#### Online Social Networks and Media

Graph ML II Graph Embeddings

#### **Graph Machine Learning**

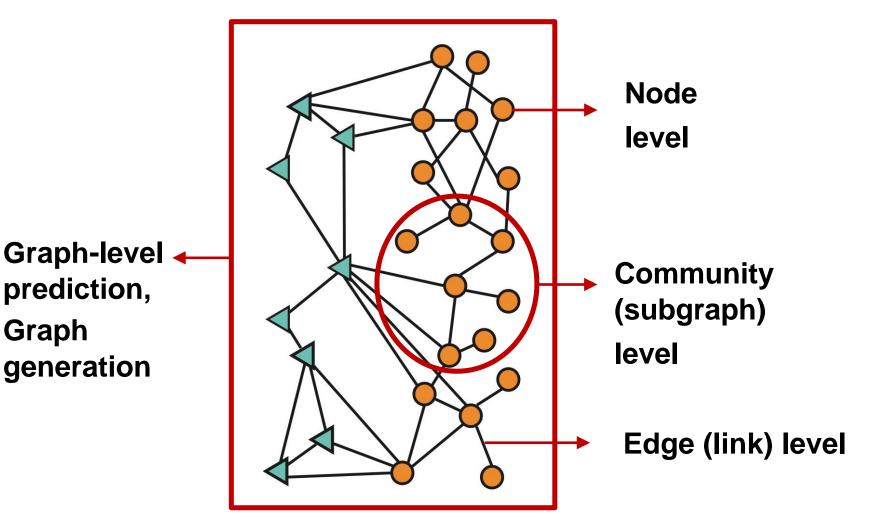
#### Outline

#### Part I: Introduction, Traditional ML Part II: Graph Embeddings Part III: GNNs Part IV (if time permits): Knowledge Graphs

Slides used based on:

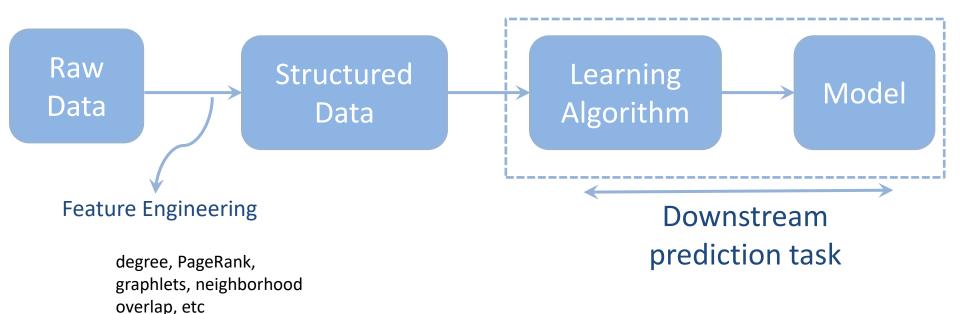
CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University <u>http://cs224w.stanford.edu</u>

#### Types of ML tasks in graphs



### Graph embeddings: why?

Machine learning lifecycle



#### Part II:

#### Introduction to embeddings

#### Node embeddings on

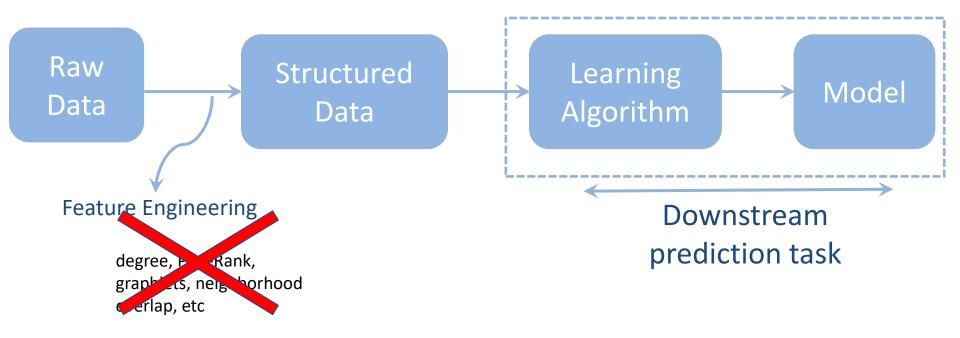
matrix decomposition

random-walks

Quick overview of word embedding Link and subgraph embeddings

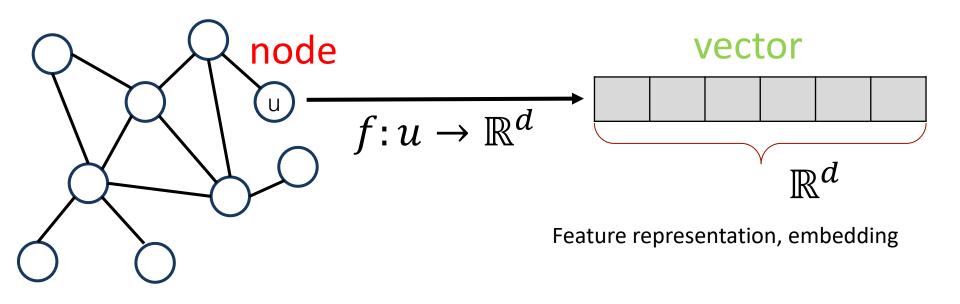
### Graph embeddings: why?

Machine learning lifecycle



Representation Learning Automatically learn the features

### Node embeddings: what are they?

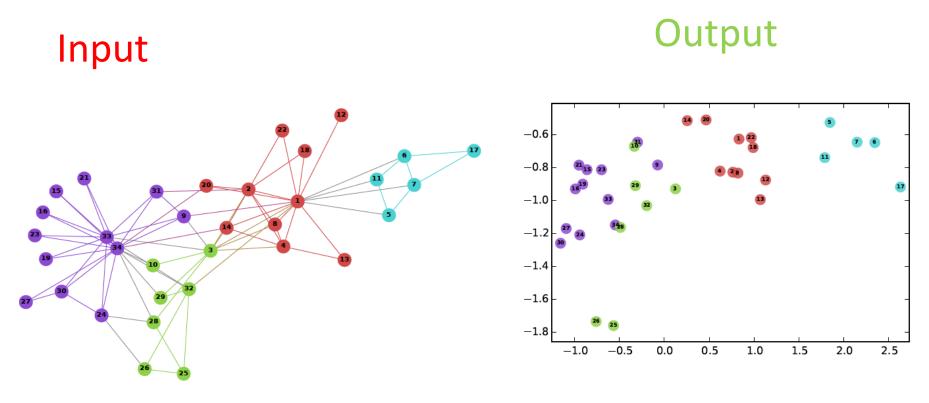


Map nodes to *d*-dimensional vectors so that: *"similar" nodes* in the graph have embeddings that *are close together*.

- Encode network information
- Potentially used for many downstream predictions

#### Example

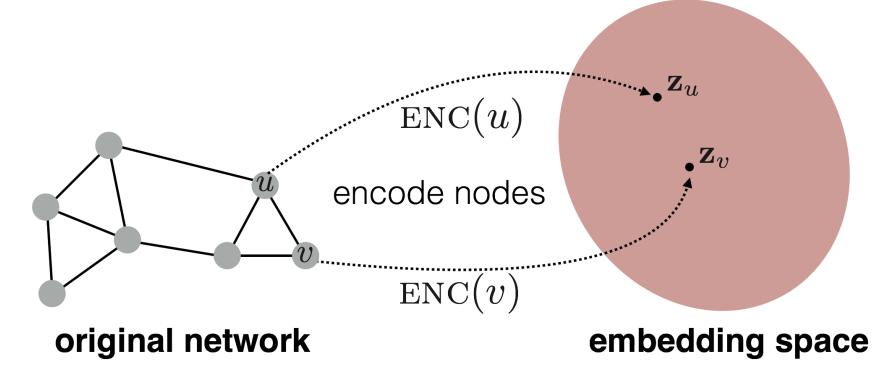
Zachary's Karate Club Network:



using t-SNE

#### Graph embeddings

Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph



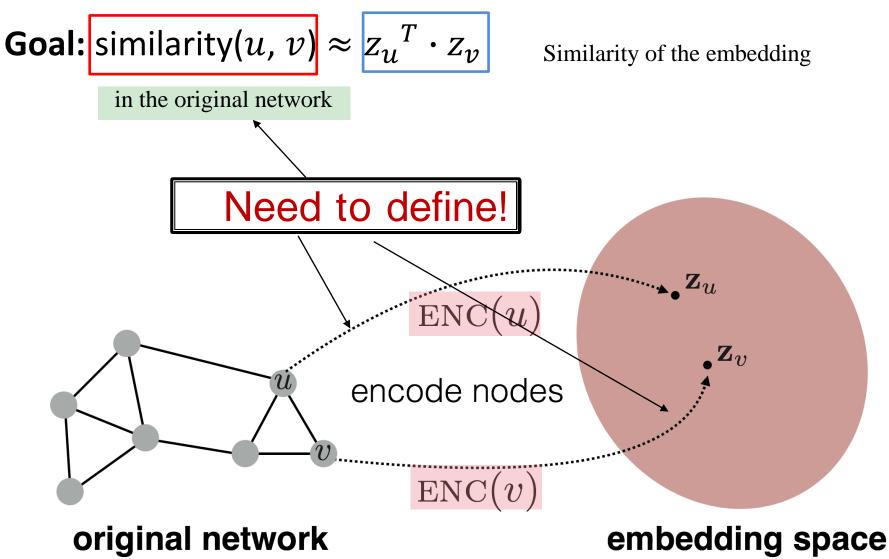
#### Two key components

- Encoder: maps each node to a low-dimensional vector d-dimensional  $ENC(v) = z_v$  embedding node in the input graph
- Similarity function: specifies how the relationships in vector space map to the relationships in the original network similarity  $(u, v) \approx z_u^T \cdot z_v$  Decoder

