Online Social Networks and Media

Graph ML

Graph Machine Learning

Outline

Part I: Introduction, Traditional ML Part II: Graph Embeddings Part III: GNNs Part IV (if time permits): Knowledge Graphs

Slides used based on:

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University <u>http://cs224w.stanford.edu</u>

Part I:

Types of ML Tasks Traditional ML Feature Engineering

Tools

• The ultimate library for Graph Neural Networks **We further recommend:**

<u>GraphGym</u>: Platform for designing Graph Neural Networks.

PyG (PyTorch Geometric):

 Modularized GNN implementation, simple hyperparameter tuning, flexible user customization

• Other network analytics tools: SNAP.PY, NetworkX

Types of ML tasks in graphs

Types of ML tasks in graphs

Traditional ML Pipeline

Design features for nodes/links/graphs
Obtain features for all training data

Traditional ML Pipeline

Train an ML model:

- Random forest
- SVM
- Neural network, etc.

$\begin{array}{c} x_1 \\ \rightarrow \\ y_1 \\ \vdots \\ \vdots \\ x_N \\ \rightarrow \\ y_N \end{array}$

Apply the model:

Given a new
 node/link/graph, obtain
 its features and make a
 prediction

Node Level Tasks (example)

Node classification

Feature Design

- Using effective features over graphs is the key to achieving good model performance.
- Traditional ML pipeline uses hand- designed features.
- We will overview traditional features for:
 - Node-level prediction
 - Link-level prediction
 - Graph-level prediction
- For simplicity, we focus on undirected graphs.

Goal: Make predictions for a set of objects

Design choices:

- Features: d-dimensional vectors
- Objects: Nodes, edges, sets of nodes, entire graphs
- Objective function:
 - What task are we aiming to solve?

NODE LEVEL FEATURES AND TASKS

Goal: Characterize the structure and position of a node in the network:

- Node degree
- Node centrality

Node degree

The degree k_v of node v is the number of edges (neighboring nodes) the node has.
Treats all neighboring nodes equally.

$$k_B = 2$$

Node centrality

- Node degree counts the neighboring nodes without capturing their importance.
- Node centrality c_v takes the node importance in a graph into account
- Different ways to model importance:
 - Eigenvector (Pagerank) centrality
 - Betweenness centrality
 - Closeness centrality
 - and many others...

Pagerank centrality

- A node v is important if surrounded by important neighboring nodes $u \in N(v)$.
- We model the centrality of node v as the sum of the centrality of neighboring nodes:

$$p(v) = \sum_{u \to v} \frac{p(u)}{OutDegree(u)}$$

Betweness centrality

 A node is important if it lies on many shortest paths between other nodes.

 $c_{v} = \sum_{s \neq v \neq t} \frac{\#(\text{shortest paths betwen } s \text{ and } t \text{ that contain } v)}{\#(\text{shortest paths between } s \text{ and } t)}$

Example:

$$c_A = c_B = c_E = 0$$

$$c_C = 3$$
(A-C-B, A-C-D, A-C-D-E)
$$c_D = 3$$
(A-C-D-E, B-D-E, C-D-E)

Closeness centrality

 A node is important if it has small shortest path lengths to all other nodes.

1

$$c_v = \frac{1}{\sum_{u \neq v} \text{shortest path length between } u \text{ and } v}$$

Example:

Clustering coefficient

 Measures how connected the neighboring nodes of v are:

 $e_v = 0.5$

 $e_{v} = 1$

 $e_{12} =$

 Observation: Clustering coefficient counts the #(triangles) in the ego-network

 We can generalize the above by counting #(pre-specified subgraphs), i.e., graphlets.

- Goal: Describe network structure around node u
 - Graphlets are small subgraphs that describe the structure of node u's network neighborhood

Analogy:

- Degree counts #(edges) that a node touches
- Clustering coefficient counts #(triangles) that a node touches.
- Graphlet Degree Vector (GDV): Graphlet-base features for nodes
 - GDV counts #(graphlets) that a node touches

Def: Induced subgraph is another graph, formed from a subset of vertices and *all* the edges connecting the vertices in that subset.

Def: Graph Isomorphism

 Two graphs which contain the same number of nodes connected in the same way are said to be isomorphic.
 (one-to-one mapping of their nodes)

Source: Mathoverflow

The right graph has cycles of length 3 but the left graph does not, so the graphs cannot be isomorphic.

Graphlets: Rooted connected induced nonisomorphic subgraphs:

All possible graphlets on up to 3 nodes

Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.

