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Online Social Networks and 
Media 

Graph ML
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Graph Machine Learning

Outline

Part I: Introduction, Traditional ML
Part II: Graph Embeddings
Part III: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on: 

 CS224W: Machine Learning with Graphs

 Jure Leskovec, Stanford University
http://cs224w.stanford.edu

http://cs224w.stanford.edu/
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Part I: 
Types of ML Tasks

Traditional ML
Feature Engineering



PyG (PyTorch Geometric):

 The ultimate library for Graph Neural Networks
We further recommend:

 GraphGym: Platform for designing Graph Neural 
Networks.

 Modularized GNN implementation, simple hyperparameter 
tuning, flexible user customization

• Other network analytics tools: SNAP.PY, NetworkX

Tools
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Types of ML tasks in graphs
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Edge (link) level

Community 

(subgraph)

level

Graph-level 

prediction,

Graph 

generation

Node

level

Types of ML tasks in graphs

6



D

G
C

H

E

F

Node features

B Graph features
Link features

A

∈ ℝ𝐷

 Design features for nodes/links/graphs
 Obtain features for all training data

∈ ℝ𝐷

∈ ℝ𝐷

Traditional ML Pipeline
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 Train an ML model:

▪ Random forest

▪ SVM

▪ Neural network, etc.

𝒙𝟏 𝑦1

𝒙𝑵 𝑦𝑁

 Apply the model:

▪ Given a new 
node/link/graph, obtain 
its features and make a 
prediction

𝒙 𝑦

Traditional ML Pipeline
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? ?

?
?

?

Machine 

Learning

Node classification

Node Level Tasks (example)
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▪ Using effective features over graphs is the key to 
achieving good model performance.

▪ Traditional ML pipeline uses hand- designed 
features.

▪ We will overview traditional features for:

▪ Node-level prediction

▪ Link-level prediction

▪ Graph-level prediction

▪ For simplicity, we focus on undirected graphs.

Feature Design
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Goal: Make predictions for a 
set of objects

Design choices:
 Features: d-dimensional vectors
 Objects: Nodes, edges, sets of nodes, 

entire graphs
 Objective function:

▪ What task are we aiming to solve?
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NODE LEVEL FEATURES AND TASKS
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Goal: Characterize the structure and position of a node 
in the network:

▪ Node degree

▪ Node centrality

C

▪ Clustering coefficient

▪ Graphlets

A

D E

H

F

G

Node feature

B

Node Level Features
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 The degree 𝑘𝑣 of node 𝑣 is the number of 
edges (neighboring nodes) the node has.

 Treats all neighboring nodes equally.

𝑘𝐵 = 2

C

B

D E

H

F

G

14

𝑘𝐴 = 1

A

𝑘𝐶 = 3

𝑘𝐷 = 4

Node degree



Engienvector centrality

 Node degree counts the neighboring nodes 
without capturing their importance.

 Node centrality 𝑐𝑣 takes the node importance 
in a graph into account

 Different ways to model importance:

▪ Eigenvector (Pagerank) centrality

▪ Betweenness centrality

▪ Closeness centrality

▪ and many others…

Node centrality
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▪ A node 𝑣 is important if surrounded by important 
neighboring nodes 𝑢 ∈ 𝑁(𝑣).

▪ We model the centrality of node 𝑣 as the sum of 
the centrality of neighboring nodes:

Pagerank centrality

𝑝 𝑣 =  

𝑢 → 𝑣

𝑝(𝑢)

𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢)
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▪ A node is important if it lies on many shortest paths 
between other nodes.

Example:

C

A

B

D E

𝑐𝐴 = 𝑐𝐵 = 𝑐𝐸 = 0
𝑐𝐶  = 3

(A-C-B, A-C-D, A-C-D-E)

𝑐𝐷 = 3
(A-C-D-E, B-D-E, C-D-E)

Betweness centrality
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▪ A node is important if it has small shortest path 
lengths to all other nodes.

