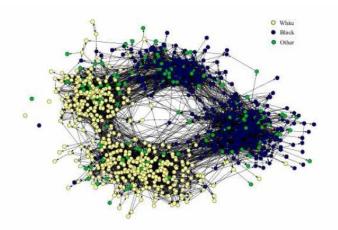

Models and Algorithms for Complex Networks

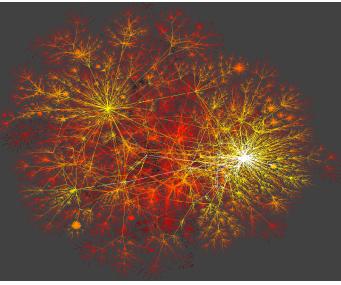
Networks and Measurements Lecture 3



- § Social networks
- § Knowledge (Information) networks
- § Technology networks
- § Biological networks

§ Links denote a social interaction

- § Networks of acquaintances
- § collaboration networks
 - actor networks
 - co-authorship networks
 - director networks
- § phone-call networks
- § e-mail networks
- § IM networks
- § Bluetooth networks
- § sexual networks
- § home page/blog networks

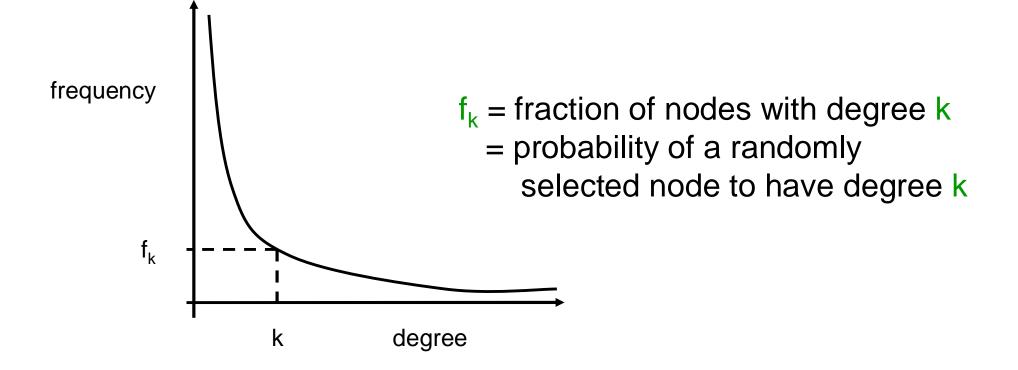


- § Nodes store information, links associate information
 - § Citation network (directed acyclic)
 - § The Web (directed)
 - § Peer-to-Peer networks
 - § Word networks
 - § Networks of Trust
 - § Software graphs

- § Networks built for distribution of commodity
 - § The Internet
 - router level, AS level
 - § Power Grids
 - § Airline networks
 - § Telephone networks
 - § Transportation Networks
 - roads, railways, pedestrian traffic

§ Biological systems represented as networks

- § Protein-Protein Interaction Networks
- § Gene regulation networks
- § Gene co-expression networks
- § Metabolic pathways
- § The Food Web
- § Neural Networks



- § Degree distributions
- § Small world phenomena
- § Clustering Coefficient
- § Mixing patterns
- § Degree correlations
- § Communities and clusters

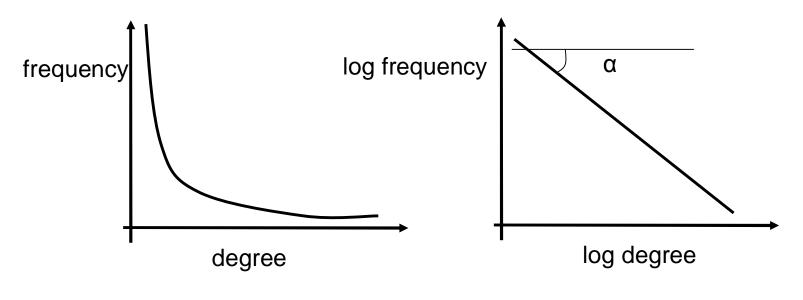
- § The measurements on real networks are usually compared against those on "random networks"
- § The basic G_{n,p} (Erdös-Renyi) random graph model:
 - § n : the number of vertices
 - $9 0 \le p \le 1$
 - § for each pair (i,j), generate the edge (i,j)
 independently with probability p

