
1

Online Social Networks and
Media

Graph ML

2

Graph Machine Learning

Outline

Part I: Introduction, Traditional ML
Part II: Graph Embeddings
Part III: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on:

 CS224W: Machine Learning with Graphs

 Jure Leskovec, Stanford University
http://cs224w.stanford.edu

http://cs224w.stanford.edu/

3

Part I:
Types of ML Tasks

Traditional ML
Feature Engineering

PyG (PyTorch Geometric):

 The ultimate library for Graph Neural Networks
We further recommend:

 GraphGym: Platform for designing Graph Neural
Networks.

 Modularized GNN implementation, simple hyperparameter
tuning, flexible user customization

• Other network analytics tools: SNAP.PY, NetworkX

Tools

4

Types of ML tasks in graphs

5

Edge (link) level

Community

(subgraph)

level

Graph-level

prediction,

Graph

generation

Node

level

Types of ML tasks in graphs

6

D

G
C

H

E

F

Node features

B Graph features
Link features

A

∈ ℝ𝐷

 Design features for nodes/links/graphs
 Obtain features for all training data

∈ ℝ𝐷

∈ ℝ𝐷

Traditional ML Pipeline

7

 Train an ML model:

▪ Random forest

▪ SVM

▪ Neural network, etc.

𝒙𝟏 𝑦1

𝒙𝑵 𝑦𝑁

 Apply the model:

▪ Given a new
node/link/graph, obtain
its features and make a
prediction

𝒙 𝑦

Traditional ML Pipeline

8

? ?

?
?

?

Machine

Learning

Node classification

Node Level Tasks (example)

9

▪ Using effective features over graphs is the key to
achieving good model performance.

▪ Traditional ML pipeline uses hand- designed
features.

▪ We will overview traditional features for:

▪ Node-level prediction

▪ Link-level prediction

▪ Graph-level prediction

▪ For simplicity, we focus on undirected graphs.

Feature Design

10

Goal: Make predictions for a
set of objects

Design choices:
 Features: d-dimensional vectors
 Objects: Nodes, edges, sets of nodes,

entire graphs
 Objective function:

▪ What task are we aiming to solve?

11

NODE LEVEL FEATURES AND TASKS

12

Goal: Characterize the structure and position of a node
in the network:

▪ Node degree

▪ Node centrality

C

▪ Clustering coefficient

▪ Graphlets

A

D E

H

F

G

Node feature

B

Node Level Features

13

 The degree 𝑘𝑣 of node 𝑣 is the number of
edges (neighboring nodes) the node has.

 Treats all neighboring nodes equally.

𝑘𝐵 = 2

C

B

D E

H

F

G

14

𝑘𝐴 = 1

A

𝑘𝐶 = 3

𝑘𝐷 = 4

Node degree

Engienvector centrality

 Node degree counts the neighboring nodes
without capturing their importance.

 Node centrality 𝑐𝑣 takes the node importance
in a graph into account

 Different ways to model importance:

▪ Eigenvector (Pagerank) centrality

▪ Betweenness centrality

▪ Closeness centrality

▪ and many others…

Node centrality

15

▪ A node 𝑣 is important if surrounded by important
neighboring nodes 𝑢 ∈ 𝑁(𝑣).

▪ We model the centrality of node 𝑣 as the sum of
the centrality of neighboring nodes:

Pagerank centrality

𝑝 𝑣 =

𝑢 → 𝑣

𝑝(𝑢)

𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢)

16

▪ A node is important if it lies on many shortest paths
between other nodes.

Example:

C

A

B

D E

𝑐𝐴 = 𝑐𝐵 = 𝑐𝐸 = 0
𝑐𝐶 = 3

(A-C-B, A-C-D, A-C-D-E)

𝑐𝐷 = 3
(A-C-D-E, B-D-E, C-D-E)

Betweness centrality

17

▪ A node is important if it has small shortest path
lengths to all other nodes.

Example:

C

A

B

D E

𝑐𝐴 = 1/(2 + 1 + 2 + 3) = 1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

𝑐 = 1/(2 + 1 + 1 + 1) = 1/5𝐷

(D-C-A, D-B, D-C, D-E)

Closeness centrality

18

 Measures how connected the neighboring
nodes of 𝑣 are:

Examples:

𝑣

𝑣 𝑣

𝑒𝑣 = 1 𝑒𝑣 = 0.5 𝑒𝑣 = 0

#(node pairs among 𝑘𝑣 neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).