Example:

C

A

B

D E

𝑐𝐴 = 1/(2 + 1 + 2 + 3) = 1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

𝑐 = 1/(2 + 1 + 1 + 1) = 1/5𝐷

(D-C-A, D-B, D-C, D-E)

Closeness centrality
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 Measures how connected the neighboring 
nodes of 𝑣 are:

Examples:

𝑣

𝑣 𝑣

𝑒𝑣 = 1 𝑒𝑣 = 0.5 𝑒𝑣 = 0

#(node pairs among 𝑘𝑣 neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).

Clustering coefficient
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 Observation: Clustering coefficient counts the 
#(triangles) in the ego-network

 We can generalize the above by counting 
#(pre-specified subgraphs), i.e., graphlets.

𝑣 𝑣

3 triangles (out of 6 node triplets)

𝑒𝑣 = 0.5

𝑣 𝑣

Graphlets
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 Goal: Describe network structure around 
node 𝑢

▪ Graphlets are small subgraphs that describe 
the structure of node 𝑢’s network 
neighborhood

Analogy:
 Degree counts #(edges) that a node touches

 Clustering coefficient counts #(triangles) that a node touches.

 Graphlet Degree Vector (GDV): Graphlet-base features for 

nodes

▪ GDV counts #(graphlets) that a node touches

C

B

𝑢 E

Graphlets

A

21



 Def: Induced subgraph is another graph, formed 
from a subset of vertices and all the edges 
connecting the vertices in that subset.

C

A

B

𝑢 E

C

B

𝑢
Induced 

subgraph:
C

B

𝑢
Not induced

subgraph:

Graphlets
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 Def: Graph Isomorphism
▪ Two graphs which contain the same number of nodes 

connected in the same way are said to be isomorphic.

 (one-to-one mapping of their nodes)

Isomorphic

Node mapping: (e2,c2), (e1, c5),

(e3,c4), (e5,c3), (e4,c1)

Non-Isomorphic
The right graph has cycles of length 3 but the left 
graph does not, so the graphs cannot be isomorphic.

Source: Mathoverflow

Graphlets
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Przulj et al., Bioinformatics 2004

Graphlets: Rooted connected induced non-
isomorphic subgraphs:

Graphlets

Graphlet Degree Vector (GDV): A count 
vector of graphlets rooted at a given node.

All possible graphlets on up to 3 nodes

24
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Example: All possible graphlets on up to 3 nodes

Graphlet instances of node u:

Graphlets of node 𝑢:

𝑎, 𝑏, 𝑐, 𝑑
[2,1,0,2]

Graphlets

𝑢

𝑎 𝑏 𝑐 𝑑
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Przulj et al., Bioinformatics 2004

There are 73 different graphlets on up to 5 nodes

C

A

B

𝑢 E

𝑢 has 

graphlets: 

0, 1, 2, 3, 5,

10, 11, …

Graphlet 
id (Root/
“position” 
of node 𝑢)

Graphlets
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C

 Considering graphlets of size 2-5 nodes we get:

▪ Vector of 73 coordinates is a signature of a node that 
describes the topology of node's neighborhood

 Graphlet degree vector provides a measure of a node’s 
local network topology:

▪ Comparing vectors of two nodes provides a more detailed 
measure of local topological similarity than node degrees or 
clustering coefficient

Graphlets

C

A

B

𝑢 E 𝑢 has graphlets: 0, 1, 2, 3, 5, 10, 11, …
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 We have introduced different ways to obtain 
node features.

 They can be categorized as:

▪ Importance-based features:

▪ Node degree

▪ Different node centrality measures

▪ Structure-based features:

▪ Node degree

▪ Clustering coefficient

▪ Graphlet count vector

Node Level Features

28



 Importance-based features: capture the 
importance of a node in a graph

▪ Node degree:

▪ Simply counts the number of neighboring nodes

▪ Node centrality:

▪ Models importance of neighboring nodes in a graph

▪ Different modeling choices: eigenvector centrality, 
betweenness centrality, closeness centrality

 Useful for predicting influential nodes in a graph

▪ Example: predicting celebrity users in a social 
network

Node Level Features
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 Structure-based features: Capture topological 
properties of local neighborhood around a node.
▪ Node degree:

▪ Counts the number of neighboring nodes

▪ Clustering coefficient:
▪ Measures how connected neighboring nodes are

▪ Graphlet degree vector:
▪ Counts the occurrences of different graphlets

 Useful for predicting a particular role a node 
plays in a graph:
▪ Example: Predicting protein functionality in a 

protein-protein interaction network.