Similarity of u and v in the original network

dot product between node embeddings

#### **Embedding nodes**



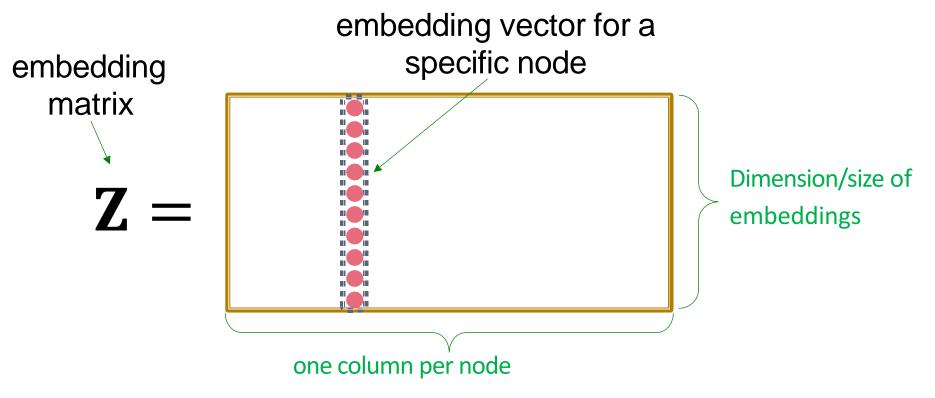
### Learning node embeddings

- 1. Define an encoder ENC that maps nodes to low dimensional spaces
- 2. Define *a node similarity function* (i.e., a measure of similarity in the original network).
- 3. Decoder DEC maps from embeddings to the similarity score
- 4. Optimize the parameters of the encoder so that we minimize *a loss function L* that looks (roughly) like:

$$\mathbf{L} = \sum_{u,v \in V} (similarity(u,v) - z_u^T \cdot z_v)^2$$

### Shallow embeddings<sup>(\*)</sup>

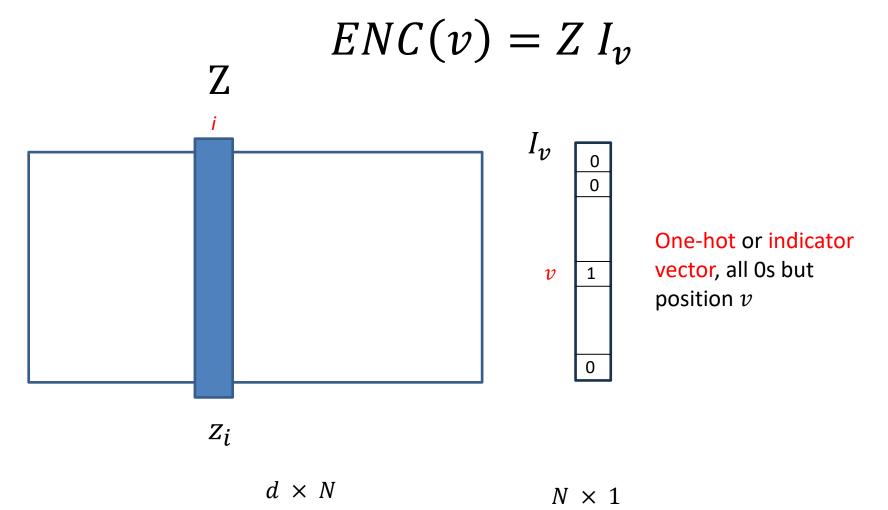
Each node is assigned a single d-dimensional vector Learn  $|V| \times d$  embedding matrix Z: each column *i* is the embedding  $z_i$  of node *i* 



(\*) As opposed to deep learning in graphs (GNN embeddings)

#### Shallow embeddings

Encoder is just an embedding lookup



#### Framework Summary

#### **Encoder + Decoder Framework**

- Shallow encoder: Embedding lookup
- Parameters to optimize:  ${\bf Z}$  which contains node embeddings for all nodes  $u \in V$
- We will cover deep encoders in the GNNs
- **Decoder:** based on node similarity.
- **Objective:** maximize  $z_u^T \cdot z_v$  for node pairs (u, v) that are **similar**

### How to define node similarity

- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
  - are linked?
  - share neighbors?
  - have similar "structural roles"?

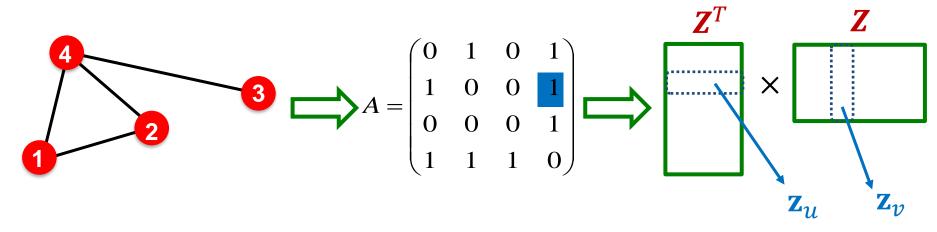
#### Note on node embeddings

- This is unsupervised/self-supervised way of learning node embeddings.
  - We are **not** utilizing node labels
  - We are **not** utilizing node features
  - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.
- These embeddings are task independent:
  - They are not trained for a specific task but can be used for any task.

#### **ADJACENCY-BASED**

#### Adjacency Matrix

- Simplest **node similarity**: Nodes *u*, *v* are similar if they are connected by an edge
- This means:  $\mathbf{z}_{v}^{\mathrm{T}}\mathbf{z}_{u} = A_{u,v}$ which is the (u, v) entry of the graph adjacency matrix A
- Therefore,  $\mathbf{Z}^T \mathbf{Z} = \mathbf{A}$

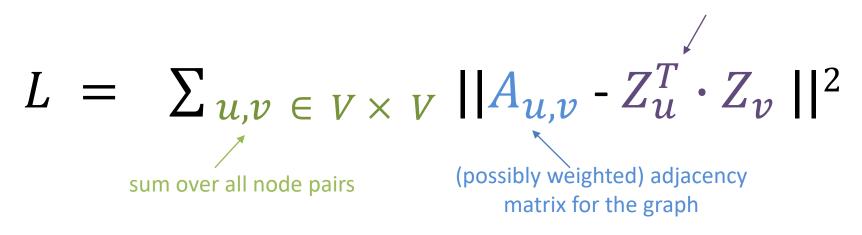


- The embedding dimension d (number of rows in Z) is much smaller than number of nodes n.
- Inner product decoder with node similarity defined by edge connectivity is equivalent to matrix factorization of A.
- Exact factorization  $A = Z^T Z$  is generally not possible
- Matrix decomposition (for example, SVD decomposition)
  - 1. Scalability issues
  - 2. Produced matrices that are very dense

- However, we can learn **Z** approximately
- Objective:min  $\| \mathbf{A} \mathbf{Z}^T \mathbf{Z} \|_2$ 
  - We optimize Z such that it minimizes the L2 norm (Frobenius norm) of  $A Z^T Z$
  - We used softmax instead of L2. But the goal to approximate A with  $Z^T Z$  is the same.
  - How: stochastic gradient descent

The loss that what we want to minimize





A. Ahmed, N. Shervashidze, S. M. Narayanamurthy, V. Josifovski, A. J. Smola: *Distributed large-scale natural graph factorization*. WWW 2013

# Adjacency-based approach – stochastic gradient descent

A few manipulations

$$L = \sum_{u,v \in V \times V} ||A_{uv} - Z_u^T \cdot Z_v||^2$$
  
sum over all node pairs

$$L = \sum_{(u,v) \in E} (A_{uv} - Z_u^T \cdot Z_v)^2$$

sum over all edges

$$L = \frac{1}{2} \sum_{(u,v) \in E} (A_{uv} - Z_u^T \cdot Z_v)^2 + \frac{\lambda}{2} \sum_{u} ||Z_u||^2$$

regularization factor

### Stochastic Gradient Descent

After we obtain the objective function, how do we optimize (minimize) it?

$$L = \frac{1}{2} \sum_{(u,v) \in E} (A_{uv} - \mathbf{Z}_{u}^{T} \cdot Z_{v})^{2} + \frac{\lambda}{2} \sum_{u \in V} ||Z_{u}||^{2}$$

**Gradient Descent**: a simple way to minimize  $\mathcal{L}$ :

- Initialize z<sub>u</sub> at some randomized value for all nodes u.
- Iterate until convergence:
  - For all u, compute the derivative  $\frac{\partial \mathcal{L}}{\partial z_u}$ .  $\eta$ : learning rate
  - For all u, make a step in reverse direction of derivative:  $z_u \leftarrow z_u \eta \frac{\partial \mathcal{L}}{\partial z_u}$ .