Clustering coefficient

19

 Observation: Clustering coefficient counts the
#(triangles) in the ego-network

 We can generalize the above by counting
#(pre-specified subgraphs), i.e., graphlets.

𝑣 𝑣

3 triangles (out of 6 node triplets)

𝑒𝑣 = 0.5

𝑣 𝑣

Graphlets

20

 Goal: Describe network structure around
node 𝑢

▪ Graphlets are small subgraphs that describe
the structure of node 𝑢’s network
neighborhood

Analogy:
 Degree counts #(edges) that a node touches

 Clustering coefficient counts #(triangles) that a node touches.

 Graphlet Degree Vector (GDV): Graphlet-base features for

nodes

▪ GDV counts #(graphlets) that a node touches

C

B

𝑢 E

Graphlets

A

21

 Def: Induced subgraph is another graph, formed
from a subset of vertices and all the edges
connecting the vertices in that subset.

C

A

B

𝑢 E

C

B

𝑢
Induced

subgraph:
C

B

𝑢
Not induced

subgraph:

Graphlets

22

 Def: Graph Isomorphism
▪ Two graphs which contain the same number of nodes

connected in the same way are said to be isomorphic.

 (one-to-one mapping of their nodes)

Isomorphic

Node mapping: (e2,c2), (e1, c5),

(e3,c4), (e5,c3), (e4,c1)

Non-Isomorphic
The right graph has cycles of length 3 but the left
graph does not, so the graphs cannot be isomorphic.

Source: Mathoverflow

Graphlets

23

Przulj et al., Bioinformatics 2004

Graphlets: Rooted connected induced non-
isomorphic subgraphs:

Graphlets

Graphlet Degree Vector (GDV): A count
vector of graphlets rooted at a given node.

All possible graphlets on up to 3 nodes

24

28

Example: All possible graphlets on up to 3 nodes

Graphlet instances of node u:

Graphlets of node 𝑢:

𝑎, 𝑏, 𝑐, 𝑑
[2,1,0,2]

Graphlets

𝑢

𝑎 𝑏 𝑐 𝑑

25

Przulj et al., Bioinformatics 2004

There are 73 different graphlets on up to 5 nodes

C

A

B

𝑢 E

𝑢 has

graphlets:

0, 1, 2, 3, 5,

10, 11, …

Graphlet
id (Root/
“position”
of node 𝑢)

Graphlets

26

C

 Considering graphlets of size 2-5 nodes we get:

▪ Vector of 73 coordinates is a signature of a node that
describes the topology of node's neighborhood

 Graphlet degree vector provides a measure of a node’s
local network topology:

▪ Comparing vectors of two nodes provides a more detailed
measure of local topological similarity than node degrees or
clustering coefficient

Graphlets

C

A

B

𝑢 E 𝑢 has graphlets: 0, 1, 2, 3, 5, 10, 11, …

27

 We have introduced different ways to obtain
node features.

 They can be categorized as:

▪ Importance-based features:

▪ Node degree

▪ Different node centrality measures

▪ Structure-based features:

▪ Node degree

▪ Clustering coefficient

▪ Graphlet count vector

Node Level Features

28

 Importance-based features: capture the
importance of a node in a graph

▪ Node degree:

▪ Simply counts the number of neighboring nodes

▪ Node centrality:

▪ Models importance of neighboring nodes in a graph

▪ Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

 Useful for predicting influential nodes in a graph

▪ Example: predicting celebrity users in a social
network

Node Level Features

29

 Structure-based features: Capture topological
properties of local neighborhood around a node.
▪ Node degree:

▪ Counts the number of neighboring nodes

▪ Clustering coefficient:
▪ Measures how connected neighboring nodes are

▪ Graphlet degree vector:
▪ Counts the occurrences of different graphlets

 Useful for predicting a particular role a node
plays in a graph:
▪ Example: Predicting protein functionality in a

protein-protein interaction network.

Node Level Features

30

? ?

?
?

?

Machine

Learning

Node classification

Node Level Tasks

31

Computationally predict the 3D structure of a protein

based solely on its amino acid sequence:

For each node predict its 3D coordinates

Image credit: DeepMind

Protein Folding

32

Image credit: DeepMind

Image credit: SingularityHub

33

Image credit: DeepMind
34

Key idea: “Spatial graph”

 Nodes: Amino acids in a protein sequence

 Edges: Proximity between amino acids (residues)

Spatial graph

LINK PREDICTION

35

 The task is to predict new links based on the
existing links.