Node Level Features
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? ?

?
?

?

Machine 

Learning

Node classification

Node Level Tasks
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Computationally predict the 3D structure of a protein 

based solely on its amino acid sequence:

For each node predict its 3D coordinates

Image credit: DeepMind

Protein Folding
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Image credit: DeepMind

Image credit: SingularityHub
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Image credit: DeepMind
34

Key idea: “Spatial graph”

 Nodes: Amino acids in a protein sequence

 Edges: Proximity between amino acids (residues)

Spatial graph



LINK PREDICTION
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 The task is to predict new links based on the 
existing links.

 Two ways: (a) define a score for each pair of 
nodes, rank pairs, return top K ones, (b) build a 
classifier with input pair of nodes, output 
probability of existence

C

A

B

D E

H

F

G

?

?

Link Prediction
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 The key is to design features for a pair of nodes.
 (for computing the score, as input to the classifier
 First, score

C

A

B

D E

H

F

G

?

?

Link Prediction
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(1) Links missing at random:

Missing/unknown, incomplete information

▪ Remove a random set of links and then aim to 
predict them

38

Link Prediction



0▪ Given 𝐺[𝑡0, 𝑡 ′  ] a graph defined by edges

0up to time 𝑡 ′  , output a ranked list L

0of edges (not in 𝐺[𝑡0, 𝑡 ′  ]) that are
′predicted to appear in time 𝐺[𝑡1, 𝑡1]

1 0 0𝐺[𝑡  , 𝑡 ′  ]

1𝐺[𝑡1, 𝑡 ′  ]

Link Prediction

(2) Temporal Links Prediction

39



Methodology:

▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of common neighbors 
of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)

▪ Predict top n pairs as new links

X

Score-based Link Prediction

40

▪ n = |Enew|: # new edges that appear during
the test period [𝑡1, 𝑡 ′]

▪ Take top n elements of L and count correct edges

▪ Evaluation:



 Distance-based feature
 Local neighborhood overlap
 Global neighborhood overlap

C

B

D E

H

F

G

Link feature

A

Link Level Features
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𝑆𝐵𝐻 = 𝑆𝐵𝐸 = 𝑆𝐴𝐵 = 2

C

A

Example:
B

D E

H

However, this does not capture the degree of neighborhood 
overlap:

▪ Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and 
(A, B) only have 1 such node.

F

G
𝑆𝐵𝐺 = 𝑆𝐵𝐹 = 3

Distance-based Features

Shortest-path distance between two nodes

42
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Local Neighborhood Features: Captures # neighboring 
nodes shared between two nodes

Common neighbors: 

C

A

B

D E

F
𝑁𝐴

𝑁𝐵

Local Neighborhood Overlap Features

|𝑁 𝑣1 ∩ 𝑣2 |

Jaccard coefficient:

|𝑁 𝑣1 ∩  𝑣2 | 

|𝑁 𝑣1 ∪  𝑣2 | 

Example:
𝑐(𝐴, 𝐵)
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C

A

B

D E

F
𝑁𝐴

𝑁𝐵



𝑢 ∈𝑁 𝑣1  ∩ 𝑁(𝑣2)

1

log(𝑘𝑢)

Adamic-Adar index: 

Local Neighborhood Overlap Features
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▪ However, the two nodes may still potentially connect in the 
future.

Global neighborhood overlap metrics resolve the limitation 

by considering the entire graph.

C

A

Limitation of local neighborhood features:
▪ Metric is always zero if the two nodes do not have any 

neighbors in common.

B

D E

F
𝑁𝐴

𝑁𝐸

𝑁𝐴 ∩ 𝑁𝐸 = 𝜙
|𝑁𝐴 ∩ 𝑁𝐸 | = 0

Global Neighborhood Overlap Features
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Katz index: counts the number of walks of all 
lengths between a given pair of nodes.

How to compute #walks between two nodes?

▪ Use powers of the adjacency matrix!

