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Graph Clustering and Network
Communities



Clustering

§ Given a set of objects V, and a notion of
similarity (or distance) between them,
partition the objects into disjoint sets
S1,S2,…,Sk, such that objects within the
each set are similar, while objects across
different sets are dissimilar



Graph Clustering

§ Input: a graph G=(V,E)
§ edge (u,v) denotes similarity between u and v
§ weighted graphs: weight of edge captures the degree

of similarity

§ Clustering: Partition the nodes in the graph such
that nodes within clusters are well
interconnected (high edge weights), and nodes
across clusters are sparsely interconnected (low
edge weights)
§ most graph partitioning problems are NP hard



Measuring connectivity

§ What does it mean that a set of nodes are well or
sparsely interconnected?

§ min-cut: the min number of edges such that when
removed cause the graph to become disconnected
§ small min-cut implies sparse connectivity
§
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Measuring connectivity

§ What does it mean that a set of nodes are well
interconnected?

§ min-cut: the min number of edges such that when
removed cause the graph to become disconnected
§ not always a good idea!

U UV-U V-U



Graph expansion

§ Normalize the cut by the size of the smallest
component
§ Cut ratio:

§ Graph expansion:

§ We will now see how the graph expansion
relates to the eigenvalue of the adjacency matrix
A
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Spectral analysis

§ The Laplacian matrix L = D – A where
§ A = the adjacency matrix
§ D = diag(d1,d2,…,dn)

• di = degree of node i

§ Therefore
§ L(i,i) = di

§ L(i,j) = -1, if there is an edge (i,j)



Laplacian Matrix properties

§ The matrix L is symmetric and positive
semi-definite
§ all eigenvalues of L are positive

§ The matrix L has 0 as an eigenvalue, and
corresponding eigenvector w1 = (1,1,…,1)
§ 1 = 0 is the smallest eigenvalue



The second smallest eigenvalue

§ The second smallest eigenvalue (also
known as Fielder value) 2 satisfies

§ The vector that minimizes 2 is called the
Fielder vector. It minimizes
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Spectral ordering

§ The values of x minimize

§ For weighted matrices

§ The ordering according to the xi values will group similar
(connected) nodes together

§ Physical interpretation: The stable state of springs
placed on the edges of the graph
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Spectral partition

§ Partition the nodes according to the ordering
induced by the Fielder vector
§ If u = (u1,u2,…,un) is the Fielder vector, then

split nodes according to a value s
§ bisection: s is the median value in u
§ ratio cut: s is the value that minimizes
§ sign: separate positive and negative values (s=0)
§ gap: separate according to the largest gap in the

values of u

§ This works well (provably for special cases)



Fielder Value

§ The value 2 is a good approximation of the graph expansion

§ For the minimum ratio cut of the Fielder vector we have that

§ If the max degree d is bounded we obtain a good approximation of
the minimum expansion cut
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Conductance

§ The expansion does not capture the inter-
cluster similarity well
§ The nodes with high degree are more

important

§ Graph Conductance

§ weighted degrees of nodes in U
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Conductance and random walks

§ Consider the normalized stochastic matrix M = D-1A
§ The conductance of the Markov Chain M is

§ the probability that the random walk escapes set U

§ The conductance of the graph is the same as that of the
Markov Chain, (A) = (M)

§ Conductance is related to the second eigenvalue of
the matrix M
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Interpretation of conductance

§ Low conductance means that there is
some bottleneck in the graph
§ a subset of nodes not well connected with the

rest of the graph.

§ High conductance means that the graph is
well connected



Clustering Conductance

§ The conductance of a clustering is defined
as the minimum conductance over all
clusters in the clustering.