 $L = \frac{1}{2} \sum_{(u,v) \in E} (A_{uv} - \mathbf{Z}_{u}^{T} \cdot Z_{v})^{2} + \frac{\lambda}{2} \sum_{u \in V} ||Z_{u}||^{2}$ 

Taking the gradient

Gradient of L with respect to each row (column) of Z (learn one vector per node)

$$\frac{\partial L}{\partial Z_u} = -\sum_{v \in N(u)} (A_{uv} - Z_v \cdot Z_u^T) Z_v + \lambda Z_u$$

For each edge  $(u, v) \in E$  this amounts for

$$\frac{\partial L}{\partial Z_u} = - (A_{uv} - Z_v \cdot Z_v) Z_v + \lambda Z_u$$

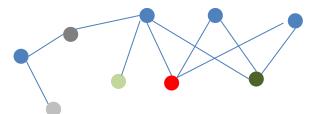
#### **Requires:** Adjacency matrix *A*, rank *d*, accuracy *E* **Ensures:** Local minimum

- 1: Initialize Z' at random
- 2: t ← 1
- 3; repeat
- 4: Z ← Z'
- 5: for all edges  $(i, j) \in E$  do
- 6:  $\eta \leftarrow 1/\sqrt{t}$
- 7:  $t \leftarrow t + 1$
- 8:  $Zi \leftarrow Zi + \eta ((Aij \langle Zi \cdot Zj \rangle Zj) + \lambda Zi)$
- 9: end for
- 10: until  $||Z-Z'||^2 \le \epsilon$
- 11: return Z
- Complexity O(|E|)
- Can be parallelized

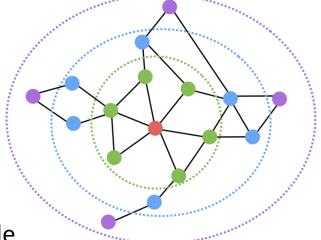
 $\eta$ : learning rate, captures the extent at which newly acquired information overrides old

### Multi-hop approaches

Only considers direct connections What about further neighbors?



Look further than the 1-step neighbors and learn by using information from/for *k*-step neighbors



We will see two approaches

- GraRep: looks at probabilities of reaching a node
- HOPE: various metrics of similarity based on neighbors and paths

## High-order Proximity Preserved Embeddings (HOPE)

Based on a high order proximity matrix *S*,

 $S_{uv} = proximity(u, v)$ 

For directed graphs, learn two embedding vectors  $Z = |Z^s, Z^t|$ 

$$L = \sum_{(u,v) \in V x V} ||S_{uv} - Z_u^s \cdot Z_v^t||^2$$

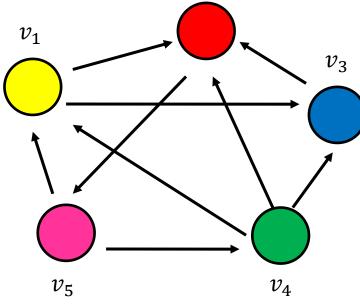
M. Ou, P. Cui, J. Pei, Z.i Zhang, W. Zhu: Asymmetric Transitivity Preserving Graph Embedding. KDD 2016

### HOPE

#### Local High Order Proximity

target)

Common Neighbors (for directed graphs, source- $S^{CN} = A^2$ A<sup>2</sup> =  $v_2$ 



Adamic-Adar

 $S^{AA} = A D A$ 

Similar but assigns a weight to the neighbor reciprocal of its degree

#### HOPE

#### Global High Order Proximity

#### Katz

Sum over all paths of length I, using a decay parameter

$$S^{Katz} = \sum_{l=1}^{\infty} \beta^l A^l$$

#### **Rooted Pagerank**

SVD with some tricks to save computations

### Node embeddings

Approaches based on:

- Adjacency-like matrices
  - Adjacency matrix
  - Multi-hop neighborhoods
    - HOPE
    - GraRep (random walks)
- Random-walks
  - DeepWalk
  - Node2Vec

Random walks based on word embeddings

#### **WORD EMBEDDINGS**

(Some material from Chris Manning course)

#### **Basic Idea**

- You can get a lot of value by representing a word by means of its neighbors (distributional semantics)
- "You shall know a word by the company it keeps"

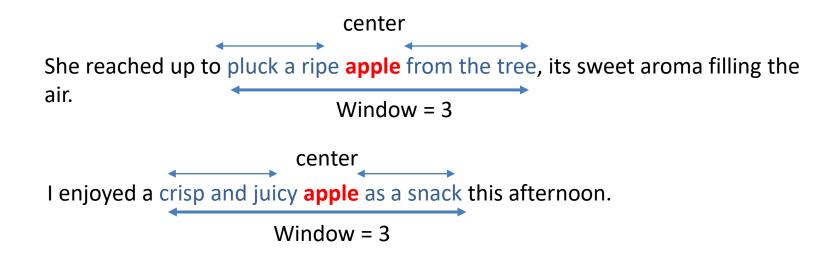


- (J. R. Firth 1957: 11)
- One of the most successful ideas of modern statistical NLP

#### **Basic Idea**

A word is defined by its context

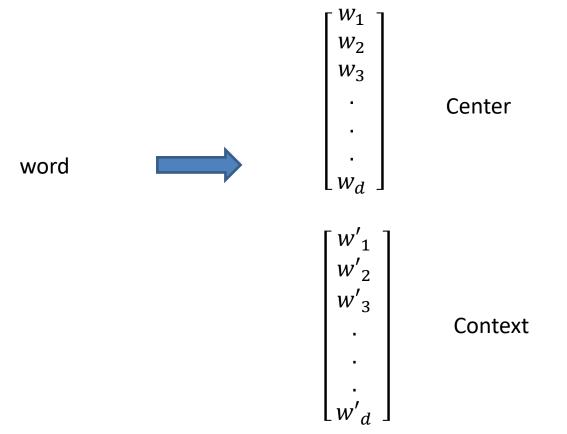
## **Context**: words that appear in a fixed length window around the word



Use the many contexts of w to represent a word

#### Basic idea

Learn two embeddings per word: (1) as context (2) as center



- Center-embedding of a center word similar with the context embeddings of its context words
- And vice-versa

Use text to learn these embeddings

#### Word2Vec

Predict between every word and its context words

Two algorithms

1. Skip-grams (SG)

Predict context words given the center word

2. Continuous Bag of Words (CBOW)

Predict center word from a bag-of-words context

*Position independent* (do not account for distance from center)

#### Two training methods

- 1. Hierarchical softmax
- 2. Negative sampling

# **Hierarchical softmax**

Instead of learning O(|V|) vectors, learn O(log(|V|) vectors

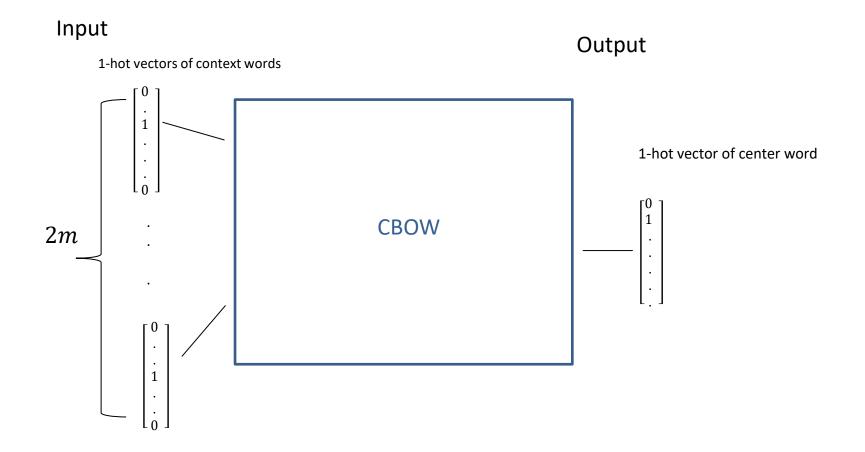
How?

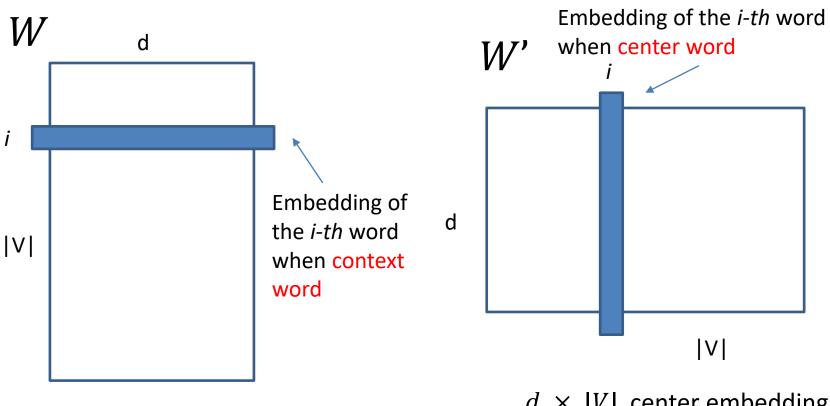
- Build a binary tree with leaves the words and learn one vector for each internal node.
- The value for each word w is the product of the values of the internal nodes in the path from the root to w.

## **Basic Idea**

She reached up to pluck a ripe apple from the tree, its sweet aroma filling the air. Window = 3
CBOW
pluck a ripe \_\_\_\_\_ from the tree
\_\_\_\_\_apple \_\_\_\_\_ Skipgram

#### Use a window of context words to predict the center word





 $|V| \times d$  context embeddings when <u>input</u>

 $d \times |V|$  center embeddings when <u>output</u>

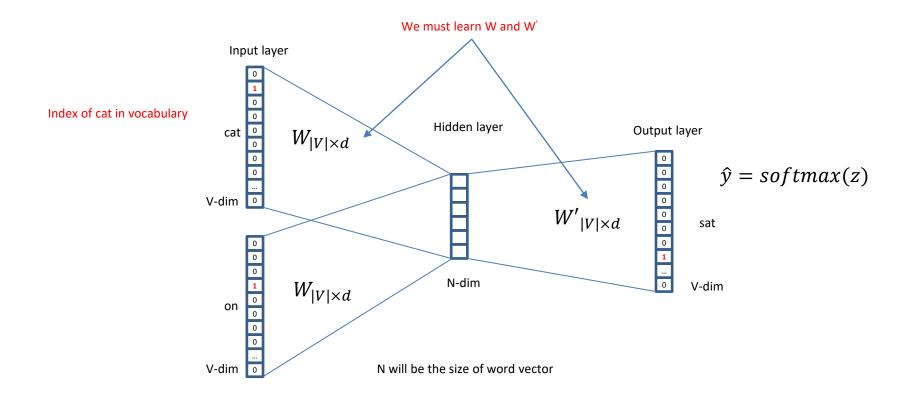
### Intuition

The W'-embedding of the *center word* should be *similar* to the (average of) the W-embeddings of its *context* words