Global Neighborhood Overlap Features
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Computing #walks between two nodes

▪ Recall: 𝑨𝑢𝑣 = 1 if 𝑢 ∈ 𝑁(𝑣)

▪ Let 𝑷(𝑲) = #walks of length 𝑲 between 𝒖 and 𝒗𝒖𝒗

▪ We will show 𝑷(𝑲) = 𝑨𝒌

𝒖𝒗▪ 𝑷(𝟏) = #walks of length 1 (direct neighborhood)
between 𝑢 and 𝑣 = 𝑨𝒖𝒗

4

3

2
1

𝟏𝟐

47

𝑷(𝟏) = 𝑨𝟏𝟐

Global Neighborhood Overlap Features



▪ How to compute ?

▪ Step 1: Compute #walks of length 1 between 
each of 𝒖’s neighbor and 𝒗

▪ Step 2: Sum up these #walks across u’s neighbors

𝒊𝒗𝒖𝒗 𝒊 𝒖𝒊 𝒊 𝒖𝒊 𝒊𝒗 𝒖𝒗▪ 𝑷(𝟐) = Σ  𝑨 ∗ 𝑷(𝟏)  = Σ  𝑨 ∗ 𝑨 = 𝑨𝟐

Node 1’s neighbors

#walks of length 1 between 

Node 1’s neighbors and Node 2 𝟏𝟐 12𝑷(𝟐) = 𝑨2

Power of 

adjacency

Global Neighborhood Overlap Features
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How to compute #walks between two nodes?

Use adjacency matrix powers

▪ 𝑨𝑢𝑣 specifies #walks of length 1 (direct 
neighborhood) between 𝑢 and 𝑣.

▪ 𝑨𝟐 specifies #walks of length 2 (neighbor of𝑢𝑣

neighbor) between 𝑢 and 𝑣.

𝑢𝑣▪ And, 𝑨𝒍 specifies #walks of length 𝒍.

Global Neighborhood Overlap Features

49



Katz index between 𝑣1 and 𝑣2 is calculated as
Sum over all walk lengths

#walks of length 𝑙
between 𝑣1 and 𝑣2

0 < 𝛽 < 1: discount factor

 Katz index matrix is computed in closed-form:

𝑖=0

5
0

= σ∞ 𝛽𝑖 𝑨𝑖

by geometric series of matrices

Global Neighborhood Overlap Features



Distance-based features:

▪ Uses the shortest path length between two nodes 
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

▪ Captures how many neighboring nodes are shared 
by two nodes.

▪ Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

▪ Uses global graph structure to score two nodes.

▪ Katz index counts #walks of all lengths between two 
nodes.

Link Level Features
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Classification for Link Prediction

52

Predict link 𝑒 = (𝑣, 𝑢)

Input
Features describing 𝑣 and 𝑢 

Output
Prediction 
        positive class: link

            negative class: no-link



52

Items

Users

Users interacts with items

Watch movies, buy merchandise, listen to music

▪ Nodes: Users and items

▪ Edges: User-item interactions

Goal: Recommend items users might like

Interactions

“You might also like”

Example: Recommender Systems

53



Many patients take multiple drugs to treat

complex or co-existing diseases:

• 46% of people ages 70-79 take more than 5 drugs
• Many patients take more than 20 drugs to treat 

heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict
adverse side effects

,
30%
prob.

65%
prob.

Example: Drug Side Effects

54



Nodes: Drugs & Proteins
Edges: Interactions

Query: How likely will 
Simvastatin and 
Ciprofloxacin, when taken 
together, break down 
muscle tissue?

55

Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

Example: Drug Side Effects



GRAPH LEVEL FEATURES AND TASKS
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Goal: We want features that characterize the 
structure of an entire graph.

For example:

C

A

B

D E

H

F

G

57

Graph Level Features



Graph Kernels: Measure similarity between two 
graphs

▪ Kernel 𝐾 𝐺, 𝐺′  ∈ ℝ measures similarity

▪ Kernel matrix 𝑲 = 𝐾 𝐺, 𝐺 ′
𝐺,𝐺

′  must always be

positive semidefinite (i.e., has positive eigenvalues)

▪ There exists a feature representation 𝜙(∙) such that
𝐾 𝐺, 𝐺 ′  = 𝜙 G T𝜙 𝐺 ′

▪ Once the kernel is defined, off-the-shelf ML model, 
such as kernel SVM, can be used to make predictions.

