Models and Algorithms for Complex Networks

Theory and Algorithms for Link Analysis Ranking, Rank Aggregation, and Voting

- § Axiomatic Characterizations of Link Analysis Ranking Algorithms
 - § InDegree algorithm
 - § PageRank algorithm
- § Rank Aggregation
 - § Computing aggregate scores
 - § Computing aggregate rankings voting

$W_1 = \begin{bmatrix} 0.9 & 1 & 0.7 & 0.6 & 0.8 \end{bmatrix}$

§ How close are the LAR vectors W_1 , W_2 ?

§ Geometric distance: how close are the numerical weights of vectors w₁, w₂?

$$d_{1}(w_{1}, w_{2}) = \sum |w_{1}[i] - w_{2}[i]|$$

$$w_{1} = [1.0 \ 0.8 \ 0.5 \ 0.3 \ 0.0]$$

$$w_{2} = [0.9 \ 1.0 \ 0.7 \ 0.6 \ 0.8]$$

$$d_{1}(w_{1}, w_{2}) = 0.1 + 0.2 + 0.2 + 0.3 + 0.8 = 1.6$$

§ Rank distance: how close are the ordinal rankings induced by the vectors w₁, w₂?
§ Kendal's τ distance

 $d_r(w_1, w_2) = \frac{\text{pairs ranked in a different order}}{\text{total number of distinct pairs}}$

- § Definition: Two algorithms A₁, A₂ are similar if $\lim_{n \to \infty} \frac{\max_{G \in G_n} d_1(A_1(G), A_2(G))}{\max_{W_1, W_2} d_1(W_1, W_2)} = 0$ § Definition: Two algorithms A₁, A₂ are rank similar if $\lim_{n \to \infty} \max_{G \in G_n} d_r(A_1(G), A_2(G)) = 0$
- § Definition: Two algorithms A₁, A₂ are rank equivalent if

$$\max_{G \in G_n} d_r(A_1(G), A_2(G)) = 0$$

§ Monotonicity: Algorithm A is strictly monotone if for any nodes x and y

 $B_N(x) \subset B_N(y) \Leftrightarrow A(G)[x] < A(G)[y]$

§ Locality: An algorithm A is strictly rank local if, for every pair of graphs G=(P,E) and G'=(P,E'), and for every pair of nodes x and y, if $B_G(x)=B_{G'}(x)$ and $B_G(y)=B_{G'}(y)$ then

$A(G)[x] < A(G)[y] \Leftrightarrow A(G')[x] < A(G')[y]$

§ the relative order of the nodes remains the same

§ The InDegree algorithm is strictly rank local

- § Label Independence: An algorithm is label independent if a permutation of the labels of the nodes yields the same permutation of the weights
 - § the weights assigned by the algorithm do not depend on the labels of the nodes

Axiomatic characterization of the InDegree algorithm [BRRT05]

§ Theorem: Any algorithm that is strictly rank local, strictly monotone and label independent is rank equivalent to the InDegree algorithm

§ Consider two nodes i and j with d(i) > d(j)
§ Assume that w(i) < w(j)</p>

§ Remove all links except to i and j § $w_1(i) < w_1(j)$ (from locality)

§ Add links from C and R to node k § $w_2(i) < w_2(j)$ (from locality) § $w_2(k) < w_2(i)$ (from monotonicity) § $w_2(k) < w_2(j)$

§ Remove links from R to i and add links from L to i § w₃(k) < w₃(j) (from locality)

§ Graphs G_2 and G_3 are the same up to a label permutation $L \leftrightarrow R$

j↔k

§ Graphs G_2 and G_3 are the same up to a label permutation $L \leftrightarrow R$

j↔k

§ We now have

- § $w_2(j) = w_3(k)$ and $w_2(k) = w_3(j)$ (label independ.)
- $w_2(j) > w_2(k)$ CONTRADICTION!