- For similarity, we will use cosine (dot product)
- We will take the average of the W-embeddings of the context word

We want similarity close to one for the center word and close to 0 for all other words

#### cat sat on window size = 1



Given window size *m* 

 $x^{(c)}$  one hot vector for context words, y one hot vector for the center word

1. **INPUT:** the *one hot vectors* for the 2m context words  $x^{(c-m)}$ , ...,  $x^{(c-1)}$ ,  $x^{(c+1)}$ , ...,  $x^{(c+m)}$ 

2. GET THE EMBEDDINGS of the context words  $v_{c-m} = Wx^{(c-m)}, ..., v_{c-1} = Wx^{(c-1)}, v_{c+1} = Wx^{(c+1)}, ..., v_{c+m} = Wx^{(c+m)}$ 

3. TAKE THE SUM these vectors (average)  $\hat{v} = \frac{v_{c-m} + v_{c-m+1} + \cdots + v_{c+m}}{2m}, \ \hat{v} \in \mathbb{R}^N$ 

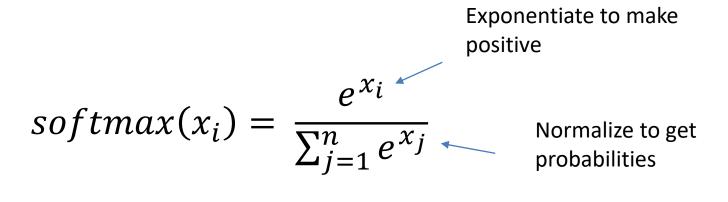
4. COMPUTE SIMILARITY: dot produce W' (all center vectors) and context  $\hat{v}$  (generate score vector z) z = W'  $\hat{v}$ 

5. Turn the score vector to probabilities  $\hat{y} = softmax(z)$ 

We want this to be close to 1 for the center word

### Softmax

#### From values to probability distributions

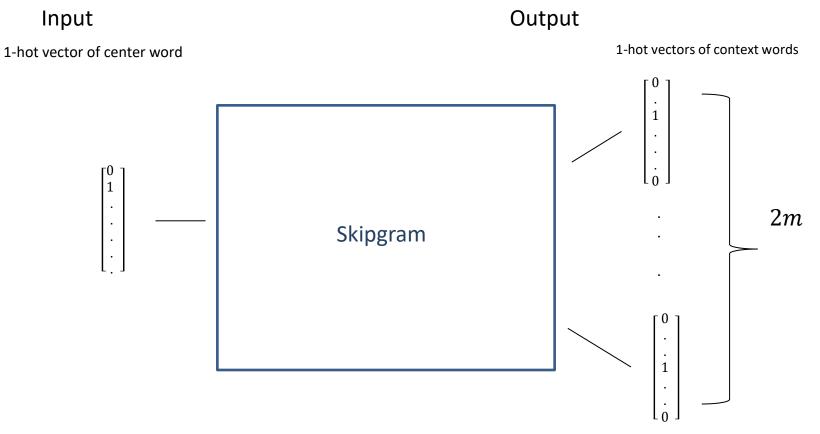


- "Most" probability to the largest value (max)
- "Some" probability to the other values (soft)

>>> import numpy as np
>>> a = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]
>>> np.exp(a) / np.sum(np.exp(a))
array([0.02364054, 0.06426166, 0.1746813, 0.474833,
0.02364054, 0.06426166, 0.1746813])

### Skipgram

### Given the center word, predict (or, generate) the context words



Learn two matrices  $W: d \times |V|$ , input matrix, word representation as center word  $W': |V| \times d$ , output matrix, word representation as context word

## Skipgram

Given the center word, predict (or, generate) the context words

 $y^{(j)}$  one hot vector for context words

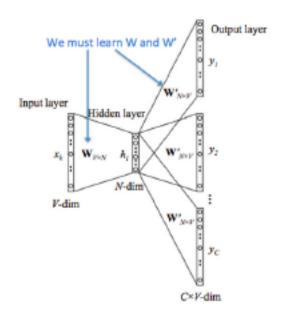
Input: *one hot vector* of the center word *x*

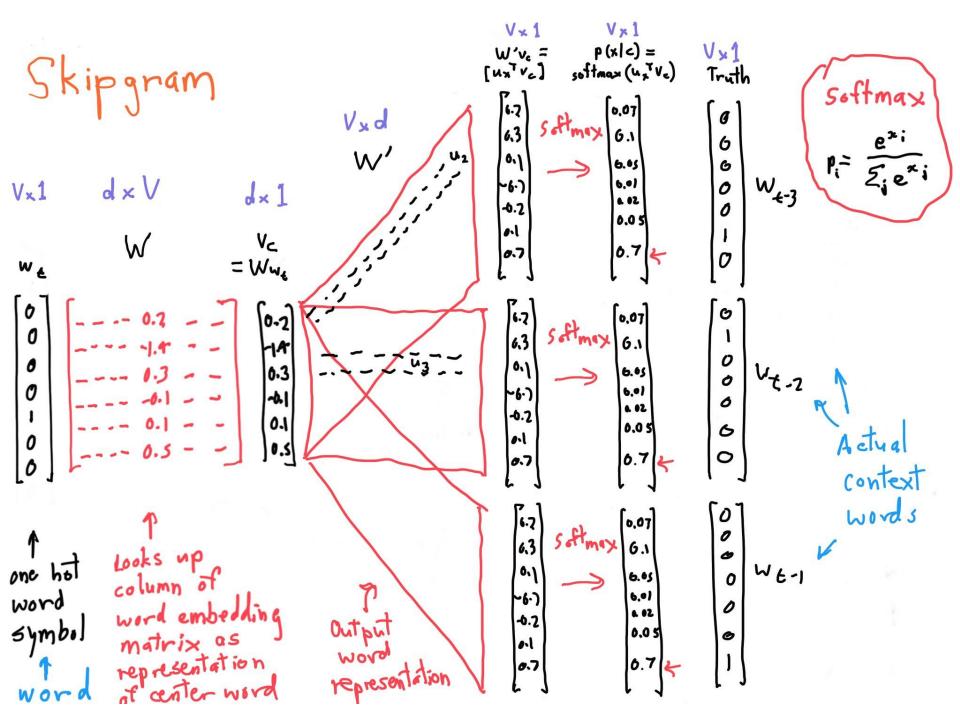
2. Get the *embedding* of the center word  $v_c = W x$ 

3. Generate a *score vector for each context word*  $z = W' v_c$ 

5. Turn the score vector into probabilities  $\hat{y} = softmax(z)$ 

We want this to be close to 1 for the context words





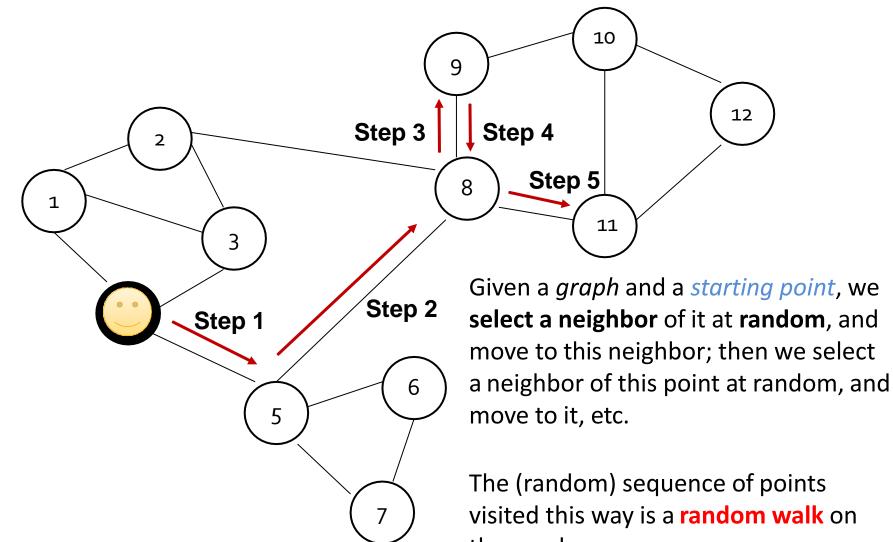
### **BACK TO GRAPHS**

### **RANDOM - WALK BASED EMBEDDINGS**

### How?

### Words = Nodes Sentences = Paths, Random walks

## Random Walk



the graph.

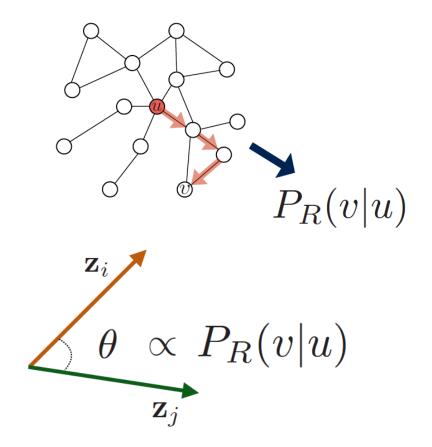
# Random-walk embeddings

probability that *i* and *j*  $Z_i \cdot Z_j \approx \text{co-occur on a random}$ walk over the network

# Random-walk Embeddings

 Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy *R*.

 Optimize embeddings to encode these random walk statistics.



# Why Random Walks?

- 1. Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information. *Idea:* if random walk starting from node *u* visits *v* with high probability, *u* and *v* are similar (high-order multi-hop information)
- 2. Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks.