 Two ways: (a) define a score for each pair of
nodes, rank pairs, return top K ones, (b) build a
classifier with input pair of nodes, output
probability of existence

C

A

B

D E

H

F

G

?

?

Link Prediction

36

 The key is to design features for a pair of nodes.
 (for computing the score, as input to the classifier
 First, score

C

A

B

D E

H

F

G

?

?

Link Prediction

37

(1) Links missing at random:

Missing/unknown, incomplete information

▪ Remove a random set of links and then aim to
predict them

38

Link Prediction

0▪ Given 𝐺[𝑡0, 𝑡 ′] a graph defined by edges

0up to time 𝑡 ′ , output a ranked list L

0of edges (not in 𝐺[𝑡0, 𝑡 ′]) that are
′predicted to appear in time 𝐺[𝑡1, 𝑡1]

1 0 0𝐺[𝑡 , 𝑡 ′]

1𝐺[𝑡1, 𝑡 ′]

Link Prediction

(2) Temporal Links Prediction

39

Methodology:

▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of common neighbors
of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)

▪ Predict top n pairs as new links

X

Score-based Link Prediction

40

▪ n = |Enew|: # new edges that appear during
the test period [𝑡1, 𝑡 ′]

▪ Take top n elements of L and count correct edges

▪ Evaluation:

 Distance-based feature
 Local neighborhood overlap
 Global neighborhood overlap

C

B

D E

H

F

G

Link feature

A

Link Level Features

41

𝑆𝐵𝐻 = 𝑆𝐵𝐸 = 𝑆𝐴𝐵 = 2

C

A

Example:
B

D E

H

However, this does not capture the degree of neighborhood
overlap:

▪ Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and
(A, B) only have 1 such node.

F

G
𝑆𝐵𝐺 = 𝑆𝐵𝐹 = 3

Distance-based Features

Shortest-path distance between two nodes

42

H

Local Neighborhood Features: Captures # neighboring
nodes shared between two nodes

Common neighbors:

C

A

B

D E

F
𝑁𝐴

𝑁𝐵

Local Neighborhood Overlap Features

|𝑁 𝑣1 ∩ 𝑣2 |

Jaccard coefficient:

|𝑁 𝑣1 ∩ 𝑣2 |

|𝑁 𝑣1 ∪ 𝑣2 |

Example:
𝑐(𝐴, 𝐵)

43

C

A

B

D E

F
𝑁𝐴

𝑁𝐵

𝑢 ∈𝑁 𝑣1 ∩ 𝑁(𝑣2)

1

log(𝑘𝑢)

Adamic-Adar index:

Local Neighborhood Overlap Features

44

▪ However, the two nodes may still potentially connect in the
future.

Global neighborhood overlap metrics resolve the limitation

by considering the entire graph.

C

A

Limitation of local neighborhood features:
▪ Metric is always zero if the two nodes do not have any

neighbors in common.

B

D E

F
𝑁𝐴

𝑁𝐸

𝑁𝐴 ∩ 𝑁𝐸 = 𝜙
|𝑁𝐴 ∩ 𝑁𝐸 | = 0

Global Neighborhood Overlap Features

45

Katz index: counts the number of walks of all
lengths between a given pair of nodes.

How to compute #walks between two nodes?

▪ Use powers of the adjacency matrix!

Global Neighborhood Overlap Features

46

Computing #walks between two nodes

▪ Recall: 𝑨𝑢𝑣 = 1 if 𝑢 ∈ 𝑁(𝑣)

▪ Let 𝑷(𝑲) = #walks of length 𝑲 between 𝒖 and 𝒗𝒖𝒗

▪ We will show 𝑷(𝑲) = 𝑨𝒌

𝒖𝒗▪ 𝑷(𝟏) = #walks of length 1 (direct neighborhood)
between 𝑢 and 𝑣 = 𝑨𝒖𝒗

4

3

2
1

𝟏𝟐

47

𝑷(𝟏) = 𝑨𝟏𝟐

Global Neighborhood Overlap Features

▪ How to compute ?

▪ Step 1: Compute #walks of length 1 between
each of 𝒖’s neighbor and 𝒗

▪ Step 2: Sum up these #walks across u’s neighbors

𝒊𝒗𝒖𝒗 𝒊 𝒖𝒊 𝒊 𝒖𝒊 𝒊𝒗 𝒖𝒗▪ 𝑷(𝟐) = Σ 𝑨 ∗ 𝑷(𝟏) = Σ 𝑨 ∗ 𝑨 = 𝑨𝟐

Node 1’s neighbors

#walks of length 1 between

Node 1’s neighbors and Node 2 𝟏𝟐 12𝑷(𝟐) = 𝑨2

Power of

adjacency

Global Neighborhood Overlap Features

48

How to compute #walks between two nodes?

