3

6

5

1

1

1

1

1

1



Feature Augmentation on Graphs

Why do we need feature augmentation?

(2) Certain structures are hard to learn by GNN

• Example: Cycle count feature

– Can GNN learn the length of a cycle that 𝑣1 resides in?

– Unfortunately, no

103

𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4



Feature Augmentation on Graphs

Why do we need feature augmentation?

• (2) Certain structures are hard to learn by GNN

• Solution: 

– We can use cycle count as augmented node features
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𝑣1 𝑣1

𝑣1 resides in a cycle with length 3 𝑣1 resides in a cycle with length 4

[0, 0, 0, 1, 0, 0] [0, 0, 0, 0, 1, 0]
We start 
from cycle 
with length 0

Augmented node feature for 𝒗𝟏 Augmented node feature for 𝒗𝟏

J. You, J. Gomes-Selman, R. Ying, J. Leskovec. Identity-aware Graph Neural Networks, AAAI 2021

Identity-aware%20Graph%20Neural%20Networks


Feature Augmentation on Graphs

Why do we need feature augmentation?

• (2) Certain structures are hard to learn by GNN

• Other commonly used augmented features:
– Clustering coefficient

– PageRank

– Centrality

– …

• Any feature we have introduced when we talked 
about traditional ML approaches  
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Add Virtual Nodes / Edges

Motivation: Augment sparse graphs

• (1) Add virtual edges

– Common approach: Connect 2-hop neighbors via 
virtual edges

– Intuition: Instead of using adjacency matrix 𝐴 for 
GNN computation, use 𝐴 + 𝐴2
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A

B

C

D

E

Authors Papers

▪ Use cases: Bipartite graphs

▪ Author-to-papers (they authored)

▪ 2-hop virtual edges make an author-author 
collaboration graph



Add Virtual Nodes / Edges
Motivation: Augment sparse graphs

(2) Add virtual nodes

– The virtual node will connect to all the 
nodes in the graph

• Suppose in a sparse graph, two nodes have 
shortest path distance of 10

• After adding the virtual node, all the nodes 
will have a distance of 2 
– Node A – Virtual node – Node B

– Benefits: Greatly improves message 
passing in sparse graphs

107

The virtual 
node



Node Neighborhood Sampling
Our approach so far:

– All the neighbors are used for message passing

• Problem: Dense/large graphs, high-degree nodes

New idea: (Randomly) determine a node’s 
neighborhood for message passing
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Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf


Neighborhood Sampling Example

For example, we can randomly choose 2 
neighbors to pass messages

– Only nodes 𝐵 and 𝐷 will pass message to 𝐴
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Neighborhood Sampling Example

Next time when we compute the embeddings, 
we can sample different neighbors

– Only nodes 𝐶 and 𝐷 will pass message to 𝐴
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Neighborhood Sampling Example

In expectation, we can get embeddings similar to 
the case where all the neighbors are used

– Benefits: Greatly reduce computational cost

– And in practice it works great!

111

Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://dl.acm.org/doi/abs/10.1145/3219819.3219890?casa_token=VNpSwK1pq_0AAAAA:OARlBJdJIGnQMyGUJfULBgPhtEF0yu2vgyHjHgemNaalHPVUUKCDN4Vors3g194zfxBOCG1OvnBjnA
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▪ General Framework
▪ A single GNN layer: Aggregation and 

Message
▪ Layer Connectivity: Stacking
▪ Graph augmentation
▪ Learning objectives

Outline



LEARNING WITH GNNS
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A General GNN Framework

114

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

How do we train a GNN?

https://arxiv.org/pdf/2011.08843.pdf


GNN Training Pipeline
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Prediction 
head