# **Unsupervised Feature Learning**

- Intuition: Find embedding of nodes in *d*-dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node *u*, how do we define nearby nodes?
  - $-N_R(u)$ : neighbourhood of u obtained by some random walk strategy R

- 1. Run **short fixed-length random walks** starting from each node *u* in the graph using some random walk strategy *R*.
- 2. For each node u collect  $N_R(u)$ , the multiset<sup>\*</sup> of nodes visited on random walks starting from u.
- 3. Optimize embeddings according to: Given node u, predict its neighbors  $N_{\rm R}(u)$ .

$$\arg \max_{z} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u}) \implies$$
Maximum likelihood objective

 $^*N_R(u)$  can have repeat elements since nodes can be visited multiple times on random walks

Equivalently,

$$\arg\min_{z} \mathcal{L} = \sum_{u \in V} \sum_{v \in N_{R}(u)} -\log(P(v|\mathbf{z}_{u}))$$

**Intuition:** Optimize embeddings  $z_u$  to minimize the negative loglikelihood of random walk neighborhoods N(u).

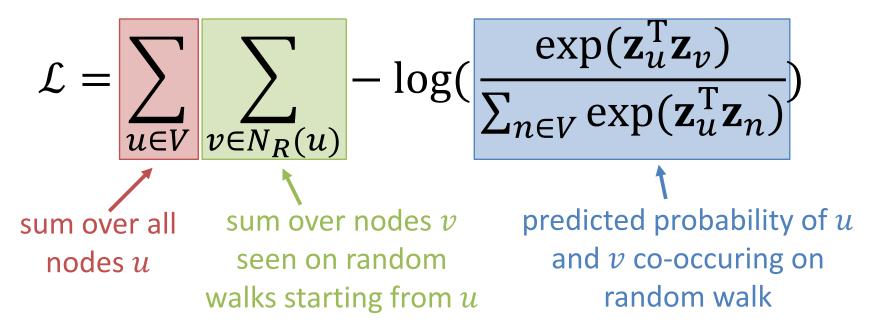
Parameterize  $P(v|\mathbf{z}_u)$  using softmax:

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_n)}$$

#### Why softmax?

We want node v to be most similar to node u (out of all nodes n). Intuition:  $\sum_i \exp(x_i) \approx \max_i \exp(x_i)$ 

### **Putting it all together:**



Optimizing random walk embeddings = Finding embeddings  $z_u$  that minimize L

But doing this naively is too expensive!



Nested sum over nodes gives  $O(|V|^2)$  complexity!

But doing this naively is too expensive!

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(\frac{\exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_n)})$$

# The normalization term from the softmax is the culprit... can we approximate it?

11/30/2023

# **Negative Sampling**

• Solution: Negative sampling

$$-\log(\frac{\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})}{\sum_{n\in V}\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n})})$$

#### Why is the approximation valid?

Technically, this is a different objective. But Negative Sampling is a form of Noise Contrastive Estimation (NCE) which approx. maximizes the log probability of softmax.

New formulation corresponds to using a logistic regression (sigmoid func.) to distinguish the target node v from nodes  $n_i$  sampled from background distribution  $P_v$ .

More at https://arxiv.org/pdf/1402.3722.pdf

$$\approx \log \left( \sigma(\mathbf{z}_{u}^{\mathrm{T}} \mathbf{z}_{v}) \right) + \sum_{i=1}^{k} \log \left( \sigma(-\mathbf{z}_{u}^{\mathrm{T}} \mathbf{z}_{n_{i}}) \right), n_{i} \sim P_{V}$$
sigmoid function
(makes each term a "probability" between 0 and 1)
(makes each term a "probability" over nodes

Instead of normalizing w.r.t. all nodes, just normalize against k random "**negative samples**"  $n_i$ 

• Negative sampling allows for quick likelihood calculation.

# **Negative Sampling**

$$\log\left(\frac{\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})}{\sum_{n\in V}\exp(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n})}\right) \qquad \text{random distribution} \\ \approx \log\left(\sigma(\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v})\right) + \sum_{i=1}^{k}\log\left(\sigma(-\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{n_{i}})\right), n_{i} \sim P_{V}$$

 Sample k negative nodes n<sub>i</sub> each with prob. proportional to its degree.

Two considerations for k (# negative samples):

1. Higher k gives more robust estimates

2. Higher k corresponds to higher bias on negative events In practice k = 5-20.

Can negative sample be any node or only the nodes not on the walk? People often sample any node (for efficiency).

# Stochastic Gradient Descent

After we obtained the objective function, how do we optimize (minimize) it?

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

### • **Gradient Descent**: a simple way to minimize $\mathcal{L}$ :

- Initialize z<sub>u</sub> at some randomized value for all nodes u.
- Iterate until convergence:
  - For all u, compute the derivative  $\frac{\partial \mathcal{L}}{\partial z_u}$ .  $\eta$ : learning rate
  - For all u, make a step in reverse direction of derivative:  $z_u \leftarrow z_u \eta \frac{\partial \mathcal{L}}{\partial z_u}$ .

# Stochastic Gradient Descent

- Stochastic Gradient Descent: Instead of evaluating gradients over all examples, evaluate it for each individual training example.
  - Initialize z<sub>u</sub> at some randomized value for all nodes u.

• Iterate until convergence: 
$$\mathcal{L}^{(u)} = \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

• Sample a node u, for all v calculate the gradient  $\frac{\partial \mathcal{L}^{(u)}}{\partial z_n}$ .

• For all 
$$v$$
, update: $z_v \leftarrow z_v - \eta \frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$ .

# Random Walks: Summary

- 1. Run **short fixed-length** random walks starting from each node on the graph
- 2. For each node u collect  $N_R(u)$ , the multiset of nodes visited on random walks starting from u.
- 3. Optimize embeddings Z using Stochastic Gradient Descent:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

We can efficiently approximate this using negative sampling!

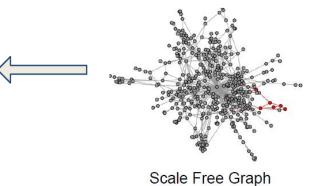
# How should we randomly walk?

- DeepWalk just runs fixed-length, unbiased random walks starting from each node
- Node2vec: biased random walks that can trade-off between local and global views of the network

B. Perozzi, R. Al-Rfou, S. Skiena: DeepWalk: online learning of social representations. KDD 2014 A. Grover, J. Leskovec: *node2vec: Scalable Feature Learning for Networks*. KDD 2016

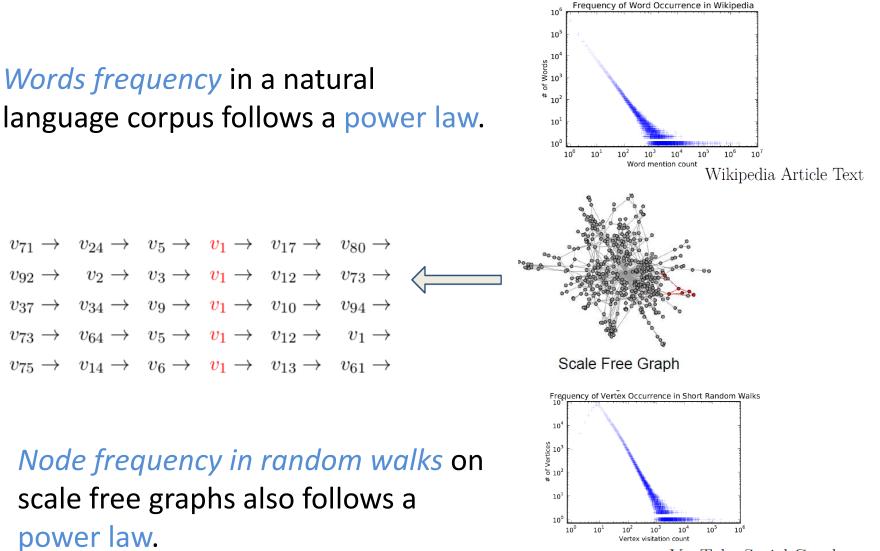
## DeepWalk

### Short random walks = sentences



Short truncated random walks are sentences in an artificial language

## DeepWalk

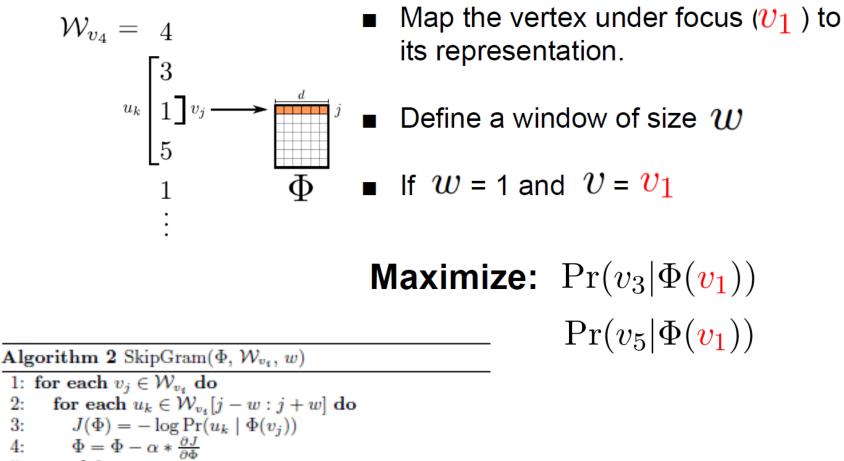


YouTube Social Graph

68

## **Representation mapping**

 $\mathcal{W}_{v_4} \equiv v_4 \rightarrow v_3 \rightarrow v_1 \rightarrow v_5 \rightarrow v_1 \rightarrow v_{46} \rightarrow v_{51} \rightarrow v_{89}$ 



