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Types of networks

§ Social networks
§ Knowledge (Information) networks
§ Technology networks
§ Biological networks



Social Networks

§ Links denote a social interaction
§ Networks of acquaintances
§ collaboration networks

• actor networks
• co-authorship networks
• director networks

§ phone-call networks
§ e-mail networks
§ IM networks
§ Bluetooth networks
§ sexual networks
§ home page/blog networks



Knowledge (Information) Networks

§ Nodes store information, links associate
information
§ Citation network (directed acyclic)
§ The Web (directed)
§ Peer-to-Peer networks
§ Word networks
§ Networks of Trust
§ Software graphs



Technological networks

§ Networks built for distribution of
commodity
§ The Internet

• router level, AS level

§ Power Grids
§ Airline networks
§ Telephone networks
§ Transportation Networks

• roads, railways, pedestrian traffic



Biological networks

§ Biological systems represented as networks
§ Protein-Protein Interaction Networks
§ Gene regulation networks
§ Gene co-expression networks
§ Metabolic pathways
§ The Food Web
§ Neural Networks



Measuring Networks

§ Degree distributions
§ Small world phenomena
§ Clustering Coefficient
§ Mixing patterns
§ Degree correlations
§ Communities and clusters



The basic random graph model

§ The measurements on real networks are usually
compared against those on “random networks”

§ The basic Gn,p (Erdös-Renyi) random graph
model:
§ n : the number of vertices
§ 0 p 1
§ for each pair (i,j), generate the edge (i,j)

independently with probability p



Degree distributions

§ Problem: find the probability distribution that best fits
the observed data
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Power-law distributions

§ The degree distributions of most real-life networks follow a power
law

§ Right-skewed/Heavy-tail distribution
§ there is a non-negligible fraction of nodes that has very high degree

(hubs)
§ scale-free: no characteristic scale, average is not informative

§ In stark contrast with the random graph model!
§ Poisson degree distribution, z=np

§ highly concentrated around the mean
§ the probability of very high degree nodes is exponentially small
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Power-law signature

§ Power-law distribution gives a line in the log-log
plot

§ : power-law exponent (typically 2 3)
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log p(k) = - logk + logC



Examples

Taken from [Newman 2003]



A random graph example



Exponential distribution

§ Observed in some technological or collaboration
networks

§ Identified by a line in the log-linear plot
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Average/Expected degree

§ For random graphs z = np

§ For power-law distributed degree
§ if 2, it is a constant
§ if < 2, it diverges



Maximum degree

§ For random graphs, the maximum degree
is highly concentrated around the average
degree z
§ For power law graphs

§ Rough argument: solve nP[X k]=1

1)1/(
max nk −≈



Collective Statistics (M. Newman 2003)



Clustering (Transitivity) coefficient

§ Measures the density of triangles (local
clusters) in the graph
§ Two different ways to measure it:

§ The ratio of the means
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Clustering (Transitivity) coefficient

§ Clustering coefficient for node i

§ The mean of the ratios
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Example

§ The two clustering coefficients give different
measures
§ C(2) increases with nodes with low degree
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Collective Statistics (M. Newman 2003)



Clustering coefficient for random graphs

§ The probability of two of your neighbors also being
neighbors is p, independent of local structure
§ clustering coefficient C = p
§ when z is fixed C = z/n =O(1/n)



The C(k) distribution

§ The C(k) distribution is supposed to capture the
hierarchical nature of the network
§ when constant: no hierarchy
§ when power-law: hierarchy

degreek

C(k)

C(k) = average clustering coefficient
of nodes with degree k



Millgram’s small world experiment

§ Letters were handed out to people in Nebraska to be
sent to a target in Boston

§ People were instructed to pass on the letters to someone
they knew on first-name basis

§ The letters that reached the destination followed paths
of length around 6

§ Six degrees of separation: (play of John Guare)

§ Also:
§ The Kevin Bacon game
§ The Erdös number

§ Small world project:
http://smallworld.columbia.edu/index.html

http://smallworld.columbia.edu/index.html


Measuring the small world phenomenon

§ dij = shortest path between i and j
§ Diameter:

§ Characteristic path length:

§ Harmonic mean

§ Also, distribution of all shortest paths
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Collective Statistics (M. Newman 2003)



Is the path length enough?

§ Random graphs have diameter

§ d=logn/loglogn when z= (logn)

§ Short paths should be combined with other
properties
§ ease of navigation
§ high clustering coefficient
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Degree correlations

§ Do high degree nodes tend to link to high degree nodes?
§ Pastor Satoras et al.
§ plot the mean degree of the neighbors as a function of the

degree



Degree correlations

§ Newman
§ compute the correlation coefficient of the

degrees of the two endpoints of an edge
§ assortative/disassortative



Collective Statistics (M. Newman 2003)



Connected components

§ For undirected graphs, the size and
distribution of the connected components
§ is there a giant component?

§ For directed graphs, the size and
distribution of strongly and weakly
connected components



Network Resilience

§ Study how the graph properties change when
performing random or targeted node deletions



Graph eigenvalues

§ For random graphs
§ semi-circle law

§ For the Internet
(Faloutsos3)



Motifs

§ Most networks have the same
characteristics with respect to global
measurements
§ can we say something about the local

structure of the networks?

§ Motifs: Find small subgraphs that over-
represented in the network



Example

§ Motifs of size 3 in a directed graph



Finding interesting motifs

§ Sample a part of the graph of size S
§ Count the frequency of the motifs of

interest
§ Compare against the frequency of the

motif in a random graph with the same
number of nodes and the same degree
distribution



Generating a random graph

§ Find edges (i,j) and (x,y) such that edges
(i,y) and (x,j) do not exist, and swap them
§ repeat for a large enough number of times
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G-swapped
degrees of i,j,x,y
are preserved



The feed-forward loop

§ Over-represented in gene-regulation
networks
§ a signal delay mechanism

X

Y Z

Milo et al. 2002



Families of networks

§ Compute the relative frequency of
different motifs, and group the networks if
they exhibit similar frequencies



Experiments

Milo et al. 2004
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