Predictions Labels

Loss 
function

Evaluation 
metrics

Graph 
Neural 
Network

Node 
embeddings

Input 
Graph

So far what we have covered

Output of a GNN: set of node embeddings

{𝐡𝑣
𝐿

, ∀𝑣 ∈ 𝐺}



GNN Prediction Heads

Idea: Different task levels require different 
prediction heads
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Graph-level 
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GNN Training Pipeline (1)
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(1) Different prediction heads:
- Node-level tasks
- Edge-level tasks
- Graph-level tasks



Prediction Heads: Node-level
Node-level prediction: We can directly make 
prediction using node embeddings

• After GNN computation, we have 𝑑-dim node 

embeddings: {𝐡𝑣
𝐿 ∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺}

• Suppose we want to make 𝑘-way prediction

– Classification: classify among 𝑘 categories

– Regression: regress on 𝑘 targets

• ෝ𝒚𝒗 = Headnode(𝐡𝑣
𝐿 ) = 𝐖(𝐻)𝐡𝑣

(𝐿)

– 𝐖(𝐻) ∈ ℝ𝑘×𝑑 : We map node embeddings from 𝐡𝑣
(𝐿)

∈
ℝ𝑑 to ෝ𝒚𝑣 ∈ ℝ𝑘  so that we can compute the loss
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Output of the 
classifier



Prediction Heads: Edge-level

Edge-level prediction: Make prediction using pairs 
of node embeddings

• Suppose we want to make 𝑘-way prediction

ෝ𝒚𝒖𝒗 =  Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

)

• What are the options for Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

)?
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𝐡𝑢

𝐿
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Prediction Heads: Edge-level

• Options for Headedg𝑒(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

):

(1) Concatenation + Linear

– We have seen this in graph attention

– ෝ𝒚𝒖𝒗 = Linear(Concat(𝐡𝑢
𝐿

, 𝐡𝑣
𝐿

))

– Here Linear(⋅) will map 2𝑑-dimensional 
embeddings (since we concatenated embeddings) 
to 𝑘-dim embeddings (𝑘-way prediction)
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𝐡𝑢
(𝑙−1)

𝐡𝑣
(𝑙−1)

Concatenate Linear
ෞ𝒚𝑢𝑣



Prediction Heads: Edge-level

Options for Headedg𝑒(𝐡𝑢
𝐿 , 𝐡𝑣

𝐿 ):

(2) Dot product

– ෝ𝒚𝒖𝒗 = (𝐡𝑢
𝐿

)𝑇𝐡𝑣
𝐿

– This approach only applies to 𝟏-way prediction (e.g., 
link prediction: predict the existence of an edge)

– Applying to 𝒌-way prediction: 
• Similar to multi-head attention: 𝐖(1), … , 𝐖(𝑘) trainable

ෝ𝒚𝒖𝒗
(𝟏)

= (𝐡𝑢
𝐿

)𝑇𝐖(1)𝐡𝑣
𝐿

…

ෝ𝒚𝒖𝒗
(𝒌)

= (𝐡𝑢
𝐿

)𝑇𝐖(𝑘)𝐡𝑣
𝐿

  ෝ𝒚𝑢𝑣 = Concat(ෝ𝒚𝒖𝒗
(𝟏)

, … , ෝ𝒚𝒖𝒗
(𝒌)

) ∈ ℝ𝑘
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Prediction Heads: Graph-level

Graph-level prediction: Make prediction using all 
the node embeddings in our graph

• Suppose we want to make 𝑘-way prediction

• ෝ𝒚𝐺 =  Headgraph({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

122

Graph-level prediction

(2) Aggregation

(1) Message

 Headgraph(⋅) is similar to 

AGG(⋅) in a GNN layer!



