Online Social Networks and Media

Graph ML

Graph Machine Learning

Outline

Part I: Introduction, Traditional ML
Part II: Graph Embeddings
Part III: GNNs
Part IV (if time permits): Knowledge Graphs

Slides used based on:
CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

Part I:
 Types of ML Tasks
 Traditional ML
 Feature Engineering

Tools

PyG (PyTorch Geometric):

- The ultimate library for Graph Neural Networks We further recommend:
- GraphGym: Platform for designing Graph Neural Networks.
- Modularized GNN implementation, simple hyperparameter tuning, flexible user customization
- Other network analytics tools: SNAP.PY, NetworkX

Types of ML tasks in graphs

Types of ML tasks in graphs

Graph-level prediction, Graph generation

Node
level

Community (subgraph) level

Edge (link) level

Traditional ML Pipeline

- Design features for nodes/links/graphs
- Obtain features for all training data

Traditional ML Pipeline

Train an ML model:

- Random forest
- SVM
- Neural network, etc.
- Apply the model:
- Given a new node/link/graph, obtain its features and make a prediction

Node Level Tasks (example)

Node classification

Feature Design

- Using effective features over graphs is the key to achieving good model performance.
- Traditional ML pipeline uses hand- designed features.
- We will overview traditional features for:
- Node-level prediction
- Link-level prediction
- Graph-level prediction
- For simplicity, we focus on undirected graphs.

Goal: Make predictions for a

set of objects

Design choices:

- Features: d-dimensional vectors
- Objects: Nodes, edges, sets of nodes, entire graphs
- Objective function:
- What task are we aiming to solve?

NODE LEVEL FEATURES AND TASKS

Node Level Features

Goal: Characterize the structure and position of a node in the network:

- Node degree
- Node centrality
- Clustering coefficient

Node feature

- Graphlets

Node degree

- The degree k_{v} of node v is the number of edges (neighboring nodes) the node has.
- Treats all neighboring nodes equally.

Node centrality

- Node degree counts the neighboring nodes without capturing their importance.
- Node centrality c_{v} takes the node importance in a graph into account
- Different ways to model importance:
- Eigenvector (Pagerank) centrality
- Betweenness centrality
- Closeness centrality
- and many others...

Pagerank centrality

- A node v is important if surrounded by important neighboring nodes $u \in N(v)$.
- We model the centrality of node v as the sum of the centrality of neighboring nodes:

$$
p(v)=\sum_{u \rightarrow v} \frac{p(u)}{\text { OutDegree }(u)}
$$

Betweness centrality

- A node is important if it lies on many shortest paths between other nodes.
$c_{v}=\sum_{s \neq v \neq t} \frac{\#(\text { shortest paths betwen } s \text { and } t \text { that contain } v)}{\#(\text { shortest paths between } s \text { and } t)}$

Example:

$$
\begin{gathered}
c_{A}=c_{B}=c_{E}=0 \\
c_{C}=3 \\
(\mathrm{~A}-\underline{\mathrm{C}}-\mathrm{B}, \mathrm{~A}-\underline{\mathrm{C}}-\mathrm{D}, \mathrm{~A}-\mathrm{C}-\mathrm{D}-\mathrm{E}) \\
c_{D}=3 \\
\text { (A-C-D-E, B-D-E, C-D-E })
\end{gathered}
$$

Closeness centrality

- A node is important if it has small shortest path lengths to all other nodes.

$$
c_{v}=\frac{1}{\sum_{u \neq v} \text { shortest path length between } u \text { and } v}
$$

Example:

$$
\begin{aligned}
& c_{A}=1 /(2+1+2+3)=1 / 8 \\
& (A-C-B, A-C, A-C-D, A-C-D-E) \\
& c_{D}=1 /(2+1+1+1)=1 / 5 \\
& (D-C-A, D-B, D-C, D-E)
\end{aligned}
$$

Clustering coefficient

- Measures how connected the neighboring nodes of v are:

$$
e_{v}=\frac{\#(\text { edges among neighboring nodes })}{\binom{k_{v}}{2}} \in[0,1]
$$

\#(node pairs among k_{v} neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).
Examples:

$e_{v}=1$

$e_{v}=0.5$

$e_{v}=0$

Graphlets

- Observation: Clustering coefficient counts the \#(triangles) in the ego-network

$$
e_{v}=0.5
$$

3 triangles (out of 6 node triplets)

- We can generalize the above by counting \#(pre-specified subgraphs), i.e., graphlets.