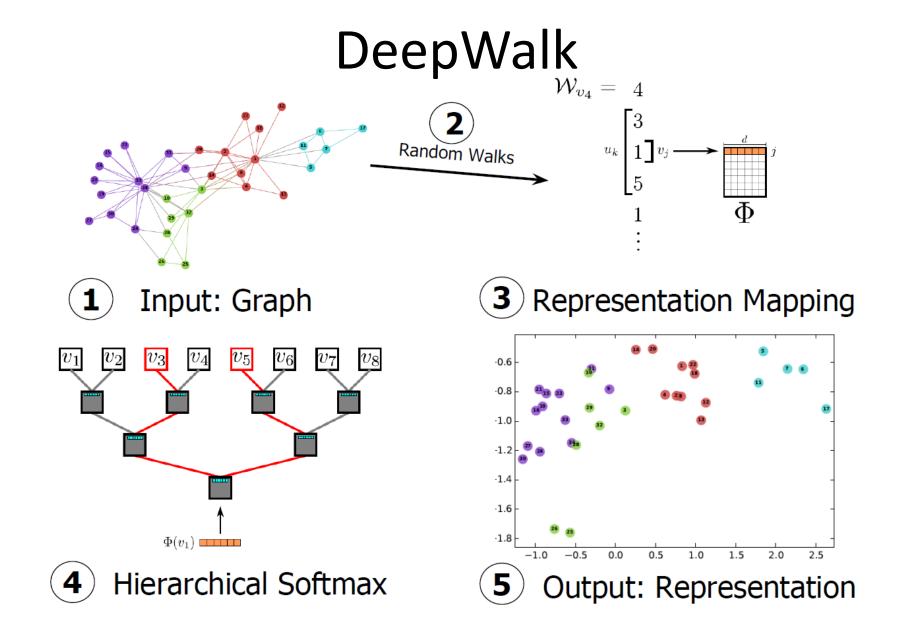
- 5: end for
- 6: end for

# DeepWalk

The algorithm consists of two main components; first a random walk generator and second an update procedure

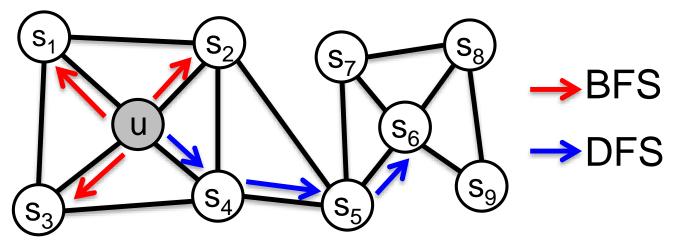
- Window w
- Generate y random walks for each vertex in the graph
- Each short random walk has length t (intuitively, sentence length)
- Pick the next step *uniformly* from the node neighbors

Algorithm 1 DEEPWALK(G, w, d,  $\gamma$ , t) **Input:** graph G(V, E)window size wembedding size dwalks per vertex  $\gamma$ walk length tOutput: matrix of vertex representations  $\Phi \in \mathbb{R}^{|V| \times d}$ 1: Initialization: Sample  $\Phi$  from  $\mathcal{U}^{|V| \times d}$  Build a binary Tree T from V 3: for i = 0 to  $\gamma$  do 4:  $\mathcal{O} = \text{Shuffle}(V)$ for each  $v_i \in \mathcal{O}$  do 5:  $W_{v_i} = RandomWalk(G, v_i, t)$ 6:  $SkipGram(\Phi, W_{v_t}, w)$ 7: 8. end for 9: end for



## node2vec: Biased Walks

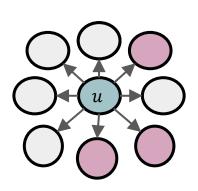
Two classic strategies to define a neighborhood  $N_R(u)$  of a given node u:



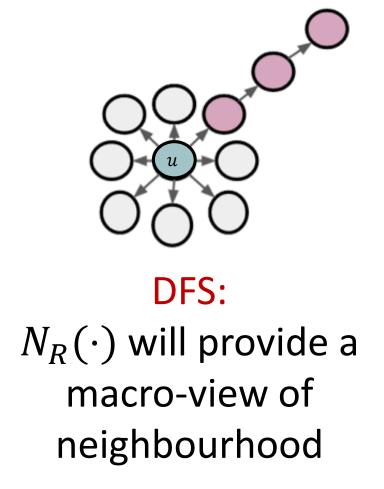
### Walk of length 3 ( $N_R(u)$ of size 3):

 $N_{BFS}(u) = \{ s_1, s_2, s_3 \}$  Local microscopic view (BFS)  $N_{DFS}(u) = \{ s_4, s_5, s_6 \}$  Global macroscopic view (DFS)

#### **BFS vs DFS**

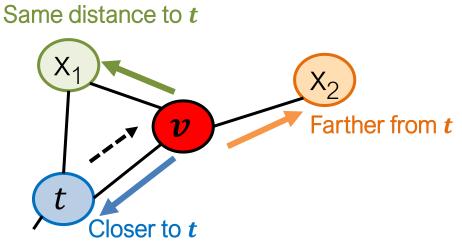


#### BFS: $N_R(\cdot)$ will provide a micro-view of neighbourhood



# Biased 2<sup>nd</sup> Order Random Walks

Walker from t, traversed (t, v) and is now in v, where to go next?



How much far away from *t*? Only three possible choices:

- Farther distance (distance =2)
- Same distance (distance = 1)
- Back to t (distance = 0)

# Interpolating BFS and DFS

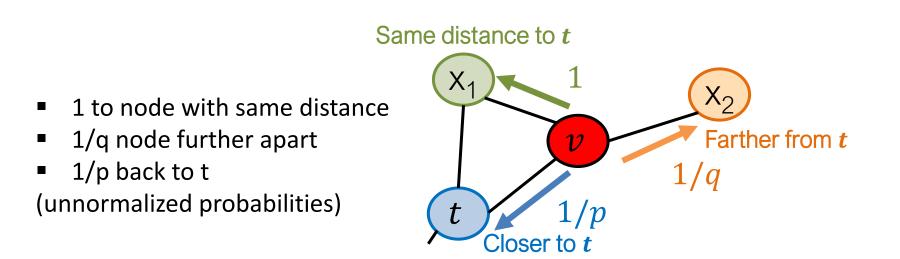
Biased random walk R that given a node u generates neighborhood  $N_R(u)$ 

- Two parameters:
  - Return parameter p:
    - Return to the previous node
  - In-out parameter q:
    - Moving outwards (DFS) vs. inwards (BFS)
    - Intuitively, q is the "ratio" of BFS vs. DFS
- Specify how a single step of biased random walk is performed
  - Random walk is then just a sequence of these steps.

#### One step of the biased random walk

At *v* from *t*, where to go next?

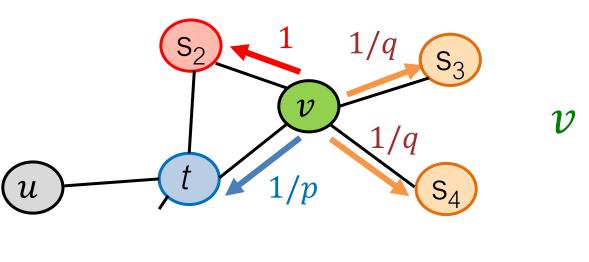
Define the random walk by specifying the walk transition probabilities on edges adjacent to the current node v:

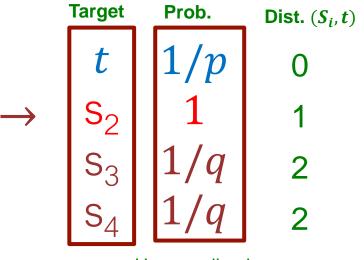


**BFS-like** walk: Low value of *p* **DFS-like** walk: Low value of *q* 

#### One step of the biased random walk

At v from  $S_1$ 





Unnormalized transition prob. segmented based on distance from *t* 

#### $N_R(v)$ are the nodes visited by the biased walk

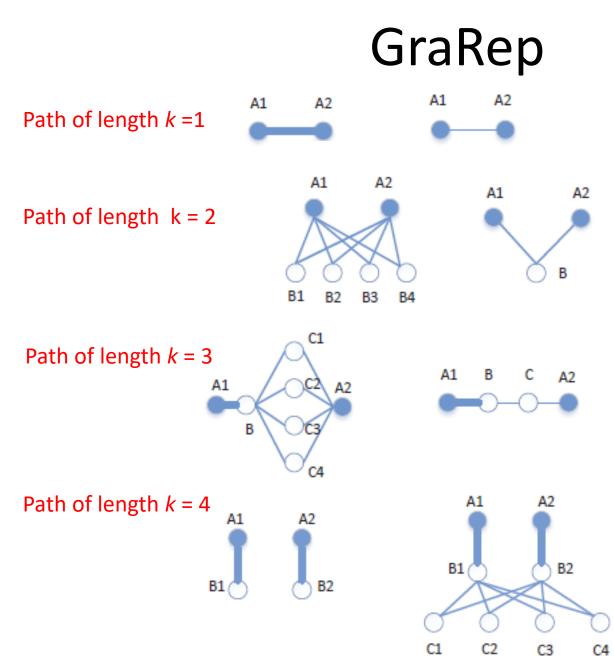
# node2vec algorithm

1) Compute edge transition probabilities:

- For each edge (s<sub>1</sub>, w) we compute edge walk probabilities (based on p, q) of edges (w,·)
- 2) Simulate r random walks of length l starting from each node u
- 3) Optimize the node2vec objective usingStochastic Gradient Descent
- Linear-time complexity
- All 3 steps are individually parallelizable

#### Other Random Walk Ideas

- Different kinds of biased random walks:
  - Based on node attributes (<u>Dong et al., 2017</u>).
  - Based on learned weights (Abu-El-Haija et al., 2017)
- Alternative optimization schemes:
  - Directly optimize based on 1-hop and 2-hop random walk probabilities (as in <u>LINE from Tang et al. 2015</u>).
- Network preprocessing techniques:
  - Run random walks on modified versions of the original network (e.g., <u>Ribeiro et al. 2017 struct2vec</u>, <u>Chen et al.</u> <u>2016 HARP</u>).