§ Problem: find the probability distribution that best fits the observed data

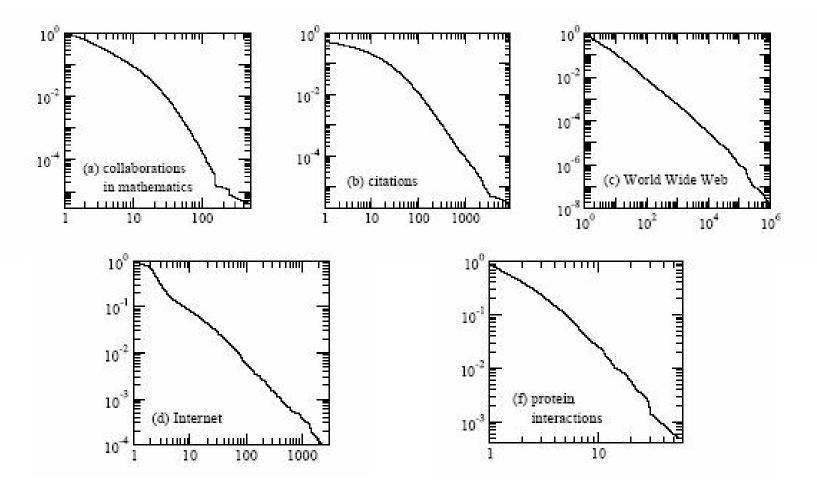
§ The degree distributions of most real-life networks follow a power law

$$p(k) = Ck^{-\alpha}$$

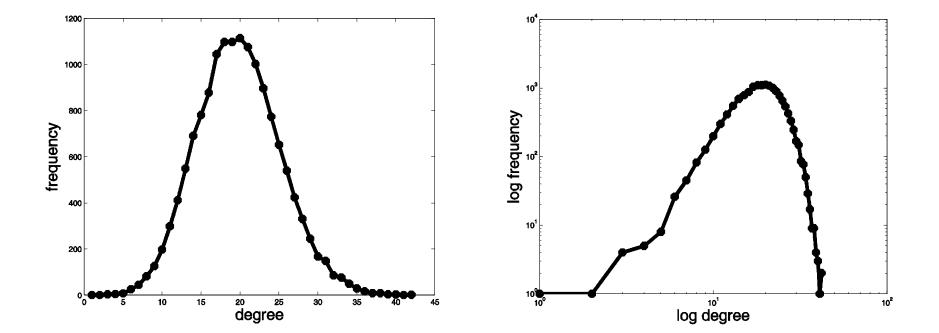
- § Right-skewed/Heavy-tail distribution
 - § there is a non-negligible fraction of nodes that has very high degree (hubs)
 - **§** scale-free: no characteristic scale, average is not informative
- § In stark contrast with the random graph model!
 - § Poisson degree distribution, z=np

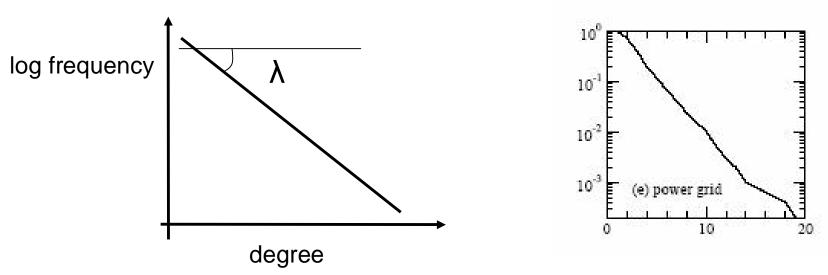

$$p(k) = P(k; z) = \frac{z^k}{k!}e^{-z}$$

- § highly concentrated around the mean
- **§** the probability of very high degree nodes is exponentially small


§ Power-law distribution gives a line in the log-log plot

 $\log p(k) = -\alpha \log k + \log C$


§ α : power-law exponent (typically $2 \le \alpha \le 3$)


Taken from [Newman 2003]

- § Observed in some technological or collaboration networks $p(k) = \lambda e^{-\lambda k}$
- § Identified by a line in the log-linear plot $\log p(k) = -\lambda k + \log \lambda$

§ For random graphs z = np

§ For power-law distributed degree
§ if α ≥ 2, it is a constant
§ if α < 2, it diverges

- § For random graphs, the maximum degree is highly concentrated around the average degree z
- § For power law graphs