Prediction Heads: Graph-level
Options for Headgraph({𝐡𝑣

𝐿
∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• (1) Global mean pooling

ෝ𝒚𝐺 = Mean({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• (2) Global max pooling

ෝ𝒚𝐺 = Max({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• (3) Global sum pooling

ෝ𝒚𝐺 = Sum({𝐡𝑣
𝐿

∈ ℝ𝑑 , ∀𝑣 ∈ 𝐺})

• These options work great for small graphs

For large graphs, hierarchical aggregation
123

K. Xu, W. Hu, J. Leskovec, S. Jegelka. How Powerful Are Graph Neural Networks, ICLR 2019

https://arxiv.org/pdf/1810.00826.pdf


GNN Training Pipeline (2)
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(2) Where does ground-truth come from? 
- Supervised labels
- Unsupervised signals



Supervised vs Unsupervised
• Supervised learning on graphs

– Labels come from external sources
• E.g., predict drug likeness of a molecular graph

• Unsupervised learning on graphs
– Signals come from graphs themselves 

• E.g., link prediction: predict if two nodes are connected

• Sometimes the differences are blurry
– We still have “supervision” in unsupervised learning

• E.g., train a GNN to predict node clustering coefficient

– An alternative name for “unsupervised” is “self-
supervised”
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Supervised Labels on Graphs
• Supervised labels come from the specific use 

cases. For example:
– Node labels 𝒚𝒗: in a citation network, which subject 

area does a node belong to

– Edge labels 𝒚𝒖𝒗: in a transaction network, whether an 
edge is dishonest

– Graph labels 𝒚𝐺: among molecular graphs, the drug 
likeness of graphs

• Advice: Reduce your task to node / edge / graph 
labels, since they are easy to work with
– E.g., we knew some nodes form a cluster. We can treat 

the cluster that a node belongs to as a node label
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Unsupervised Signals on Graphs

• The problem: sometimes we only have a graph, 
without any external labels

• The solution: “self-supervised learning”, we can find 
supervision signals within the graph.
For example, we can let GNN predict the following:
– Node-level 𝒚𝑣. Node statistics: such as clustering 

coefficient, PageRank, …
– Edge-level 𝒚𝑢𝑣. Link prediction: hide the edge between 

two nodes, predict if there should be a link
– Graph-level 𝒚𝐺. Graph statistics: for example, predict if 

two graphs are isomorphic
– These tasks do not require any external labels!
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GNN Training Pipeline (3)
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(3) How do we compute the final loss?
- Classification loss
- Regression loss



Settings for GNN Training

• The setting: We have 𝑁 data points

– Each data point can be a node/edge/graph

– Node-level: prediction ෝ𝒚𝑣
(𝑖)

, label 𝒚𝑣
(𝑖)

– Edge-level: prediction ෝ𝒚𝑢𝑣
(𝑖)

, label 𝒚𝑢𝑣
(𝑖)

– Graph-level: prediction ෝ𝒚𝐺
(𝑖)

, label 𝒚𝐺
(𝑖)

– We will use prediction ෝ𝒚(𝑖), label 𝒚 𝑖  to refer 
predictions at all levels
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Classification or Regression

• Classification: labels 𝒚 𝑖  with discrete value

– E.g., Node classification: which category does a 
node belong to

• Regression: labels 𝒚 𝑖  with continuous value

– E.g., predict the drug likeness of a molecular graph

• GNNs can be applied to both settings

• Differences: loss function & evaluation 
metrics
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Classification Loss
Cross entropy (CE) is a very common loss function 
in classification

• 𝐾-way prediction for 𝑖-th data point:

CE 𝒚(𝑖), ෝ𝒚(𝑖) = − 
𝑗=1

𝐾

𝒚𝑗
(𝑖)

 log(ෝ𝒚𝒋
(𝒊)

)

where:

𝒚(𝑖) 𝜖 ℝ𝐾 = one-hot label encoding

ෝ𝒚(𝑖)𝜖 ℝ𝐾 = prediction after Softmax(⋅)

• Total loss over all 𝑁 training examples

Loss = 
𝑖=1

𝑁

CE 𝒚(𝑖), ෝ𝒚(𝑖)
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Label Prediction

𝒊-th data point

𝒋-th class

0 0 1 0 0

0.1 0.3 0.4 0.1 0.1

E.g. 