Example:

All possible graphlets on up to 3 nodes

Graphlet instances of node u:

Graphlets of node *u*: *a*, *b*, *c*, *d* [2,1,0,2]

There are 73 different graphlets on up to 5 nodes

- Considering graphlets of size 2-5 nodes we get:
 - Vector of 73 coordinates is a signature of a node that describes the topology of node's neighborhood
- Graphlet degree vector provides a measure of a node's local network topology:
 - Comparing vectors of two nodes provides a more detailed measure of local topological similarity than node degrees or clustering coefficient

u has graphlets: 0, 1, 2, 3, 5, 10, 11, ...

- We have introduced different ways to obtain node features.
- They can be categorized as:
 - Importance-based features:
 - Node degree
 - Different node centrality measures
 - Structure-based features:
 - Node degree
 - Clustering coefficient
 - Graphlet count vector

- Importance-based features: capture the importance of a node in a graph
 - Node degree:
 - Simply counts the number of neighboring nodes
 - Node centrality:
 - Models importance of neighboring nodes in a graph
 - Different modeling choices: eigenvector centrality, betweenness centrality, closeness centrality
- Useful for predicting influential nodes in a graph
 - Example: predicting celebrity users in a social network

- Structure-based features: Capture topological properties of local neighborhood around a node.
 - Node degree:
 - Counts the number of neighboring nodes
 - Clustering coefficient:
 - Measures how connected neighboring nodes are
 - Graphlet degree vector:
 - Counts the occurrences of different graphlets
- Useful for predicting a particular role a node plays in a graph:
 - Example: Predicting protein functionality in a protein-protein interaction network.

Node Level Tasks

Node classification

Protein Folding

Computationally predict the 3D structure of a protein based solely on its amino acid sequence: For each node predict its 3D coordinates

Experimental resultComputational prediction

AlphaFold: Impact

Image credit: SingularityHub

AlphaFold's Al could change the world of biological science as we know it

DeepMind's latest AI breakthrough can accurately predict the way proteins fold

Has Artificial Intelligence 'Solved' Biology's Protein-Folding Problem? DeepMind's latest AI breakthrough could turbocharge drug discovery

AlphaFold: Solving Protein Folding

Key idea: "Spatial graph"

- Nodes: Amino acids in a protein sequence
- Edges: Proximity between amino acids (residues)

Spatial graph

LINK PREDICTION

Link Prediction

- The task is to predict **new links** based on the existing links.
- Two ways: (a) define a score for each pair of nodes, rank pairs, return top K ones, (b) build a classifier with input pair of nodes, output probability of existence

Link Prediction

The key is to design features for a pair of nodes.
(for computing the score, as input to the classifier
First, score

Link Prediction

(1) Links missing at random:

Missing/unknown, incomplete information

Remove a random set of links and then aim to predict them

Link Prediction

(2) Temporal Links Prediction

 Given G[t₀, t'₀] a graph defined by edges up to time t'₀, output a ranked list L of edges (not in G[t₀, t'₀]) that are predicted to appear in time G[t₁, t'₁]

1

Score-based Link Prediction

Methodology:

- For each pair of nodes (x,y) compute score c(x,y)
 - For example, c(x,y) could be the # of common neighbors of x and y
- Sort pairs (x,y) by the decreasing score c(x,y)
- Predict top n pairs as new links
- Evaluation:
 - $n = |E_{new}|$: # new edges that appear during the test period $[t_1, t']$
 - Take top n elements of L and count correct edges

Link Level Features

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap

Distance-based Features

Shortest-path distance between two nodes

However, this does not capture the degree of neighborhood overlap:

Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and (A, B) only have 1 such node.

Local Neighborhood Features: Captures # neighboring nodes shared between two nodes

Common neighbors: $|N(v_1 \cap v_2)|$

Jaccard coefficient:

 $\frac{|N(v_1 \cap v_2)|}{|N(v_1 \cup v_2)|}$

Example: c(A, B)

Adamic-Adar index:

$$\sum_{u \in N(v_1) \cap N(v_2)} \frac{1}{\log(k_u)}$$

Limitation of local neighborhood features:

Metric is always zero if the two nodes do not have any neighbors in common.

 $N_A \cap N_E = \phi$ $|N_A \cap N_E| = 0$

However, the two nodes may still potentially connect in the future.

Global neighborhood overlap metrics resolve the limitation by considering the entire graph.

Katz index: counts the number of walks of all lengths between a given pair of nodes.

How to compute #walks between two nodes?

Use powers of the adjacency matrix!