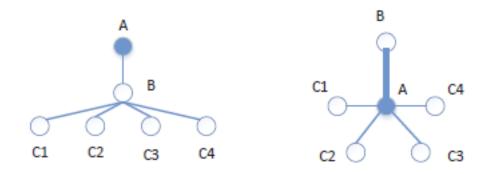


- Look at the paths that connect the nodes
- More paths -- more similar
  - Probability from a node to reach the other
- Considers paths of different lengths

S. Cao, W. Lu, Q.i Xu: GraRep: Learning Graph Representations with Global Structural Information. CIKM 2015

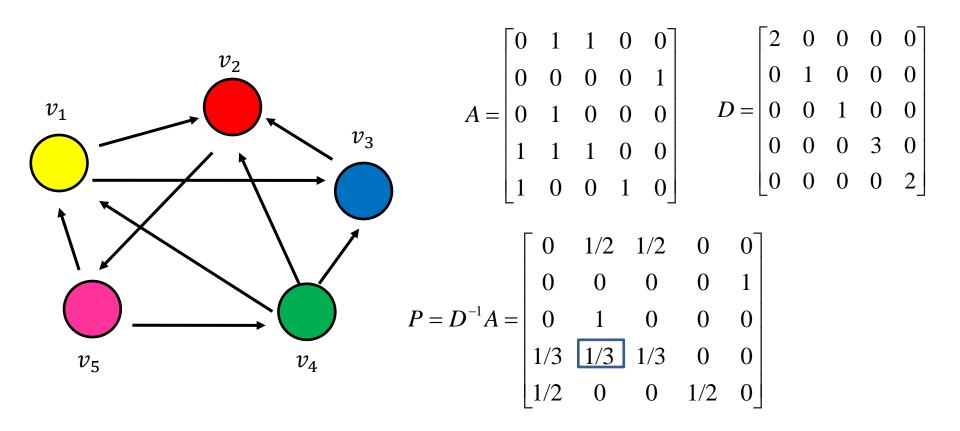
GraRep

But not all k-neighbors equally important

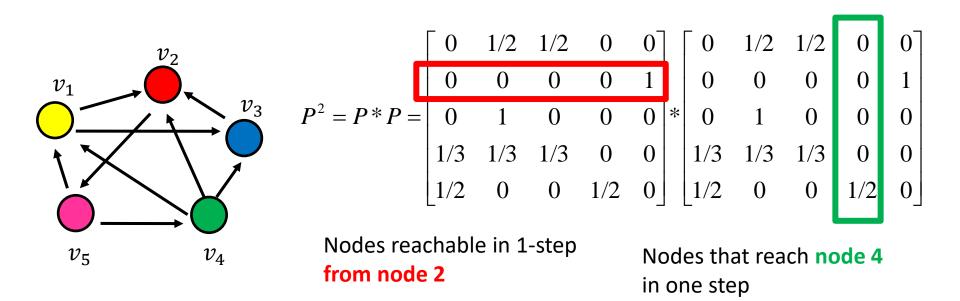


Nearest neighborhoods more important

Maintain different k-step information differently in the graph representation



Probabilistic adjacency matrix  $P_{ij}$  the probability of transition from node *i* to node *j* where the transition has *length exactly 1* 



$$P^{2} = \begin{bmatrix} 0 & 1/2 & 0 & 0 & 1/2 \\ 1/2 & 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1/2 & 1/6 & 0 & 1/3 \\ 1/6 & 5/12 & 5/12 & 0 & 0 \end{bmatrix}$$

 $P_{ij}^2$  the probability of transition form node *i* from node *j* when the transition has *length exactly 2* 

 $P_{ij}^{k}$ : Transition probability from node *i* to node *j* where the transition consists of **exactly** *k* steps

1. Minimize the loss for *a specific k* 

$$L_k = \sum_{(i,j) \in V \times V} ||P_{ij}^k - z_i \cdot z_j||^2$$

2. *Concatenate* the embeddings for the different k

Basic idea:

- Train embeddings to predict *k*-hop neighbors.
- Approach based on skipgrams

Transition probability from node *i* (current node) to node *j* (context node) where the transition consists of <u>exactly</u> *k* steps  $P_{ij}^k = p_k(j \mid i)$ 

Skip-gram model

Given a center word w, predict the context words c, i.e., the words that appear within distance k from w

$$P_{cw}^k = p_k(c \mid w)$$

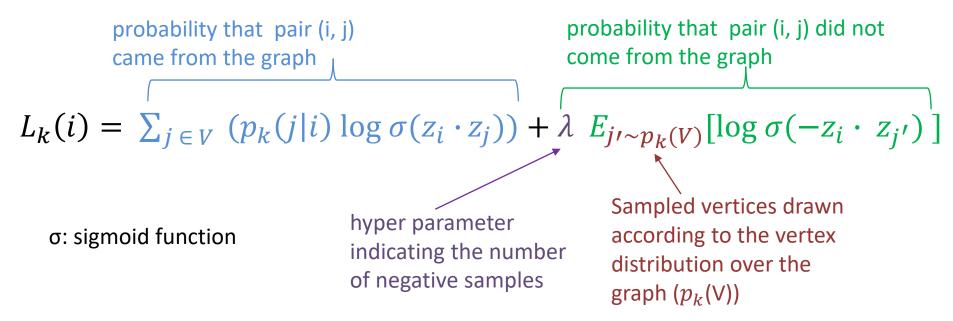
Learn two representations:

- One for node *i* as the source node (i.e., center word)
- One for node *i* as the destination node (i.e., context word)

Use negative sampling (\*) and maximum likelihood

Assume for a given *k*, the collection of all paths from G that start from *i* and end at *j*. Maximize

- (1) Probability that these pairs came from the graph, and
- (2) Probability that all other pairs did not come form the graph



$$L_k(i) = \sum_{j \in V} (p_k(j|i) \log \sigma(z_i \cdot z_j)) + \lambda E_{j' \sim p_k(V)}[\log \sigma(-z_i \cdot z_{j'})]$$

Local objective for a specific pair of nodes

$$L_k(i,j) = P_{ij}^k \log \sigma(z_i \cdot z_j) + \frac{\lambda}{N} \sum_{j' \in V} P_{ij'}^k \log \sigma(-z_i \cdot z_{j'})]$$

As before, compute the gradient and use stochastic gradient descent

Or solve by setting = 0 and get

$$z_i z_j = \log(\frac{S_{i,jk}}{\sum_{i'} A_{i',jkk}}) - \log(\beta), \beta = \frac{\lambda}{N}$$

# Summary

- Basic idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
  - Adjacency-based (i.e., similar if connected)
  - Multi-hop similarity definitions (HOPE, GraRep)
  - Random walk approaches (DeepWalk, node2vec)
- No one method wins in all cases
  - e.g., node2vec performs better on node classification while multi-hop methods performs better on link prediction

#### LINK ANG SUBGRAPH EMBEDDINGS

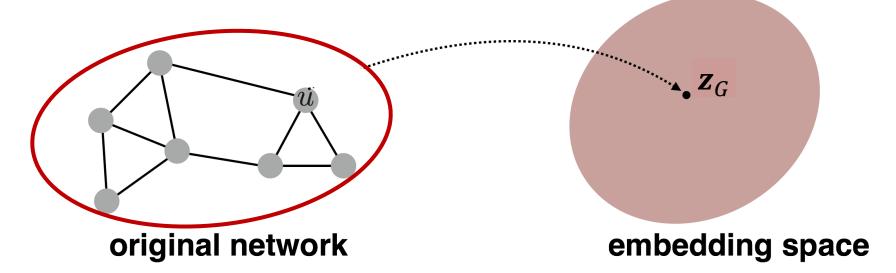
# From node to link embeddings

Also learns edge vectors based on the vectors of their endpoints

| Operator    | Symbol                     | Definition                                                 |
|-------------|----------------------------|------------------------------------------------------------|
| Average     | Ħ                          | $[f(u) \boxplus f(v)]_i = \frac{f_i(u) + f_i(v)}{2}$       |
| Hadamard    | •                          | $[f(u) \boxdot f(v)]_i = f_i(u) \stackrel{\sim}{*} f_i(v)$ |
| Weighted-L1 | $\ \cdot\ _{\overline{1}}$ | $  f(u) \cdot f(v)  _{\overline{1}i} =  f_i(u) - f_i(v) $  |
| Weighted-L2 | $\ \cdot\ _{\overline{2}}$ | $  f(u) \cdot f(v)  _{2i} =  f_i(u) - f_i(v) ^2$           |

# **Embedding Entire Graphs**

• **Goal:** Want to embed a subgraph or an entire graph *G*. Graph embedding: **Z**<sub>*G*</sub>.