Graphlets

- Goal: Describe network structure around node u
- Graphlets are small subgraphs that describe the structure of node u 's network neighborhood

Analogy:

- Degree counts \#(edges) that a node touches
- Clustering coefficient counts \#(triangles) that a node touches.
- Graphlet Degree Vector (GDV): Graphlet-base features for nodes
- GDV counts \#(graphlets) that a node touches

Graphlets

- Def: Induced subgraph is another graph, formed from a subset of vertices and all the edges connecting the vertices in that subset.

Graphlets

- Def: Graph Isomorphism

- Two graphs which contain the same number of nodes connected in the same way are said to be isomorphic.
(one-to-one mapping of their nodes)

Node mapping: (e2,c2), (e1, c5), (e3,c4), (e5,c3), (e4,c1)

Source: Mathoverflow

The right graph has cycles of length 3 but the left graph does not, so the graphs cannot be isomorphic.

Graphlets

Graphlets: Rooted connected induced nonisomorphic subgraphs:

All possible graphlets on up to 3 nodes

Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.

Graphlets

Example:
All possible graphlets on up to 3 nodes

Graphlet instances of node u :

Graphlets of node u :
a, b, c, d
[2,1,0,2]

Graphlets

There are 73 different graphlets on up to 5 nodes

Graphlets

- Considering graphlets of size 2-5 nodes we get:
- Vector of 73 coordinates is a signature of a node that describes the topology of node's neighborhood
- Graphlet degree vector provides a measure of a node's local network topology:
- Comparing vectors of two nodes provides a more detailed measure of local topological similarity than node degrees or clustering coefficient

Node Level Features

- We have introduced different ways to obtain node features.
- They can be categorized as:
- Importance-based features:
- Node degree
- Different node centrality measures
- Structure-based features:
- Node degree
- Clustering coefficient
- Graphlet count vector

Node Level Features

- Importance-based features: capture the importance of a node in a graph
- Node degree:
- Simply counts the number of neighboring nodes
- Node centrality:
- Models importance of neighboring nodes in a graph
- Different modeling choices: eigenvector centrality, betweenness centrality, closeness centrality
- Useful for predicting influential nodes in a graph
- Example: predicting celebrity users in a social network

Node Level Features

- Structure-based features: Capture topological properties of local neighborhood around a node.
- Node degree:
- Counts the number of neighboring nodes
- Clustering coefficient:
- Measures how connected neighboring nodes are
- Graphlet degree vector:
- Counts the occurrences of different graphlets
- Useful for predicting a particular role a node plays in a graph:
- Example: Predicting protein functionality in a protein-protein interaction network.

Node Level Tasks

Node classification

Protein Folding

Computationally predict the 3D structure of a protein based solely on its amino acid sequence:
For each node predict its 3D coordinates

T1049 / 6y4f
93.3 GDT
(adhesin tip)

```
Experimental result
Computational prediction
```


AlphaFold: Impact

AlphaFold's Al could change the world of biological science as we know it

DeepMind's latest AI breakthrough can accurately predict the way proteins fold

AlphaFold: Solving Protein Folding

Key idea: "Spatial graph"

- Nodes: Amino acids in a protein sequence
- Edges: Proximity between amino acids (residues)

Spatial graph

LINK PREDICTION

Link Prediction

- The task is to predict new links based on the existing links.
- Two ways: (a) define a score for each pair of nodes, rank pairs, return top K ones, (b) build a classifier with input pair of nodes, output probability of existence

Link Prediction

- The key is to design features for a pair of nodes.

 (for computing the score, as input to the classifier - First, score

Link Prediction

(1) Links missing at random:

Missing/unknown, incomplete information

- Remove a random set of links and then aim to predict them

Link Prediction

(2) Temporal Links Prediction

- Given $G\left[t_{0}, t_{0}^{\prime}\right]$ a graph defined by edges up to time t_{0}^{\prime}, output a ranked list L of edges (not in $G\left[t_{0}, t_{0}^{\prime}\right]$) that are predicted to appear in time $G\left[t_{1}, t_{1}^{\prime}\right]$

Score-based Link Prediction

Methodology:

- For each pair of nodes (x, y) compute score $c(x, y)$
- For example, $c(x, y)$ could be the \# of common neighbors of x and y
- Sort pairs (x, y) by the decreasing score $c(x, y)$
- Predict top n pairs as new links
- Evaluation:
- $n=\left|E_{\text {new }}\right|$: \# new edges that appear during the test period $\left[t_{1}, t^{\prime}\right]$
- Take top n elements of L and count correct edges

Link Level Features

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap

Link feature B

Distance-based Features

Shortest-path distance between two nodes
Example:

$$
\begin{aligned}
& S_{B H}=S_{B E}=S_{A B}=2 \\
& S_{B G}=S_{B F}=3
\end{aligned}
$$

However, this does not capture the degree of neighborhood overlap:

- Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and (A, B) only have 1 such node.