Use adjacency matrix powers

▪ 𝑨𝑢𝑣 specifies #walks of length 1 (direct
neighborhood) between 𝑢 and 𝑣.

▪ 𝑨𝟐 specifies #walks of length 2 (neighbor of𝑢𝑣

neighbor) between 𝑢 and 𝑣.

𝑢𝑣▪ And, 𝑨𝒍 specifies #walks of length 𝒍.

Global Neighborhood Overlap Features

49

Katz index between 𝑣1 and 𝑣2 is calculated as
Sum over all walk lengths

#walks of length 𝑙
between 𝑣1 and 𝑣2

0 < 𝛽 < 1: discount factor

 Katz index matrix is computed in closed-form:

𝑖=0

5
0

= σ∞ 𝛽𝑖 𝑨𝑖

by geometric series of matrices

Global Neighborhood Overlap Features

Distance-based features:

▪ Uses the shortest path length between two nodes
but does not capture how neighborhood overlaps.

Local neighborhood overlap:

▪ Captures how many neighboring nodes are shared
by two nodes.

▪ Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

▪ Uses global graph structure to score two nodes.

▪ Katz index counts #walks of all lengths between two
nodes.

Link Level Features

51

Classification for Link Prediction

52

Predict link 𝑒 = (𝑣, 𝑢)

Input
Features describing 𝑣 and 𝑢

Output
Prediction
 positive class: link

 negative class: no-link

52

Items

Users

Users interacts with items

Watch movies, buy merchandise, listen to music

▪ Nodes: Users and items

▪ Edges: User-item interactions

Goal: Recommend items users might like

Interactions

“You might also like”

Example: Recommender Systems

53

Many patients take multiple drugs to treat

complex or co-existing diseases:

• 46% of people ages 70-79 take more than 5 drugs
• Many patients take more than 20 drugs to treat

heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict
adverse side effects

,
30%
prob.

65%
prob.

Example: Drug Side Effects

54

Nodes: Drugs & Proteins
Edges: Interactions

Query: How likely will
Simvastatin and
Ciprofloxacin, when taken
together, break down
muscle tissue?

55

Zitnik et al., Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics 2018

Example: Drug Side Effects

GRAPH LEVEL FEATURES AND TASKS

56

Goal: We want features that characterize the
structure of an entire graph.

For example:

C

A

B

D E

H

F

G

57

Graph Level Features

Graph Kernels: Measure similarity between two
graphs

▪ Kernel 𝐾 𝐺, 𝐺′ ∈ ℝ measures similarity

▪ Kernel matrix 𝑲 = 𝐾 𝐺, 𝐺 ′
𝐺,𝐺

′ must always be

positive semidefinite (i.e., has positive eigenvalues)

▪ There exists a feature representation 𝜙(∙) such that
𝐾 𝐺, 𝐺 ′ = 𝜙 G T𝜙 𝐺 ′

▪ Once the kernel is defined, off-the-shelf ML model,
such as kernel SVM, can be used to make predictions.

Graph Kernels

58

Graph Kernels: Measure similarity between two
graphs:

▪ Graphlet Kernel [1]

▪ Weisfeiler-Lehman Kernel [2]

▪ Other kernels are also proposed in the literature
▪ (beyond the scope of this lecture)

▪ Random-walk kernel

▪ Shortest-path graph kernel

▪ And many more…

1 Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.

2 Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Graph Kernels

59

Goal: Design graph feature vector 𝜙(G)
Key idea: Bag-of-Words (BoW) for a graph

▪ BoW simply uses the word counts as features for
documents (no ordering considered).

▪ Naïve extension to a graph: Regard nodes as words.

▪ Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs

𝜙() = 𝜙

6
0

Graph Kernels

Deg1: Deg2: Deg3:

 Both Graphlet Kernel and Weisfeiler-Lehman
(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than
node degrees!

𝜙() = count(

𝜙() = count(

) = [1, 2, 1]
Obtains different features

for different graphs!

) = [0, 2, 2]

61

Graph Kernels

What if we use Bag of node degrees?

Key idea: Count the number of different
graphlets in a graph.