Graph Kernels
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Graph Kernels: Measure similarity between two 
graphs:

▪ Graphlet Kernel [1]

▪ Weisfeiler-Lehman Kernel [2]

▪ Other kernels are also proposed in the literature
▪ (beyond the scope of this lecture)

▪ Random-walk kernel

▪ Shortest-path graph kernel

▪ And many more…

1 Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.

2 Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Graph Kernels
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Goal: Design graph feature vector 𝜙(G) 
Key idea: Bag-of-Words (BoW) for a graph

▪ BoW simply uses the word counts as features for 
documents (no ordering considered).

▪ Naïve extension to a graph: Regard nodes as words.

▪ Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs

𝜙( ) = 𝜙

6
0

Graph Kernels



Deg1: Deg2: Deg3:

 Both Graphlet Kernel and Weisfeiler-Lehman 
(WL) Kernel use Bag-of-* representation of 
graph, where * is more sophisticated than 
node degrees!

𝜙( ) = count(

𝜙( ) = count(

) = [1, 2, 1]
Obtains different features 

for different graphs!

) = [0, 2, 2]

61

Graph Kernels

What if we use Bag of node degrees?



Key idea: Count the number of different 
graphlets in a graph.

▪ Note: Definition of graphlets here is slightly 
different from node-level features.

▪ The two differences are:

▪ Nodes in graphlets here do not need to be connected 
(allows for isolated nodes)

▪ The graphlets here are not rooted.

Graphlet Features
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Let 𝓖𝒌 = (𝒈𝟏, 𝒈𝟐, … , 𝒈𝒏𝒌) be a list of 

graphlets of size 𝒌.
▪ For 𝑘 = 3 , there are 4 graphlets.

▪ For 𝑘 = 4 , there are 11 graphlets.

𝑔1 𝑔2 𝑔3 𝑔4

Shervashidze et al., AISTATS 2011

6
3

Graphlet Features



Given graph 𝐺, and a graphlet list 𝒢𝑘= (𝑔1, 

𝑔2, … , 𝑔𝑛𝑘), define the graphlet count

vector 𝒇𝐺 ∈ ℝ𝑛𝑘 as

(𝒇𝐺)𝑖= #(𝑔𝑖 ⊆ 𝐺) for 𝑖 = 1,2, … , 𝑛𝑘.

6
4

Graphlet Features



Example for 𝑘 = 3. 𝑔1 𝑔2 𝑔3 𝑔4

𝐺

𝒇𝐺 = (1, 3, 6, 0)T

6
5

Graphlet Features



Given two graphs, 𝐺 and 𝐺′, graphlet kernel is 
computed as

𝐾 𝐺, 𝐺 ′  = 𝒇𝐺
T𝒇 ′

𝐺

Problem: if 𝐺 and 𝐺 ′  have different sizes, that 
will greatly skew the value.
 Solution: normalize each feature vector

𝐾 𝐺, 𝐺 ′  = 𝒉𝐺
T𝒉 ′

𝐺

Graphlet Kernel
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 Counting size-𝑘 graphlets for a graph with size 𝑛 by 
enumeration takes 𝑛𝑘.

 This is unavoidable in the worst-case since subgraph 

isomorphism test (judging whether a graph is a subgraph 

of another graph) is NP-hard.

 If the node degree of a graph is bounded by 𝑑, an 

𝑂(𝑛𝑑𝑘−1) algorithm exists to count all the graphlets of 

size 𝑘.

Can we design a more efficient graph kernel?

Limitation: Counting graphlets is expensive

Graphlet Kernel
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Goal: Design an efficient graph feature 
descriptor 𝜙(G)
Idea: Use neighborhood structure to 
iteratively enrich node vocabulary.

▪ Generalized version of Bag of node degrees since 
node degrees are one-hop neighborhood 
information.

 Algorithm to achieve this:

Color refinement

Weisfeiler-Lehman Kernel
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Given: A graph 𝐺 with a set of nodes 𝑉.

▪ Assign an initial color 𝑐 0 𝑣 to each node 𝑣.