Local Neighborhood Overlap Features

Local Neighborhood Features: Captures \# neighboring nodes shared between two nodes

Example:
Common neighbors:

$$
\left|N\left(v_{1} \cap v_{2}\right)\right|
$$

Jaccard coefficient:

$$
\frac{\left|N\left(v_{1} \cap v_{2}\right)\right|}{\left|N\left(v_{1} \cup v_{2}\right)\right|}
$$

Local Neighborhood Overlap Features

Adamic-Adar index:

Global Neighborhood Overlap Features

Limitation of local neighborhood features:

- Metric is always zero if the two nodes do not have any neighbors in common.

$$
\begin{gathered}
N_{A} \cap N_{E}=\phi \\
\left|N_{A} \cap N_{E}\right|=0
\end{gathered}
$$

- However, the two nodes may still potentially connect in the future.
Global neighborhood overlap metrics resolve the limitation by considering the entire graph.

Global Neighborhood Overlap Features

Katz index: counts the number of walks of all lengths between a given pair of nodes.

How to compute \#walks between two nodes?

- Use powers of the adjacency matrix!

Global Neighborhood Overlap Features

Computing \#walks between two nodes

- Recall: $\boldsymbol{A}_{u v}=1$ if $u \in N(v)$
- Let $\boldsymbol{P}_{\boldsymbol{u} \boldsymbol{v}}^{(\boldsymbol{K})}=$ \#walks of length \boldsymbol{K} between \boldsymbol{u} and \boldsymbol{v}
- We will show $\boldsymbol{P}^{(K)}=A^{k}$
- $\boldsymbol{P}_{\boldsymbol{u} \boldsymbol{v}}^{(\mathbf{1})}=$ \#walks of length 1 (direct neighborhood) between u and $v=A_{u v}$

$$
\begin{gathered}
\boldsymbol{P}_{12}^{(1)}=\boldsymbol{A}_{12} \\
A=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Global Neighborhood Overlap Features

- How to compute $\boldsymbol{P}_{u v}^{(2)}$?
- Step 1: Compute \#walks of length 1 between each of \boldsymbol{u} 's neighbor and \boldsymbol{v}
- Step 2: Sum up these \#walks across u's neighbors
- $P_{u v}^{(2)}=\Sigma_{i} A_{u i} * P_{i v}^{(1)}=\Sigma_{i} A_{u i} * A_{i v}=A_{u v}^{2}$

$$
\begin{aligned}
& \text { \#walks of lengh 1 between } \\
& \text { Node 1's neighbors and Node } 2 \quad P_{12}^{(2)}=A_{12}^{2}
\end{aligned}
$$

Global Neighborhood Overlap Features

How to compute \#walks between two nodes?
Use adjacency matrix powers

- $\boldsymbol{A}_{u v}$ specifies \#walks of length 1 (direct neighborhood) between u and v.
- $\boldsymbol{A}_{u v}^{2}$ specifies \#walks of length 2 (neighbor of neighbor) between u and v.
- And, $\boldsymbol{A}_{u v}^{l}$ specifies \#walks of length l.

Global Neighborhood Overlap Features

Katz index between v_{1} and v_{2} is calculated as
Sum over all walk lengths

$$
S_{v_{1} v_{2}}=\sum_{l=1}^{\infty} \beta_{\substack{l} \boldsymbol{A}_{v_{1} v_{2}}^{l}}^{\substack{\text { \#walks of length } l \\ \text { between } v_{1} \text { and } v_{2}}}
$$

- Katz index matrix is computed in closed-form:

$$
\boldsymbol{S}=\sum_{i=1}^{\infty} \beta^{i} \boldsymbol{A}^{i}=\underbrace{(\boldsymbol{I}-\beta \boldsymbol{A})^{-1}}_{=\sigma_{i=0}^{\infty} \beta^{i} \boldsymbol{A}^{i}}-\boldsymbol{I}
$$

by geometric series of matrices

Link Level Features

Distance-based features:

- Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.
Local neighborhood overlap:
- Captures how many neighboring nodes are shared by two nodes.
- Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

- Uses global graph structure to score two nodes.
- Katz index counts \#walks of all lengths between two nodes.