▪ Note: Definition of graphlets here is slightly
different from node-level features.

▪ The two differences are:

▪ Nodes in graphlets here do not need to be connected
(allows for isolated nodes)

▪ The graphlets here are not rooted.

Graphlet Features

62

Let 𝓖𝒌 = (𝒈𝟏, 𝒈𝟐, … , 𝒈𝒏𝒌) be a list of

graphlets of size 𝒌.
▪ For 𝑘 = 3 , there are 4 graphlets.

▪ For 𝑘 = 4 , there are 11 graphlets.

𝑔1 𝑔2 𝑔3 𝑔4

Shervashidze et al., AISTATS 2011

6
3

Graphlet Features

Given graph 𝐺, and a graphlet list 𝒢𝑘= (𝑔1,

𝑔2, … , 𝑔𝑛𝑘), define the graphlet count

vector 𝒇𝐺 ∈ ℝ𝑛𝑘 as

(𝒇𝐺)𝑖= #(𝑔𝑖 ⊆ 𝐺) for 𝑖 = 1,2, … , 𝑛𝑘.

6
4

Graphlet Features

Example for 𝑘 = 3. 𝑔1 𝑔2 𝑔3 𝑔4

𝐺

𝒇𝐺 = (1, 3, 6, 0)T

6
5

Graphlet Features

Given two graphs, 𝐺 and 𝐺′, graphlet kernel is
computed as

𝐾 𝐺, 𝐺 ′ = 𝒇𝐺
T𝒇 ′

𝐺

Problem: if 𝐺 and 𝐺 ′ have different sizes, that
will greatly skew the value.
 Solution: normalize each feature vector

𝐾 𝐺, 𝐺 ′ = 𝒉𝐺
T𝒉 ′

𝐺

Graphlet Kernel

66

 Counting size-𝑘 graphlets for a graph with size 𝑛 by
enumeration takes 𝑛𝑘.

 This is unavoidable in the worst-case since subgraph

isomorphism test (judging whether a graph is a subgraph

of another graph) is NP-hard.

 If the node degree of a graph is bounded by 𝑑, an

𝑂(𝑛𝑑𝑘−1) algorithm exists to count all the graphlets of

size 𝑘.

Can we design a more efficient graph kernel?

Limitation: Counting graphlets is expensive

Graphlet Kernel

67

Goal: Design an efficient graph feature
descriptor 𝜙(G)
Idea: Use neighborhood structure to
iteratively enrich node vocabulary.

▪ Generalized version of Bag of node degrees since
node degrees are one-hop neighborhood
information.

 Algorithm to achieve this:

Color refinement

Weisfeiler-Lehman Kernel

68

Given: A graph 𝐺 with a set of nodes 𝑉.

▪ Assign an initial color 𝑐 0 𝑣 to each node 𝑣.

𝑢∈𝑁 𝑣

▪ Iteratively refine node colors by

𝑐 𝑘+1 𝑣 = HASH 𝑐 𝑘 𝑣 , 𝑐 𝑘 𝑢 ,

where HASH maps different inputs to different colors.

▪ After 𝐾 steps of color refinement, 𝑐 𝐾 𝑣
summarizes the structure of 𝐾-hop neighborhood

Color Refinement

69

▪ Assign initial colors
1 1

1

1 1

▪ Aggregate neighboring colors

1

1 1

1

1 1

1

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

𝐺1
𝐺2

Color Refinement

70

▪ Aggregated colors

▪ Hash aggregated colors

4 3

5

2 2

4

3 4

5

2 2

4

Hash table

1,1 --> 2

1,11 --> 3

1,111 --> 4

1,1111 --> 5

1,111 1,11

1,1111

1,1 1,1

1,111

1,11 1,111

1,1111

1,1 1,1

1,111

Color Refinement

71

▪ Aggregated colors

4,345 3,44

5,2244

2,5 2,5

4,345

3,45 4,345

5,2344

2,5 2,4

4,245

4 3

5

2 2

▪ Hash aggregated colors

4

3 4

5

2 2

4

Color Refinement

72

▪ Aggregated colors

▪ Hash aggregated colors

11 8

12

7 7

11

9 11

13

7 6

10

2,5 --> 7

3,44 --> 8

3,45 --> 9

4,245 --> 10

4,345 --> 11

5,2244 --> 12

5,2344 --> 13

4,345 3,44

5,2244

2,5 2,5

4,345

3,45 4,345

5,2344

2,5 2,4

Hash table

2,4 --> 6

4,245

Color Refinement

73

 Colors 1,2,3,4,5,6,7,8,9,10,11,12,13
 = [6,2,1,2,1,0,2,1,0, 0,0,2,1]

Colors 1,2,3,4,5,6,7,8,9,10,11,12,13=
[6,2,1,2,1,1,1,0,1, 1,1,0,1]

After color refinement, WL kernel counts number of
nodes with a given color.