§ All three properties are needed

- § locality
 - PageRank is also strictly monotone and label independent
- § monotonicity
 - consider an algorithm that assigns 1 to nodes with even degree, and 0 to nodes with odd degree
- § label independence
 - consider and algorithm that gives the more weight to links that come from some specific page (e.g. the Yahoo page)

- § Axiomatic Characterizations of Link Analysis Ranking Algorithms
 - § InDegree algorithm
 - § PageRank algorithm
- § Rank Aggregation
 - § Computing aggregate scores
 - § Computing aggregate rankings voting

§ Algorithm A satisfies the self-edge axiom if the following is true: If page a is ranked at least as high as page b in a graph G(V,E), where a does not have a link to itself, then a should be ranked higher than b in G(V,E u {v,v})

§ Algorithm A satisfies the vote by committee axiom if the following is true: If page *a* links to pages *b* and *c*, then the relative ranking of all the pages should be the same as in the case where the direct links from a to b and c are replaced by links from *a* to a new set of pages which link (only) to b and c

§ If there is a pair of pages a and b that link to the same set of pages, but the set of pages that link to a and b are disjoint, then if a and b are collapsed into a single page (a), where links of b become links of a, then the relative rankings of all pages (except a and b) should remain the same.

§ If there is a set of k pages with the same importance that link to a, and a itself links to k other pages, then by dropping a and connect the pages in N(a) and P(a), the relative ranking of all pages (excluding a) should remain the same

Axiomatic Characterization of PageRank Algorithm [AT04]

§ The PageRank algorithm satisfies label independence, self-edge, vote by committee, collapsing and proxy axioms.

- § Axiomatic Characterizations of Link Analysis Ranking Algorithms
 - § InDegree algorithm
 - § PageRank algorithm
- **§** Rank Aggregation
 - § Computing aggregate scores
 - § Computing aggregate rankings voting

§ Given a set of rankings R₁, R₂,..., R_m of a set of objects X₁, X₂,..., X_n produce a single ranking R that is in agreement with the existing rankings

§ Voting

§ rankings $R_1, R_2, ..., R_m$ are the voters, the objects $X_1, X_2, ..., X_n$ are the candidates.

§ Combining multiple scoring functions

- § rankings R₁, R₂,..., R_m are the scoring functions, the objects X₁, X₂,..., X_n are data items.
 - Combine the PageRank scores with term-weighting scores
 - Combine scores for multimedia items
 - § color, shape, texture
 - Combine scores for database tuples
 - § find the best hotel according to price and location

§ Combining multiple sources

- § rankings R₁, R₂,..., R_m are the sources, the objects X₁, X₂,..., X_n are data items.
 - meta-search engines for the Web
 - distributed databases
 - P2P sources

- § Combining scores
 - § we know the scores assigned to objects by each ranking, and we want to compute a single score
- § Combining ordinal rankings
 - § the scores are not known, only the ordering is known
 - § the scores are known but we do not know how, or do not want to combine them
 - e.g. price and star rating

- § Each object X_i has m scores (r_{i1}, r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})

	R_1	R_2	R_3
X ₁	1	0.3	0.2
X ₂	0.8	0.8	0
X ₃	0.5	0.7	0.6
X ₄	0.3	0.2	0.8
X ₅	0.1	0.1	0.1

- § Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function $f(r_{i1}, r_{i2}, ..., r_{im})$ § $f(r_{i1}, r_{i2}, ..., r_{im}) =$
 - $\min\{r_{i1}, r_{i2}, ..., r_{im}\}$

	R_1	R_2	R_3	R
X ₁	1	0.3	0.2	0.2
X ₂	0.8	0.8	0	0
X ₃	0.5	0.7	0.6	0.5
X ₄	0.3	0.2	0.8	0.2
X ₅	0.1	0.1	0.1	0.1

- § Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function $f(r_{i1}, r_{i2}, ..., r_{im})$ § $f(r_{i1}, r_{i2}, ..., r_{im}) =$
 - $\max{r_{i1}, r_{i2}, ..., r_{im}}$