Classification for Link Prediction

Predict link $e=(v, u)$

Input

Features describing v and u

Output
Prediction

positive class: link
negative class: no-link

Example: Recommender Systems

Users interacts with items
Watch movies, buy merchandise, listen to music

- Nodes: Users and items
- Edges: User-item interactions

Goal: Recommend items users might like

Users

Items

Interactions
$-\rightarrow-$
"You might also like"

Example: Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases:

- 46\% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects

Example: Drug Side Effects

Nodes: Drugs \& Proteins
 Edges: Interactions

\triangle Drug O Protein
r_{1} Gastrointestinal bleed side effect
r_{2} Bradycardia side effect
Δ D Drug-protein interaction
O-O Protein-protein interaction

Query: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

GRAPH LEVEL FEATURES AND TASKS

Graph Level Features

Goal: We want features that characterize the structure of an entire graph.

For example:

Graph Kernels

Graph Kernels: Measure similarity between two graphs

- Kernel $K\left(G, G^{\prime}\right) \in \mathbb{R}$ measures similarity
- Kernel matrix $\boldsymbol{K}=\left(K\left(G, G^{\prime}\right)\right)_{G, G^{\prime}}$, must always be positive semidefinite (i.e., has positive eigenvalues)
- There exists a feature representation $\phi(\cdot)$ such that $K\left(G, G^{\prime}\right)=\phi(G)^{\mathrm{T}} \phi\left(G^{\prime}\right)$
- Once the kernel is defined, off-the-shelf ML model, such as kernel SVM, can be used to make predictions.

Graph Kernels

Graph Kernels: Measure similarity between two graphs:

- Graphlet Kernel [1]
- Weisfeiler-LehmanKernel [2]
- Other kernels are also proposed in the literature
- (beyond the scope of this lecture)
- Random-walk kernel
- Shortest-path graph kernel
- And many more...

1 Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
2 Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Graph Kernels

Goal: Design graph feature vector $\phi(\mathrm{G})$
Key idea: Bag-of-Words (BoW) for a graph

- BoW simply uses the word counts as features for documents (no ordering considered).
- Naïve extension to a graph: Regard nodes as words.
- Since both graphs have 4 red nodes, we get the same feature vector for two different graphs

$$
\phi(\mathbb{D})=\phi(\mathbb{D})
$$

Graph Kernels

What if we use Bag of node degrees?
Deg1: • Deg2: • Deg3:
$\phi($ @ $)=\operatorname{count}($ @ $)=[1,2,1]$
Obtains different features for different graphs!
$\phi(\mathbb{\Omega})=\operatorname{count}(\mathbb{\Omega})=[0,2,2]$

- Both Graphlet Kernel and Weisfeiler-Lehman (WL) Kernel use Bag-of-* representation of graph, where * is more sophisticated than node degrees!

Graphlet Features

Key idea: Count the number of different graphlets in a graph.

- Note: Definition of graphlets here is slightly different from node-level features.
- The two differences are:
- Nodes in graphlets here do not need to be connected (allows for isolated nodes)
- The graphlets here are not rooted.

Graphlet Features

Let $\boldsymbol{G}_{k}=\left(g_{1}, g_{2}, \ldots, g_{n_{k}}\right)$ be a list of graphlets of size \boldsymbol{k}.

- For $k=3$, there are 4 graphlets.

- For $k=4$, there are 11 graphlets.

00
0000
Shervashidze et al., AISTATS 2011

Graphlet Features

Given graph G, and a graphlet list $\mathcal{G}_{k}=\left(g_{1}\right.$,
$\left.g_{2}, \ldots, g_{n_{k}}\right)$, define the graphlet count vector $f_{G} \in \mathbb{R}^{n_{k}}$ as

$$
\left(f_{G}\right)_{i}=\#\left(g_{i} \subseteq G\right) \text { for } i=1,2, \ldots, n_{k}
$$

Graphlet Features

Example for $k=3$.

$$
f_{G}=(1, \quad 3, \quad 6, \quad 0)^{\mathrm{T}}
$$

Graphlet Kernel

Given two graphs, G and G^{\prime}, graphlet kernel is computed as

$$
K\left(G, G^{\prime}\right)=\boldsymbol{f}_{G}^{\mathrm{T}} \boldsymbol{f}_{G}^{\prime}
$$

Problem: if G and G^{\prime} have different sizes, that will greatly skew the value.
Solution: normalize each feature vector

$$
\boldsymbol{h}_{G}=\frac{\boldsymbol{f}_{G}}{\operatorname{Sum}\left(\boldsymbol{f}_{G}\right)} \quad K\left(G, G^{\prime}\right)=\boldsymbol{h}_{G}{ }^{\mathrm{T}} \boldsymbol{h}_{G}
$$

Graphlet Kernel

Limitation: Counting graphlets is expensive

- Counting size- k graphlets for a graph with size n by enumeration takes n^{k}.
- This is unavoidable in the worst-case since subgraph isomorphism test (judging whether a graph is a subgraph of another graph) is NP-hard.
- If the node degree of a graph is bounded by d, an $O\left(n d^{k-1}\right)$ algorithm exists to count all the graphlets of size k.