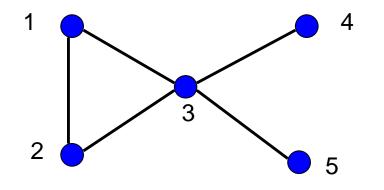
$$k_{max} \approx n^{1/(a-1)}$$

§ Rough argument: solve nP[X≥k]=1

Collective Statistics (M. Newman 2003)

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7 673	55 392	14.44	4.60		0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496 489	3.92	7.57	17	0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52 909	245 300	9.27	6.19	100	0.45	0.56	0.363	311, 313
	biology coauthorship	undirected	1520251	11 803 064	15.53	4.92		0.088	0.60	0.127	311, 313
	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1			**************************************	8, 9
	email messages	directed	59 912	86300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16 881	57 0 29	3.38	5.22	123	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	120	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810		20.000		3.2			0.0000000	265, 266
	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7		2002282		74
	citation network	directed	783 339	6716198	8.57		3.0/-				351
	Roget's Thesaurus	directed	1 0 2 2	5 103	4.99	4.87		0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44	1000000	119, 15
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
6	power grid	undirected	4941	6594	2.67	18.99	_	0.10	0.080	-0.003	416
0	train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033	366
	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
0	software classes	directed	1 377	2 2 1 3	1.61	1.51	-	0.033	0.012	-0.119	395
1	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 2 9 6	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
0	protein interactions	undirected	2 1 1 5	2 2 4 0	2.12	6.80	2.4	0.072	0.071	-0.156	212
0	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 3 5 9	7.68	3.97	· · · ·	0.18	0.28	-0.226	416, 42

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total number of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Sec. III.F. The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

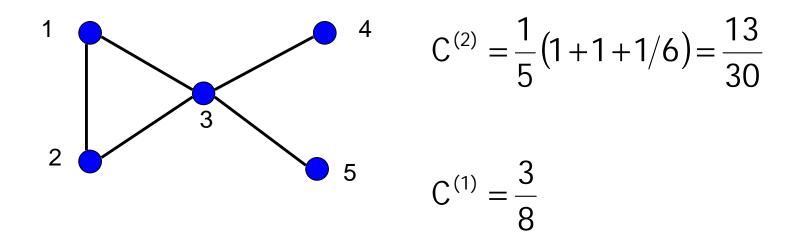


- § Measures the density of triangles (local clusters) in the graph
- § Two different ways to measure it:

$$C^{(1)} = \frac{\sum_{i} \text{triangles centered at node i}}{\sum_{i} \text{triples centered at node i}}$$

§ The ratio of the means

$$C^{(1)} = \frac{3}{1+1+6} = \frac{3}{8}$$


§ Clustering coefficient for node i

 $C_i = \frac{\text{triangles centered at node i}}{\text{triples centered at node i}}$

$$C^{(2)} = \frac{1}{n}C_{i}$$

§ The mean of the ratios

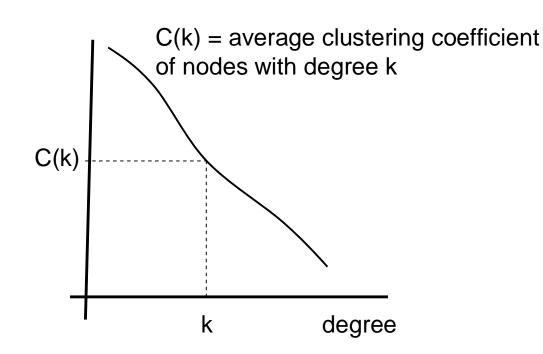
- § The two clustering coefficients give different measures
- § C⁽²⁾ increases with nodes with low degree

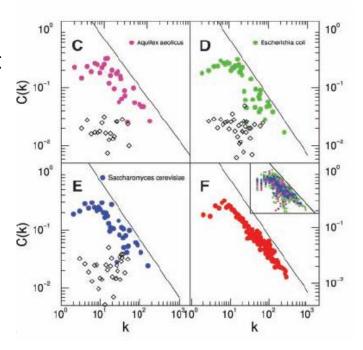
Collective Statistics (M. Newman 2003)