Weisfeiler-Lehman Kernel

74

The WL kernel value is computed by the inner
product of the color count vectors:

K(,)
=

= 49

Weisfeiler-Lehman Kernel

75

 WL kernel is computationally efficient
▪ The time complexity for color refinement at each step is

linear in #(edges), since it involves aggregating neighboring
colors.

 When computing a kernel value, only colors
appeared in the two graphs need to be tracked.

▪ Thus, #(colors) is at most the total number of nodes.

 Counting colors takes linear-time w.r.t. #(nodes).

 In total, time complexity is linear in #(edges).

Weisfeiler-Lehman Kernel

76

 Graphlet Kernel
▪ Graph is represented as Bag-of-graphlets

▪ Computationally expensive

 Weisfeiler-Lehman Kernel
▪ Apply 𝐾-step color refinement algorithm to enrich

node colors
▪ Different colors capture different 𝐾-hop neighborhood

structures

▪ Graph is represented as Bag-of-colors

▪ Computationally efficient

▪ Closely related to Graph Neural Networks (as we
will see!)

Graph Kernels

77

• a

Example 1: Traffic Prediction

78

Nodes: Road segments

Edges: Connectivity between road segments

Prediction: Time of Arrival (ETA)

Image credit: DeepMind

79

Road networks as graphs

Traffic Prediction

Predicting Time of Arrival with GNNS

Used in Google Maps

Image credit: DeepMind

Traffic Prediction with GNNs

80

Antibiotics are small molecular graphs

Nodes: Atoms

Edges: Chemical bonds

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials:

beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Example 2: Drug Prediction

81

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."

Cell 180.4 (2020): 688-702.

• A Graph Neural Network graph classification model
• Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

Drug Prediction

82

Physical simulation as a graph:
Nodes: Particles
Edges: Interaction between particles

Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

Example 3: Physical Simulation

83

A graph evolution task:
• Goal: Predict how a graph will evolve over

time

Sanchez-Gonzalez et al., Learning to simulate complex physics with graph networks, ICML 2020

Physical Simulation

84

https://medium.com/syncedreview/deepmind-googles-ml-based-graphcast-outperforms-the-world-s-best-medium-range-weather-

9d114460aa0c

Application: Weather Forecasting

85

 Traditional ML Pipeline

▪ Hand-crafted feature + ML model

 Hand-crafted features for graph data

▪ Node-level:

▪ Node degree, centrality, clustering coefficient, graphlets

▪ Link-level:

▪ Distance-based feature

▪ local/global neighborhood overlap

▪ Graph-level:

▪ Graphlet kernel, WL kernel

86

Summary

87

Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford

University, http://cs224w.stanford.edu

http://cs224w.stanford.edu/

	Slide 1: Online Social Networks and Media
	Slide 2
	Slide 3: Part I: Types of ML Tasks Traditional ML Feature Engineering
	Slide 4
	Slide 5: Types of ML tasks in graphs
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Goal: Make predictions for a set of objects
	Slide 12: NODE LEVEL FEATURES AND TASKS
	Slide 13: Goal: Characterize the structure and position of a node in the network:
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Computationally predict the 3D structure of a protein based solely on its amino acid sequence: For each node predict its 3D coordinates
	Slide 33
	Slide 34
	Slide 35: LINK PREDICTION
	Slide 36
	Slide 37
	Slide 38: Link Prediction
	Slide 39: Link Prediction
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Local Neighborhood Features: Captures # neighboring nodes shared between two nodes
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Many patients take multiple drugs to treat complex or co-existing diseases:
	Slide 55
	Slide 56: GRAPH LEVEL FEATURES AND TASKS
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Let 𝓖𝒌 = (𝒈𝟏, 𝒈𝟐, … , 𝒈𝒏𝒌) be a list of graphlets of size 𝒌.
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75: K(,)
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Predicting Time of Arrival with GNNS
	Slide 81
	Slide 82
	Slide 83: Physical simulation as a graph:
	Slide 84: A graph evolution task:
	Slide 85
	Slide 86
	Slide 87