#### • Tasks:

- Classifying toxic vs. non-toxic molecules
- Identifying anomalous graphs

# Approach 1

#### Simple (but effective) approach 1:

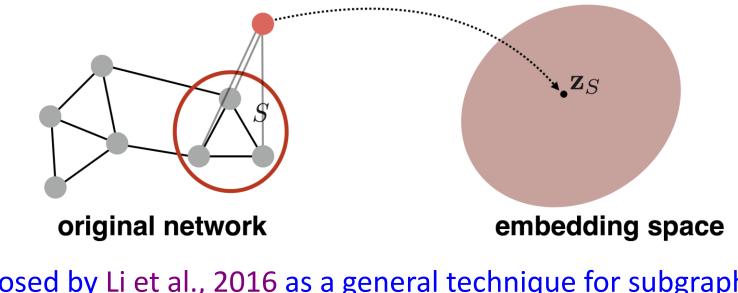
- Run a standard graph embedding technique *on* the (sub)graph *G*.
- Then just sum (or average) the node embeddings in the (sub)graph *G*.

$$\boldsymbol{z}_{\boldsymbol{G}} = \sum_{\boldsymbol{v} \in \boldsymbol{G}} \boldsymbol{z}_{\boldsymbol{v}}$$

Used by <u>Duvenaud et al., 2016</u> to classify molecules based on their graph structure

### Approach 2

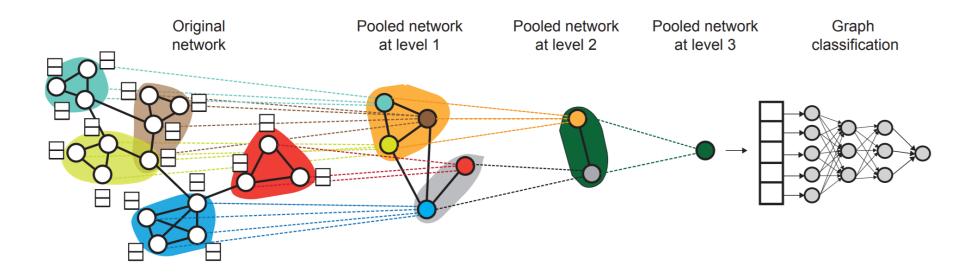
 Approach 2: Introduce a "virtual node" to represent the (sub)graph and run a standard graph embedding technique



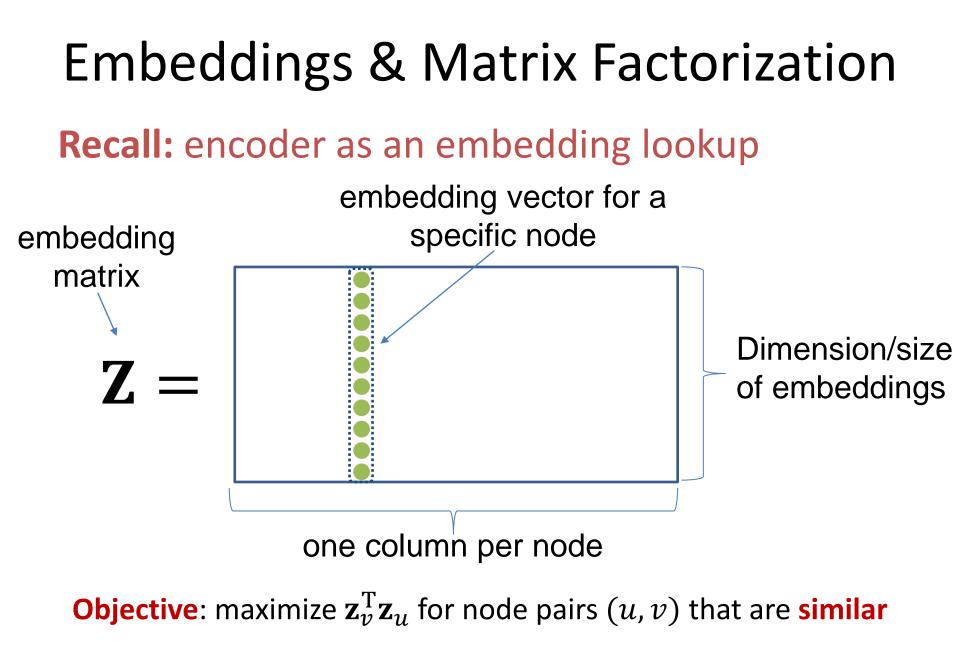
Proposed by <u>Li et al., 2016</u> as a general technique for subgraph embedding

## Preview: Hierarchical Embeddings

 DiffPool: We can also hierarchically cluster nodes in graphs, and sum/avg the node embeddings according to these clusters.



#### **EMBEDDINGS AND FACTORIZATION**



# **Matrix Factorization**

Simplest nodes similarity, two nodes are similar if connected by an edge.

Exact factorization  $A = Z^T Z$  is generally not possible

However, we can learn **Z** approximately

- Objective:min  $\| \mathbf{A} \mathbf{Z}^T \mathbf{Z} \|_2$ 
  - We optimize Z such that it minimizes the L2 norm (Frobenius norm) of  $A Z^T Z$
  - Note today we used softmax instead of L2. But the goal to approximate A with  $Z^T Z$  is the same.

Conclusion: Inner product decoder with node similarity defined by edge connectivity is equivalent to matrix factorization of A.

# Random Walk-based Similarity

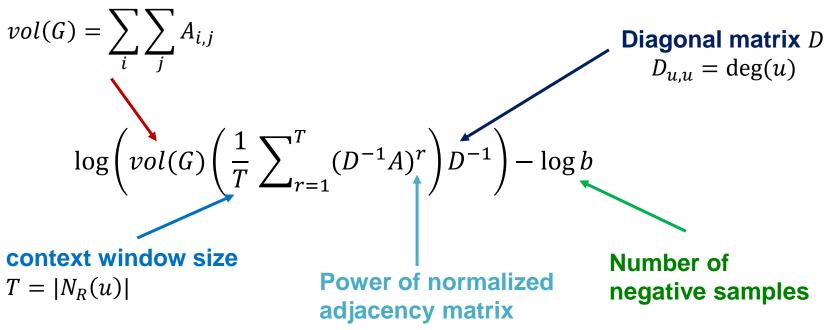
- DeepWalk and node2vec have a more complex node similarity definition based on random walks
- **DeepWalk** is equivalent to matrix factorization of the following complex matrix expression:

$$log\left(vol(G)\left(\frac{1}{T}\sum_{r=1}^{T}(D^{-1}A)^{r}\right)D^{-1}\right) - \log b$$

- Explanation of this equation is on the next slide.

# Random Walk-based Similarity





- Node2vec can also be formulated as a matrix factorization (albeit a more complex matrix)
- Refer to the paper for more details:

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec, WSDM 18



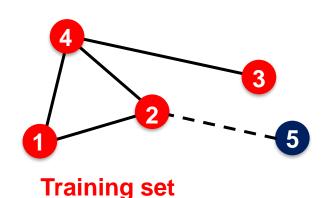
### How to Use Embeddings

- How to use embeddings  $z_i$  of nodes:
  - Clustering/community detection: Cluster points z<sub>i</sub>
  - Node classification: Predict label of node *i* based on *z<sub>i</sub>*
  - Link prediction: Predict edge (i, j) based on  $(\mathbf{z}_i, \mathbf{z}_j)$ 
    - Where we can: concatenate, avg, product, or take a difference between the embeddings:
      - Concatenate:  $f(\mathbf{z}_i, \mathbf{z}_j) = g([\mathbf{z}_i, \mathbf{z}_j])$
      - Hadamard:  $f(\mathbf{z}_i, \mathbf{z}_j) = g(\mathbf{z}_i * \mathbf{z}_j)$  (per coordinate product)
      - Sum/Avg:  $f(\mathbf{z}_i, \mathbf{z}_j) = g(\mathbf{z}_i + \mathbf{z}_j)$
      - Distance:  $f(\mathbf{z}_i, \mathbf{z}_j) = g(||\mathbf{z}_i \mathbf{z}_j||_2)$
  - Graph classification: Graph embedding  $z_G$  via aggregating node embeddings or virtual-node. Predict label based on graph embedding  $z_G$ .

# Limitations (1)

Limitations of node embeddings via matrix factorization and random walks

 Transductive (not inductive) method: Cannot obtain embeddings for nodes not in the training set. Cannot apply to new graphs, evolving graphs.

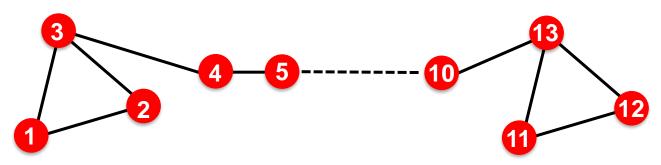


A newly added node 5 at test time (e.g., new user in a social network)

Cannot compute its embedding with DeepWalk / node2vec. Need to recompute all node embeddings.

# Limitation (2)

#### Cannot capture **structural similarity**:



- Node 1 and 11 are **structurally similar** part of one triangle, degree 2, ...
- However, they have very different embeddings.
  - It is unlikely that a random walk will reach node 11 from node 1.

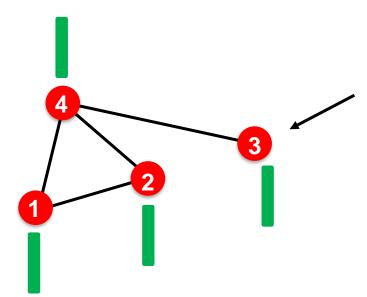
DeepWalk and node2vec do not capture structural similarity.

#### struct2vec

- similarity<sub>r</sub>(u, v): based on the difference of the degree sequence of nodes at radius r of u and v
- Builds a multilayer weighted graph, weights set based on similarity
- Perform a random walk: change layer, or do a weight-biased walk in the same layer

# Limitations (3)

• Cannot utilize node, edge and graph features



#### **Feature vector**

(e.g. protein properties in a protein-protein interaction graph)

DeepWalk / node2vec embeddings do not incorporate such node features

# Summary

We discussed graph representation learning, a way to learn node and graph embeddings for downstream tasks, without feature engineering.

- Encoder-decoder framework:
  - Encoder: embedding lookup
  - Decoder: predict score based on embedding to match node similarity
- Node similarity measure: (biased) random walk
   Examples: DeepWalk, Node2Vec
- Extension to Graph embedding: Node embedding aggregation

### Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford University, <u>http://cs224w.stanford.edu</u>