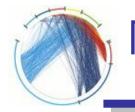
network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
company directors	undirected	7 673	55 392	14.44	4.60	-	0.59	0.88	0.276	105, 32
math coauthorship	undirected	253 339	496 489	3.92	7.57	100	0.15	0.34	0.120	107, 18
physics coauthorship	undirected	52 909	245 300	9.27	6.19	100	0.45	0.56	0.363	311, 31
biology coauthorship	undirected	1520251	11 803 064	15.53	4.92		0.088	0.60	0.127	311, 31
telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1			1.00000000	8, 9
email messages	directed	59 912	86300	1.44	4.95	1.5/2.0		0.16		136
email address books	directed	16 881	57 0 29	3.38	5.22	120	0.17	0.13	0.092	321
student relationships	undirected	573	477	1.66	16.01	020	0.005	0.001	-0.029	45
sexual contacts	undirected	2810		20.000		3.2	Contraction of the	a states	a category	265, 26
WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7		000009824	21021-0021	74
citation network	directed	783 339	6716198	8.57		3.0/-				351
Roget's Thesaurus	directed	1 0 2 2	5 103	4.99	4.87		0.13	0.15	0.157	244
word co-occurrence	undirected	460 902	17 000 000	70.13		2.7	1000000	0.44	35,000,000	119, 15
Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
power grid	undirected	4941	6 5 9 4	2.67	18.99	_	0.10	0.080	-0.003	416
train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033	366
software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
software classes	directed	1 377	2 2 1 3	1.61	1.51	-	0.033	0.012	-0.119	395
electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
peer-to-peer network	undirected	880	1 2 9 6	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
protein interactions	undirected	2115	2 2 4 0	2.12	6.80	2.4	0.072	0.071	-0.156	212
marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
neural network	directed	307	2 3 5 9	7.68	3.97	-	0.18	0.28	-0.226	416. 42

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total number of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Sec. III.F. The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

Clustering coefficient for random graphs


- § The probability of two of your neighbors also being neighbors is p, independent of local structure
 - § clustering coefficient C = p
 - § when z is fixed C = z/n = O(1/n)


Table 1: Clustering coefficients, C , for a number of different networks; n is	
the number of node, z is the mean degree. Taken from [146].	


Network	n	z	C	C for
25 (1000) 2002 (4)	-20-0		measured	random graph
Internet [153]	6,374	3.8	0.24	0.00060
World Wide Web (sites) [2]	153,127	35.2	0.11	0.00023
power grid [192]	4,941	2.7	0.080	0.00054
biology collaborations [140]	1,520,251	15.5	0.081	0.000010
mathematics collaborations [141]	253,339	3.9	0.15	0.000015
film actor collaborations [149]	449,913	113.4	0.20	0.00025
company directors [149]	7,673	14.4	0.59	0.0019
word co-occurrence [90]	460,902	70.1	0.44	0.00015
neural network [192]	282	14.0	0.28	0.049
metabolic network [69]	315	28.3	0.59	0.090
food web [138]	134	8.7	0.22	0.065

- § The C(k) distribution is supposed to capture the hierarchical nature of the network
 - § when constant: no hierarchy
 - § when power-law: hierarchy

Millgram's small world experiment

- § Letters were handed out to people in Nebraska to be sent to a target in Boston
- § People were instructed to pass on the letters to someone they knew on first-name basis
- § The letters that reached the destination followed paths of length around 6
- § Six degrees of separation: (play of John Guare)
- § Also:
 - § The Kevin Bacon game
 - § The Erdös number
- § Small world project: http://smallworld.columbia.edu/index.html

Measuring the small world phenomenon

- § d_{ij} = shortest path between i and j § Diameter: $d = \max_{i,i} d_{ij}$
- § Characteristic path length: $=\frac{1}{n(n-1)/2}\sum_{i>j}d_{ij}$
- § Harmonic mean

$$^{-1} = \frac{1}{n(n-1)/2} \sum_{i>j} d_{ij}^{-1}$$

§ Also, distribution of all shortest paths

Collective Statistics (M. Newman 2003)