Computing #walks between two nodes

• **Recall**: $A_{uv} = 1$ if $u \in N(v)$

• Let $P_{uv}^{(K)} =$ #walks of length K between u and v

- We will show $P^{(K)} = A^k$
- $P_{uv}^{(1)} = \#$ walks of length 1 (direct neighborhood) between u and $v = A_{uv}$ • $P_{12}^{(1)} = A_{12}$ • $A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$

• How to compute $P_{uv}^{(2)}$?

P

a

- Step 1: Compute #walks of length 1 between each of u's neighbor and v
- Step 2: Sum up these #walks across u's neighbors

•
$$P_{uv}^{(2)} = \sum_{i} A_{ui} * P_{iv}^{(1)} = \sum_{i} A_{ui} * A_{iv} = A_{uv}^{2}$$

Node 1's neighbors

$$A^{2} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}_{48}$$

How to compute #walks between two nodes?

Use adjacency matrix powers

- A_{uv} specifies #walks of length 1 (direct neighborhood) between u and v.
- A_{uv}^2 specifies #walks of length 2 (neighbor of neighbor) between u and v.
- And, A^l_{uv} specifies #walks of length l.

Katz index between v_1 and v_2 is calculated as

Sum over all walk lengths $S_{v_1v_2} = \sum_{l=1}^{\infty} \beta^l A_{v_1v_2}^l \text{ walks of length } l$ between v_1 and v_2 $0 < \beta < 1: \text{ discount factor}$

• Katz index matrix is computed in closed-form: ∞

$$S = \sum_{i=1}^{\infty} \beta^{i} A^{i} = (I - \beta A)^{-1} - I,$$

= $\sigma_{i=0}^{\infty} \beta^{i} A^{i}$
by geometric series of matrices

Link Level Features

Distance-based features:

- Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.
 Local neighborhood overlap:
 - Captures how many neighboring nodes are shared by two nodes.
- Becomes zero when no neighbor nodes are shared.
 Global neighborhood overlap:
 - Uses global graph structure to score two nodes.
 - Katz index counts #walks of all lengths between two nodes.

Classification for Link Prediction

Predict link e = (v, u)

Input

Features describing v and u

Output

Prediction

positive class: link negative class: no-link

Example: Recommender Systems

Users interacts with items

Watch movies, buy merchandise, listen to music

- Nodes: Users and items
- Edges: User-item interactions

Goal: Recommend items users might like

Example: Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases:

- 46% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.
 Task: Given a pair of drugs predict adverse side effects

Modeling Polypharmacy Side Effects with Graph Convolutional Networks

Example: Drug Side Effects

Nodes: Drugs & Proteins Edges: Interactions

Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

GRAPH LEVEL FEATURES AND TASKS

Graph Level Features

Goal: We want features that characterize the structure of an entire graph.

For example:

Graph Kernels: Measure *similarity* between two graphs

- Kernel $K(G, G') \in \mathbb{R}$ measures similarity
- Kernel matrix $\mathbf{K} = (K(G, G'))_{G,G'}$ must always be positive semidefinite (i.e., has positive eigenvalues)
- There exists a feature representation $\phi(\cdot)$ such that $K(G, G') = \phi(G)^T \phi(G')$
- Once the kernel is defined, off-the-shelf ML model, such as kernel SVM, can be used to make predictions.

Graph Kernels: Measure similarity between two graphs:

- Graphlet Kernel [1]
- Weisfeiler-LehmanKernel [2]
- Other kernels are also proposed in the literature
 - (beyond the scope of this lecture)
 - Random-walk kernel
 - Shortest-path graph kernel
 - And many more...

1 Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.

2 Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Goal: Design graph feature vector $\phi(G)$ **Key idea**: Bag-of-Words (BoW) for a graph

- BoW simply uses the word counts as features for documents (no ordering considered).
- Naïve extension to a graph: Regard nodes as words.
- Since both graphs have 4 red nodes, we get the same feature vector for two different graphs

What if we use Bag of node degrees?

Deg1: Deg2: Deg3:

$$\phi(\frown) = \operatorname{count}(\frown) = [1, 2, 1]$$

Obtains different features
for different graphs!
 $\phi(\frown) = \operatorname{count}(\frown) = [0, 2, 2]$

 Both Graphlet Kernel and Weisfeiler-Lehman (WL) Kernel use Bag-of-* representation of graph, where * is more sophisticated than node degrees!

Key idea: Count the number of *different graphlets* in a graph.

 Note: Definition of graphlets here is slightly different from node-level features.

The two differences are:

- Nodes in graphlets here do not need to be connected (allows for isolated nodes)
- The graphlets here are not rooted.