§ Maximizing conductance of clustering
seems like a natural choice

§ …but it does not handle well outliers



A clustering bi-criterion

§ Maximize the conductance, but at the
same time minimize the inter-cluster
(between clusters) edges

§ A clustering C = {C1,C2,…,Cn} is a
(c,e)-clustering if
§ The conductance of each Ci is at least c
§ The total number of inter-cluster edges is at

most a fraction e of the total edges



The clustering problem

§ Problem 1: Given c, find a (c,e)-clustering
that minimizes e

§ Problem 2: Given e, find a (c,e)-clustering
that maximizes c

§ Both problems are NP-hard



A spectral algorithm

§ Create matrix M = D-1A
§ Find the second largest eigenvector v
§ Find the best ratio-cut (minimum

conductance cut) with respect to v
§ Recurse on the pieces induced by the cut.

§ The algorithm has provable guarantees



A divide and merge methodology

§ Divide phase:
§ Recursively partition the input into two pieces

until singletons are produced
§ output: a tree hierarchy

§ Merge phase:
§ use dynamic programming to merge the leafs

in order to produce a tree-respecting flat
clustering



An example
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Details

§ The divide phase
§ use the spectral algorithm described before

§ The merge phase
§ pick an optimization criterion

• e.g. k-means

§ perform dynamic programming



Applications to web search

§ http://eigencluster.csail.mit.edu

http://eigencluster.csail.mit.edu


Discovering communities

§ Community: a set of nodes S, where the
number of edges within the community is
larger than the number of edges outside
of the community.



Min-cut Max-flow

§ Given a graph G=(V,E), where each edge has
some capacity c(u,v), a source node s, and a
destination node t, find the maximum amount of
flow that can be sent from s to t, without
violating the capacity constraints

§ The max-flow is equal to the min-cut in the
graph (weighted min-cut)

§ Solvable in polynomial time



A seeded community

§ The community of node s with respect to
node t, is the set of nodes reachable from
s in the min-cut that contains s
§ this set defines a community

s t



Discovering Web communities

§ Start with a set of
seed nodes S
§ Add a virtual source s
§ Find neighbors a few

links away
§ Create a virtual sink t
§ Find the community

of s with respect to t



A more structured approach

§ Add a virtual source t in the graph, and connect
all nodes to t, with edges of capacity
§ Let S be the community of node s with respect

to t. For every partition P,Q of S we have

§ Surprisingly, this simple algorithm gives
guarantees for the expansion and the inter-
community density
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Min-Cut Trees

§ Given a graph G=(V,E), the min-cut tree T
for graph G is defined as a tree over the
set of vertices V, where
§ the edges are weighted
§ the min-cut between nodes u and v is the

smallest weight among the edges in the path
from u to v.
§ removing this edge from T gives the same

partition as removing the min-cut in G



Lemma 1
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Lemma 1
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c(W,U) =C1+C2
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if C2 > C3 then
C1 + C3 < C1 +C2



Lemma 1

u wU

U2

U1 W

c(W,U) =C1+C2

C1

C2

C3
if C2 > C3 then
C1 + C3 < C1 +C2

this would be a
better cut: contradiction!



Lemma 2

§ Let S be the community of the node s with
respect to the artificial sink t. For any partition
P,Q of S we have
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if c(P,Q) < min{ |P|, |Q|}
then we would split
differently



Lemma 3

§ Let S be the community of node s with
respect to t. Then we have

§ Follows from Lemma 1:
§ W = S
§ U2 = V-S
§ U1 = {t}
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Algorithm for finding
communities

§ Add a virtual sink t to the graph G and
connect all nodes with capacity à graph
G’
§ Create the min-cut tree T’ of graph G’
§ Remove t from T’
§ Return the disconnected components as

clusters



Effect of

§ When is too small, the algorithm returns a single
cluster (the easy thing to do is to remove the sink t)

§ When is too large, the algorithm returns singletons
(the tree is a star with t in the middle)

§ In between is the interesting area.
§ We can explore for the right value of
§ We can run the algorithm hierarchically
§ start with small and increase it gradually
§ the clusters returned are nested



Some experiments
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