	network	type	n	m	z	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7 673	55 392	14.44	4.60		0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496 489	3.92	7.57		0.15	0.34	0.120	107, 182
	physics coauthorship	undirected	52 909	245300	9.27	6.19		0.45	0.56	0.363	311, 313
	biology coauthorship	undirected	1520251	11 803 064	15.53	4.92		0.088	0.60	0.127	311, 313
í	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1	1111201100			8, 9
	email messages	directed	59 912	86300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16 881	57 0 29	3.38	5.22	120	0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	020	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810		20.000		3.2		a states	6.51098-0V	265, 266
	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7	1000000	0.000967	0.000	74
	citation network	directed	783 339	6716198	8.57	-36331562	3.0/-				351
	Roget's Thesaurus	directed	1022	5 103	4.99	4.87		0.13	0.15	0.157	244
1	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7	10000000	0.44	1000000	119, 15
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
	power grid	undirected	4941	6 5 9 4	2.67	18.99	_	0.10	0.080	-0.003	416
0	train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033	366
	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
	software classes	directed	1 377	2213	1.61	1.51	-	0.033	0.012	-0.119	395
	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 2 9 6	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
	protein interactions	undirected	2115	2 2 4 0	2.12	6.80	2.4	0.072	0.071	-0.156	212
p	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 3 5 9	7.68	3.97		0.18	0.28	-0.226	416, 42

TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total number of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-") if not; in/out-degree exponents are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Sec. III.F. The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

§ Random graphs have diameter

$$d = \frac{\log n}{\log z}$$

- § d=logn/loglogn when $z=\omega(logn)$
- § Short paths should be combined with other properties
 - § ease of navigation
 - § high clustering coefficient

- § Do high degree nodes tend to link to high degree nodes?
- § Pastor Satoras et al.
 - § plot the mean degree of the neighbors as a function of the degree

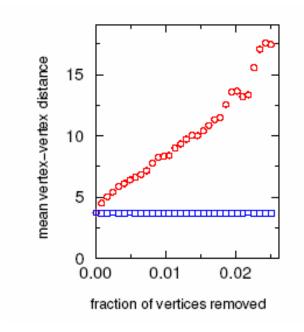
FIG. 3.13. Correlations of the degrees of nearest-neighbour vertices (autonomous systems) in the Internet at the interdomain level (after Pastor-Satorras, Vázquez, and Vespignani 2001). The empirical dependence of the average degree of the nearest neighbours of a vertex on the degree of this vertex is shown in a log-log scale. This empirical dependence was fitted by a power law with exponent approximately 0.5.

- § Newman
 - § compute the correlation coefficient of the degrees of the two endpoints of an edge
 - § assortative/disassortative

$$r = \frac{M^{-1} \sum_{i} j_{i} k_{i} - \left[M^{-1} \sum_{i} \frac{1}{2} (j_{i} + k_{i})\right]^{2}}{M^{-1} \sum_{i} \frac{1}{2} (j_{i}^{2} + k_{i}^{2}) - \left[M^{-1} \sum_{i} \frac{1}{2} (j_{i} + k_{i})\right]^{2}},$$

Collective Statistics (M. Newman 2003)

	network	type	n	m	2	l	α	$C^{(1)}$	$C^{(2)}$	r	Ref(s).
_	film actors	undirected	449 913	25516482	113.43	3.48	2.3	0.20	0.78	0.208	20, 416
	company directors	undirected	7 673	55 392	14.44	4.60		0.59	0.88	0.276	105, 323
	math coauthorship	undirected	253 339	496 489	3.92	7.57	277	0.15	0.34	0.120	107, 18
	physics coauthorship	undirected	52 909	245300	9.27	6.19	-	0.45	0.56	0.363	311, 313
	biology coauthorship	undirected	1520251	11 803 064	15.53	4.92		0.088	0.60	0.127	311, 313
	telephone call graph	undirected	47 000 000	80 000 000	3.16		2.1				8, 9
	email messages	directed	59 912	86300	1.44	4.95	1.5/2.0		0.16		136
	email address books	directed	16 881	57 0 29	3.38	5.22		0.17	0.13	0.092	321
	student relationships	undirected	573	477	1.66	16.01	020	0.005	0.001	-0.029	45
	sexual contacts	undirected	2810		20.000		3.2			812380989999	265, 260
	WWW nd.edu	directed	269 504	1 497 135	5.55	11.27	2.1/2.4	0.11	0.29	-0.067	14, 34
	WWW Altavista	directed	203 549 046	2130000000	10.46	16.18	2.1/2.7		0.000	0.000-0.00	74
	citation network	directed	783 339	6716198	8.57	0.00000000	3.0/-				351
	Roget's Thesaurus	directed	1 0 2 2	5 103	4.99	4.87	_	0.13	0.15	0.157	244
	word co-occurrence	undirected	460 902	17 000 000	70.13		2.7		0.44	0.0000000	119, 15
	Internet	undirected	10 697	31 992	5.98	3.31	2.5	0.035	0.39	-0.189	86, 148
6	power grid	undirected	4941	6594	2.67	18.99	_	0.10	0.080	-0.003	416
0	train routes	undirected	587	19603	66.79	2.16	-		0.69	-0.033	366
	software packages	directed	1 439	1723	1.20	2.42	1.6/1.4	0.070	0.082	-0.016	318
	software classes	directed	1 377	2 2 1 3	1.61	1.51	-	0.033	0.012	-0.119	395
	electronic circuits	undirected	24 097	53 248	4.34	11.05	3.0	0.010	0.030	-0.154	155
	peer-to-peer network	undirected	880	1 2 9 6	1.47	4.28	2.1	0.012	0.011	-0.366	6, 354
	metabolic network	undirected	765	3 686	9.64	2.56	2.2	0.090	0.67	-0.240	214
	protein interactions	undirected	2115	2 2 4 0	2.12	6.80	2.4	0.072	0.071	-0.156	212
0	marine food web	directed	135	598	4.43	2.05	-	0.16	0.23	-0.263	204
0	freshwater food web	directed	92	997	10.84	1.90	-	0.20	0.087	-0.326	272
	neural network	directed	307	2 3 5 9	7.68	3.97		0.18	0.28	-0.226	416, 42