E.g. 



Regression Loss
• For regression tasks we often use Mean Squared 

Error (MSE) a.k.a. L2 loss
• 𝐾-way regression for data point (i):

MSE 𝒚(𝑖), ෝ𝒚(𝑖) = 
𝑗=1

𝐾

(𝒚𝑗
(𝑖)

− ෝ𝒚𝑗
𝑖

)2

where:

𝒚(𝒊) 𝜖 ℝ𝑘 = Real valued vector of targets
ෝ𝒚(𝒊)𝜖 ℝ𝑘 = Real valued vector of predictions

• Total loss over all 𝑁 training examples

Loss = 

𝑖=1

𝑁

MSE 𝒚(𝑖), ෝ𝒚(𝑖)
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(4) How do we measure the success of a GNN?
- Accuracy
- ROC AUC



Evaluation Metrics: Regression

• We use standard evaluation metrics for GNN

– In practice we will use sklearn for implementation

– Suppose we make predictions for 𝑁 data points

• Evaluate regression tasks on graphs:

– Root mean square error (RMSE)


𝑖=1

𝑁 𝒚(𝑖) − ෝ𝒚(𝑖) 2

𝑁

– Mean absolute error (MAE)
σ𝑖=1

𝑁 𝒚(𝑖) − ෝ𝒚(𝑖)

𝑁
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https://scikit-learn.org/stable/modules/model_evaluation.html


Evaluation Metrics: Classification
• Evaluate classification tasks on graphs:
• (1) Multi-class classification

– We simply report the accuracy

1 argmax ෝ𝒚(𝑖) = 𝒚(𝑖)

𝑁
• (2) Binary classification

– Metrics sensitive to classification threshold
• Accuracy
• Precision / Recall
• If the range of prediction is [0,1], we will use 0.5 as 

threshold

– Metric Agnostic to classification threshold
• OC AUC
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Metrics  for Binary Classification

• Accuracy:
TP + TN

TP + TN + FP + FN
=

TP + TN

|Dataset|

• Precision (P):
TP

TP + FP

• Recall (R):
TP

TP + FN

• F1-Score:
2P ∗ R

P + R

136Sklearn Classification Report

Confusion matrix

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html


(4) Evaluation Metrics
• ROC Curve: Captures the tradeoff in TPR and 

FPR as the classification threshold is varied 
for a binary classifier. 

137

TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

Note: the dashed line 
represents performance of 
a random classifierImage Credit: Wikipedia

FPR

TPR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


(4) Evaluation Metrics

• ROC AUC: Area under the ROC Curve. 
• Intuition: The probability that a classifier will rank a 

randomly chosen positive instance higher than a 
randomly chosen negative one

138

Content Credit: Wikipedia

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


GNN Training Pipeline (5)
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(5) How do we split our dataset 
into train / validation / test set?

Dataset split



Dataset Split: Fixed/Random Split
• Fixed split: We will split our dataset once

– Training set: used for optimizing GNN parameters

– Validation set: develop model/hyperparameters

– Test set: held out until we report final performance

• Random split: we will randomly split our 
dataset into training/validation/test

– We report average performance over different 
random seeds
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Why Splitting Graphs is Special
• Suppose we want to split an image dataset

– Image classification: Each data point is an image

– Here data points are independent

• Image 5 will not affect our prediction on image 1

141

Training

Validation

Test

3
2

45

1

6



Why Splitting Graphs is Special
• Splitting a graph dataset is different!

– Node classification: Each data point is a node

– Here data points are NOT independent
• Node 5 will affect our prediction on node 1, because it will 

participate in message passing → affect node 1’s 
embedding

• What are our options?
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Why Splitting Graphs is Special
Solution 1 (Transductive setting): The input graph 
can be observed in all the dataset splits (training, 
validation and test set). 