Can we design a more efficient graph kernel?

Weisfeiler-Lehman Kernel

Goal: Design an efficient graph feature descriptor $\phi(\mathrm{G})$
Idea: Use neighborhood structure to iteratively enrich node vocabulary.

- Generalized version of Bag of node degrees since node degrees are one-hop neighborhood information.
- Algorithm to achieve this:

> Color refinement

Color Refinement

Given: A graph G with a set of nodes V.

- Assign an initial color $c^{(0)}(v)$ to each node v.
- Iteratively refine node colors by

$$
c^{(k+1)}(v)=\operatorname{HASH}\left(\left\{c^{(k)}(v),\left\{c^{(k)}(u)\right\}_{u \in N(v)}\right\}\right)
$$

where HASH maps different inputs to different colors.

- After K steps of color refinement, $c^{(K)}(v)$ summarizes the structure of K-hop neighborhood

Color Refinement

- Assign initial colors

- Aggregate neighboring colors

Color Refinement

- Aggregated colors

- Hash aggregated colors

Hash table

1,1	$-->$	2
1,11	$-->$	3
1,111	$-->$	4
1,1111	$-->$	5

Color Refinement

- Aggregated colors

- Hash aggregated colors

Color Refinement

- Aggregated colors

- Hash aggregated colors

Hash table

2,4	$-->$	6
2,5	$-->$	7
3,44	$-->$	8
3,45	$-->$	9
4,245	$-->$	10
4,345	$-->$	11
5,2244	$-->$	12
5,2344	$-->$	13

Weisfeiler-Lehman Kernel

After color refinement, WL kernel counts number of nodes with a given color.

Weisfeiler-Lehman Kernel

The WL kernel value is computed by the inner product of the color count vectors:

Weisfeiler-Lehman Kernel

- WL kernel is computationally efficient
- The time complexity for color refinement at each step is linear in \#(edges), since it involves aggregating neighboring colors.
- When computing a kernel value, only colors appeared in the two graphs need to be tracked.
- Thus, \#(colors) is at most the total number of nodes.
- Counting colors takes linear-time w.r.t. \#(nodes).
- In total, time complexity is linear in \#(edges).

Graph Kernels

- Graphlet Kernel
- Graph is represented as Bag-of-graphlets
- Computationally expensive
- Weisfeiler-Lehman Kernel
- Apply K-step color refinement algorithm to enrich node colors
- Different colors capture different K-hop neighborhood structures
- Graph is represented as Bag-of-colors
- Computationally efficient
- Closely related to Graph Neural Networks (as we will see!)

Example 1: Traffic Prediction

Traffic Prediction

Road networks as graphs
Nodes: Road segments
Edges: Connectivity between road segments Prediction: Time of Arrival (ETA)

Traffic Prediction with GNNs

Predicting Time of Arrival with GNNS

Example 2: Drug Prediction

Antibiotics are small molecular graphs

Nodes: Atoms
Edges: Chemical bonds

penicillins

oxacephems

carbapenems

cephalosporins

cephamycins

clavulanic acid (an oxapenem)

nocardicin

penems

monobactams

Image credit: CNN

Drug Prediction

- A Graph Neural Network graph classification model
- Predict promising molecules from a pool of candidates

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."

Example 3: Physical Simulation

Physical simulation as a graph:
Nodes: Particles

Edges: Interaction between particles

Physical Simulation

A graph evolution task:

- Goal: Predict how a graph will evolve over

(b)

(d)

Pass messages

(e) Extract dynamics info

Application: Weather Forecasting

Summary

- Traditional ML Pipeline
- Hand-crafted feature + ML model
- Hand-crafted features for graph data
- Node-level:
- Node degree, centrality, clustering coefficient, graphlets
- Link-level:
- Distance-based feature
- local/global neighborhood overlap
- Graph-level:
- Graphlet kernel, WL kernel

Acknowledgement

Most slides from

CS224W: Machine Learning with Graphs, Jure Leskovec, Stanford University, http://cs224w.stanford.edu