TABLE II Basic statistics for a number of published networks. The properties measured are: type of graph, directed or undirected; total number of vertices n; total number of edges m; mean degree z; mean vertex-vertex distance ℓ ; exponent α of degree distribution if the distribution follows a power law (or "-" if not; in/out-degree exponents are given for directed graphs); clustering coefficient $C^{(1)}$ from Eq. (3); clustering coefficient $C^{(2)}$ from Eq. (6); and degree correlation coefficient r, Sec. III.F. The last column gives the citation(s) for the network in the bibliography. Blank entries indicate unavailable data.

- § For undirected graphs, the size and distribution of the connected components
 - § is there a giant component?
- § For directed graphs, the size and distribution of strongly and weakly connected components

§ Study how the graph properties change when performing random or targeted node deletions

- § For random graphs
 - § semi-circle law

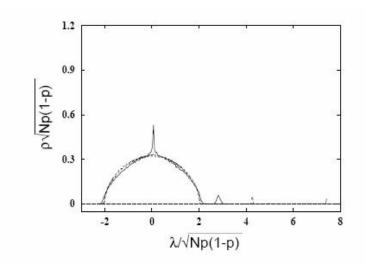
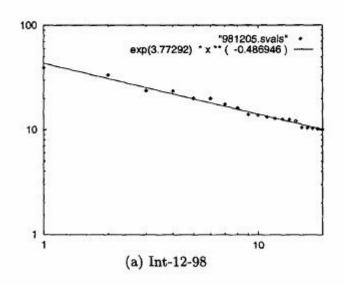
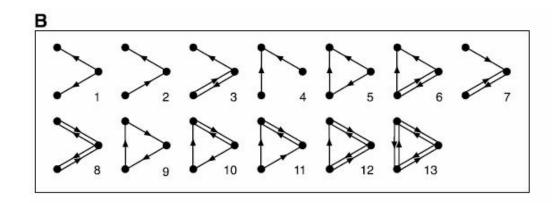



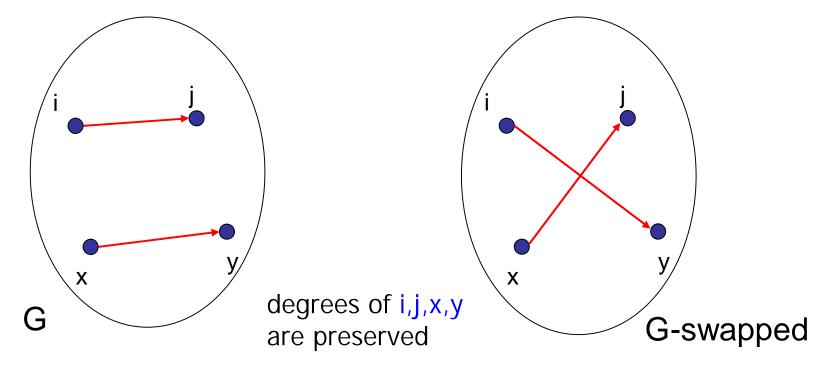
FIG. 10. Rescaled spectral density of three random graphs having p = 0.05 and size N = 100 (continuous line), N = 300 (dashed line) and N = 1000 (short-dashed line). The isolated peak corresponds to the principal eigenvalue. After Farkas *et al.* 2001.