• We will only split the (node) labels
– At training time, we compute embeddings using the 

entire graph, and train using node 1&2’s labels

– At validation time, we compute embeddings using 
the entire graph, and evaluate on node 3&4’s labels
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Why Splitting Graphs is Special
Solution 2 (Inductive setting): We break the edges 
between splits to get multiple graphs

– Now we have 3 graphs that are independent. Node 5 
will not affect our prediction on node 1 any more

– At training time, we compute embeddings using the 
graph over node 1&2, and train using node 1&2’s labels

– At validation time, we compute embeddings using the 
graph over node 3&4, and evaluate on node 3&4’s labels
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Transductive/Inductive Settings
• Transductive setting: training/validation/test sets 

are on the same graph
– The dataset consists of one graph

– The entire graph can be observed in all dataset splits, 
we only split the labels

– Only applicable to node/edge prediction tasks

• Inductive setting: training/validation/test sets are 
on different graphs
– The dataset consists of multiple graphs

– Each split can only observe the graph(s) within the split. 
A successful model should generalize to unseen graphs

– Applicable to node/edge/graph tasks
145



Example: Node Classification
• Transductive node classification

– All the splits can observe the entire graph structure, but 
can only observe the labels of their respective nodes
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 Inductive node classification
▪ Suppose we have a dataset of 3 graphs
▪ Each split contains an independent graph



Example: Graph Classification

• Only the inductive setting is well defined for 
graph classification

– Because we have to test on unseen graphs

– Suppose we have a dataset of 5 graphs. Each split 
will contain independent graph(s).
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Example: Link Prediction

• Goal of link prediction: predict missing edges

• Setting up link prediction is tricky:

– Link prediction is an unsupervised/self-supervised 
task. We need to create the labels and dataset 
splits on our own

– Concretely, we need to hide some edges from the 
GNN and the let the GNN predict if the edges exist
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Setting up Link Prediction

For link prediction, we will split edges twice

Step 1: Assign 2 types of edges in the original graph

– Message edges: Used for GNN message passing

– Supervision edges: Use for computing objectives
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Setting up Link Prediction

• Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

– Suppose we have a dataset of 3 graphs. Each 
inductive split will contain an independent graph
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Setting up Link Prediction
• Step 2: Split edges into train/validation/test

Option 1: Inductive link prediction split

– Suppose we have a dataset of 3 graphs. Each 
inductive split will contain an independent graph

– In train or val or test set, each graph will have 2 
types of edges: message edges + supervision edges

• Supervision edges are not the input to GNN

151
Training set Validation set

Message 

edge

Supervision

edge
Test set

𝐺1 𝐺2 𝐺3

3
2

45

1 8
7

910

6 13
12

1415

11



Setting up Link Prediction
Option 2: Transductive link prediction split:

– This is the default setting when people talk about 
link prediction

– Suppose we have a dataset of 1 graph

152

3
2

45

1



Setting up Link Prediction
Option 2: Transductive link prediction split:

– By definition of “transductive”, the entire graph can 
be observed in all dataset splits

• But since edges are both part of graph structure and the 
supervision, we need to hold out validation/test edges

• To train the training set, we further need to hold out 
supervision edges for the training set
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Setting up Link Prediction
Option 2: Transductive link prediction split:
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After training, supervision edges are known to GNN. Therefore, an ideal 
model should use supervision edges in message passing at validation time. 
The same applies to the test time.
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supervision edges

(2) At validation time:

Use training message 
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Implementation resources:
GraphGym further implements the full pipeline to facilitate GNN design

https://github.com/snap-stanford/GraphGym


Summary
• We introduce a general GNN framework:

– GNN Layer: 
• Transformation + Aggregation

• Classic GNN layers: GCN, GraphSAGE, GAT

– Layer connectivity: 
• The over-smoothing problem

• Solution: skip connections

– Graph Augmentation:
• Feature augmentation

• Structure augmentation

– Learning Objectives
• The full training pipeline of a GNN
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