Given graph G, and a graphlet list $G_k = (g_1, g_2, \dots, g_{n_k})$, define the graphlet count vector $f_G \in \mathbb{R}^{n_k}$ as

 $(f_G)_i = #(g_i \subseteq G) \text{ for } i = 1, 2, ..., n_k.$

Graphlet Kernel

Given two graphs, G and G', graphlet kernel is computed as

$$K(G,G') = \boldsymbol{f}_{G}^{\mathrm{T}}\boldsymbol{f}_{G'}$$

Problem: if *G* and G' have different sizes, that will greatly skew the value.

Solution: normalize each feature vector

$$\boldsymbol{h}_{G} = \frac{\boldsymbol{f}_{G}}{\operatorname{Sum}(\boldsymbol{f}_{G})} \qquad K(G, G') = \boldsymbol{h}_{G}^{\mathrm{T}}\boldsymbol{h}_{G}$$

Graphlet Kernel

Limitation: Counting graphlets is expensive

- Counting size-k graphlets for a graph with size n by enumeration takes n^k.
- This is unavoidable in the worst-case since subgraph isomorphism test (judging whether a graph is a subgraph of another graph) is NP-hard.
- If the node degree of a graph is bounded by d, an
 O(nd^{k-1}) algorithm exists to count all the graphlets of size k.

Can we design a more efficient graph kernel?

Weisfeiler-Lehman Kernel

- **Goal**: Design an efficient graph feature descriptor $\phi(G)$
- **Idea**: Use neighborhood structure to iteratively enrich node vocabulary.
 - Generalized version of Bag of node degrees since node degrees are one-hop neighborhood information.
- **Algorithm** to achieve this:

Color refinement

Given: A graph G with a set of nodes V.

- Assign an initial color $c^{(0)}(v)$ to each node v.
- Iteratively refine node colors by

$$c^{(k+1)}(v) = \text{HASH}\left(\left\{c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right\}\right),\$$

where HASH maps different inputs to different colors.

 After K steps of color refinement, c^(K)(v) summarizes the structure of K-hop neighborhood

Assign initial colors

Aggregate neighboring colors

Hash aggregated colors

Hash table

1,1	>	2	
1,11	>	3	
1,111	>	4	
1,1111	>	5	

Aggregated colors

Hash aggregated colors

Color Refinement

Weisfeiler-Lehman Kernel

After color refinement, WL kernel counts number of nodes with a given color.

Colors 1,2,3,4,5,6,7,8,9,10,11,12,13 = [6,2,1,2,1,0,2,1,0,0,0,2,1]Colors 1,2,3,4,5,6,7,8,9,10,11,12,13= [6,2,1,2,1,1,1,0,1, 1,1,0,1]

Weisfeiler-Lehman Kernel

The WL kernel value is computed by the inner product of the color count vectors:

Weisfeiler-Lehman Kernel

- WL kernel is computationally efficient
 - The time complexity for color refinement at each step is linear in #(edges), since it involves aggregating neighboring colors.
- When computing a kernel value, only colors appeared in the two graphs need to be tracked.
 Thus, #(colors) is at most the total number of nodes.
- Counting colors takes linear-time w.r.t. #(nodes).
- In total, time complexity is linear in #(edges).

Graph Kernels

Graphlet Kernel

- Graph is represented as Bag-of-graphlets
 - Computationally expensive
- Weisfeiler-Lehman Kernel
 - Apply K-step color refinement algorithm to enrich node colors
 - Different colors capture different K-hop neighborhood structures
 - Graph is represented as Bag-of-colors
 - Computationally efficient
 - Closely related to Graph Neural Networks (as we will see!)

Example 1: Traffic Prediction

Traffic Prediction

Road networks as graphs

- **Nodes:** Road segments
- **Edges:** Connectivity between road segments

Prediction: Time of Arrival (ETA)

Traffic Prediction with GNNs

Predicting Time of Arrival with GNNS

THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME.

Example 2: Drug Prediction

Antibiotics are small molecular graphs

Nodes: Atoms

Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β -lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: <u>CNN</u>

Drug Prediction

- A Graph Neural Network graph classification model
- Predict promising molecules from a pool of candidates

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Example 3: Physical Simulation

Physical simulation as a graph: Nodes: Particles Edges: Interaction between particles

Learning to simulate complex physics with graph networks

Physical Simulation

A graph evolution task:

• **Goal**: Predict how a graph will evolve over

Application: Weather Forecasting

https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-9d114460aa0c

Summary

Traditional ML Pipeline

- Hand-crafted feature + ML model
- Hand-crafted features for graph data

Node-level:

Node degree, centrality, clustering coefficient, graphlets

Link-level:

- Distance-based feature
- Iocal/global neighborhood overlap

Graph-level:

Graphlet kernel, WL kernel

Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford University, <u>http://cs224w.stanford.edu</u>