§ For the Internet (Faloutsos³)

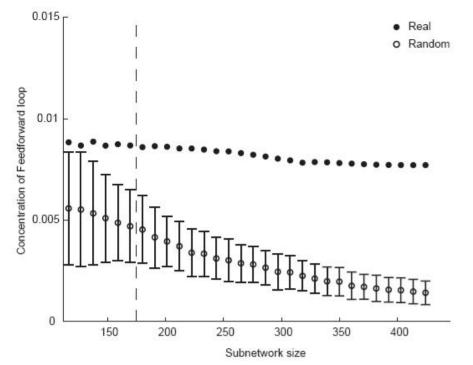


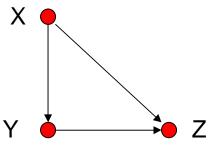
- § Most networks have the same characteristics with respect to global measurements
 - § can we say something about the local structure of the networks?
- § Motifs: Find small subgraphs that overrepresented in the network

§ Motifs of size 3 in a directed graph

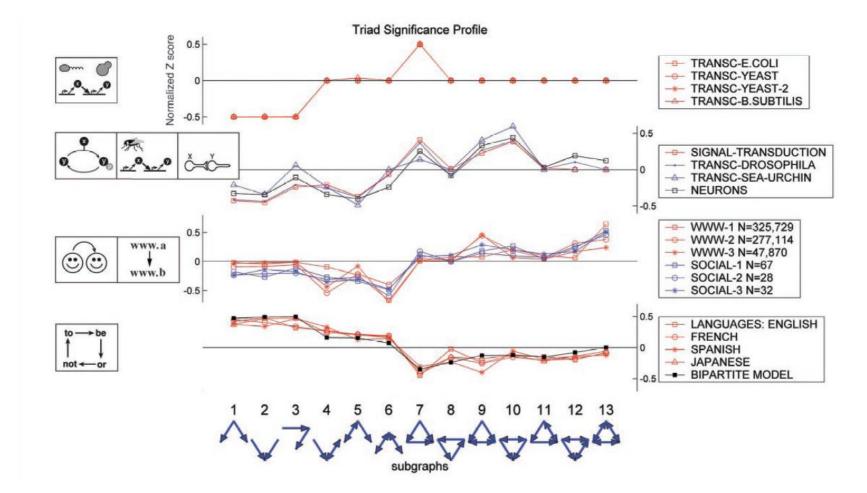


- § Sample a part of the graph of size S
- § Count the frequency of the motifs of interest
- § Compare against the frequency of the motif in a random graph with the same number of nodes and the same degree distribution




§ Find edges (i,j) and (x,y) such that edges (i,y) and (x,j) do not exist, and swap them § repeat for a large enough number of times

- § Over-represented in gene-regulation networks
 × •
 - § a signal delay mechanism


Milo et al. 2002

§ Compute the relative frequency of different motifs, and group the networks if they exhibit similar frequencies

$$Z_i = (Nreal_i - \langle Nrand_i \rangle)/std(Nrand_i)$$

Milo et al. 2004

- § M. E. J. Newman, The structure and function of complex networks, SIAM Reviews, 45(2): 167-256, 2003
- § R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, *Reviews of Modern Physics* 74, 47-97 (2002).
- § S. N. Dorogovstev and J. F. F. Mendez, Evolution of Networks: From Biological Nets to the Internet and WWW.
- § Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos. On Power-Law Relationships of the Internet Topology. ACM SIGCOMM 1999.
- § E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks, *Science* 297, 1551-1555 (2002).
- § R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii & U Alon, Network Motifs: Simple Building Blocks of Complex Networks. Science, 298:824-827 (2002).
- § R Milo, S Itzkovitz, N Kashtan, R Levitt, S Shen-Orr, I Ayzenshtat, M Sheffer & U Alon, Superfamilies of designed and evolved networks. Science, 303:1538-42 (2004).