𝑢∈𝑁 𝑣

▪ Iteratively refine node colors by

𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢 ,

where HASH maps different inputs to different colors.

▪ After 𝐾 steps of color refinement, 𝑐 𝐾 𝑣
summarizes the structure of 𝐾-hop neighborhood

Color Refinement

69



▪ Assign initial colors
1 1

1

1 1

▪ Aggregate neighboring colors

1

1 1

1

1 1

1

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

𝐺1
𝐺2

Color Refinement
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▪ Aggregated colors

▪ Hash aggregated colors

4 3

5

2 2

4

3 4

5

2 2

4

Hash table

1,1 --> 2

1,11 --> 3

1,111 --> 4

1,1111 --> 5

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Color Refinement
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▪ Aggregated colors

4,345 3,44

5,2244

2,5 2,5

4,345

3,45 4,345

5,2344

2,5 2,4

4,245

4 3

5

2 2

▪ Hash aggregated colors

4

3 4

5

2 2

4

Color Refinement
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▪ Aggregated colors

▪ Hash aggregated colors

11 8

12

7 7

11

9 11

13

7 6

10

2,5 --> 7

3,44 --> 8

3,45 --> 9

4,245 --> 10

4,345 --> 11

5,2244 --> 12

5,2344 --> 13

4,345 3,44

5,2244

2,5 2,5

4,345

3,45 4,345

5,2344

2,5 2,4

Hash table

2,4 --> 6

4,245

Color Refinement

73



 Colors 1,2,3,4,5,6,7,8,9,10,11,12,13
   = [6,2,1,2,1,0,2,1,0, 0,0,2,1]

Colors 1,2,3,4,5,6,7,8,9,10,11,12,13= 
[6,2,1,2,1,1,1,0,1, 1,1,0,1]

After color refinement, WL kernel counts number of 
nodes with a given color.

Weisfeiler-Lehman Kernel
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The WL kernel value is computed by the inner 
product of the color count vectors:

K( , )
=

= 49

Weisfeiler-Lehman Kernel

75



 WL kernel is computationally efficient
▪ The time complexity for color refinement at each step is 

linear in #(edges), since it involves aggregating neighboring 
colors.

 When computing a kernel value, only colors 
appeared in the two graphs need to be tracked.

▪ Thus, #(colors) is at most the total number of nodes.

 Counting colors takes linear-time w.r.t. #(nodes).

 In total, time complexity is linear in #(edges).

Weisfeiler-Lehman Kernel

76



 Graphlet Kernel
▪ Graph is represented as Bag-of-graphlets

▪ Computationally expensive

 Weisfeiler-Lehman Kernel
▪ Apply 𝐾-step color refinement algorithm to enrich 

node colors
▪ Different colors capture different 𝐾-hop neighborhood 

structures

▪ Graph is represented as Bag-of-colors

▪ Computationally efficient

▪ Closely related to Graph Neural Networks (as we 
will see!)

Graph Kernels

77



• a

Example 1: Traffic Prediction

78



Nodes: Road segments

Edges: Connectivity between road segments

Prediction: Time of Arrival (ETA)

Image credit: DeepMind
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Road networks as graphs

Traffic Prediction



Predicting Time of Arrival with GNNS

Used in Google Maps

Image credit: DeepMind

Traffic Prediction with GNNs
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Antibiotics are small molecular graphs

Nodes: Atoms

Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 

beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Example 2: Drug Prediction
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 

Cell 180.4 (2020): 688-702.

• A Graph Neural Network graph classification model
• Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

Drug Prediction
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Physical simulation as a graph:
Nodes: Particles
Edges: Interaction between particles

Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

Example 3: Physical Simulation
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A graph evolution task:
• Goal: Predict how a graph will evolve over

time

Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

Physical Simulation
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https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather- 

9d114460aa0c

Application: Weather Forecasting
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 Traditional ML Pipeline

▪ Hand-crafted feature + ML model

 Hand-crafted features for graph data

▪ Node-level:

▪ Node degree, centrality, clustering coefficient, graphlets

▪ Link-level:

▪ Distance-based feature

▪ local/global neighborhood overlap

▪ Graph-level:

▪ Graphlet kernel, WL kernel
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Summary
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