	R ₁	R_2	R_3	R
X ₁	1	0.3	0.2	1
X ₂	0.8	0.8	0	0.8
X ₃	0.5	0.7	0.6	0.7
X ₄	0.3	0.2	0.8	0.8
X ₅	0.1	0.1	0.1	0.1

- § Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- § The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})

§
$$f(r_{i1}, r_{i2}, ..., r_{im}) = r_{i1} + r_{i2} + ... + r_{im}$$

	R_1	R_2	R_3	R
X ₁	1	0.3	0.2	1.5
X ₂	0.8	0.8	0	1.6
X ₃	0.5	0.7	0.6	1.8
X ₄	0.3	0.2	0.8	1.3
X ₅	0.1	0.1	0.1	0.3

- § Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f
- § top-k: a set T of k objects such that f(r_{j1},...,r_{jm}) ≤
 f(r_{j1},...,r_{im}) for every object X_i in T and every
 object X_j not in T
- § Assumption: The function f is monotone § $f(r_1,...,r_m) \le f(r_1',...,r_m')$ if $r_i \le r_i'$ for all i
- § Objective: Compute top-k with the minimum cost

- § We want to minimize the number of accesses to the scoring lists
- § Sorted accesses: sequentially access the objects in the order in which they appear in a list § cost C_s
- § Random accesses: obtain the cost value for a specific object in a list
 § cost C_r
- § If s sorted accesses and r random accesses minimize s $C_s + r C_r$

§ Compute top-2 for the sum aggregate function

F	2 1	R ₂		R	3
X ₁	1	X ₂	0.8	X ₄	0.8
X ₂	0.8	X ₃	0.7	X ₃	0.6
X ₃	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

R) 1	R ₂		R	3
X ₁	1	X ₂	0.8	X ₄	0.8
X ₂	0.8	X ₃	0.7	X ₃	0.6
X ₃	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X_4	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

R) 1	R ₂		R	3
X ₁	1	X ₂	0.8	X ₄	0.8
X ₂	0.8	X ₃	0.7	X ₃	0.6
X ₃	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

2. Perform random accesses to obtain the scores of all seen objects

R) 1	R ₂		R	3
X ₁	1	X ₂	0.8	X ₄	0.8
X ₂	0.8	X ₃	0.7	X ₃	0.6
X ₃	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

3. Compute score for all objects and find the top-k

R) 1	R ₂		R	3
X ₁	1	X ₂	0.8	X ₄	0.8
X ₂	0.8	X ₃	0.7	X ₃	0.6
X ₃	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

§ X₅ cannot be in the top-2 because of the monotonicity property

§
$$f(X_5) \le f(X_1) \le f(X_3)$$

R	1		R ₂		R ₂		R	3
X ₁	1		X ₂	0.8	X ₄	0.8		
X ₂	0.8		X ₃	0.7	X ₃	0.6		
X ₃	0.5		X ₁	0.3	X ₁	0.2		
X ₄	0.3		X ₄	0.2	X ₅	0.1		
X ₅	0.1		X ₅	0.1	X ₂	0		

§ The algorithm is cost optimal under some probabilistic assumptions for a restricted class of aggregate functions

1. Access the elements sequentially

R ₁				
X ₁	1			
X ₂	0.8			
X ₃	0.5			
X ₄	0.3			
X ₅	0.1			

F	2
X ₂	0.8
X ₃	0.7
X ₁	0.3
X ₄	0.2
X ₅	0.1

a. Set the threshold t to be the aggregate of the scores seen in this access

b. Do random accesses and compute the score of the objects seen

c. Maintain a list of top-k objects seen so far

d. When the scores of the top-k are greater or equal to the threshold, stop

d. When the scores of the top-k are greater or equal to the threshold, stop

2. Return the top-k seen so far

F	R ₁	R ₂		R	3
X ₁	1	X ₂	0.8	X ₄	0.8
X ₂	0.8	X ₃	0.7	X ₃	0.6
X ₃	0.5	X ₁	0.3	X ₁	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

- § From the monotonicity property for any object not seen, the score of the object is less than the threshold § $f(X_5) \le t \le f(X_2)$
- § The algorithm is instance cost-optimal § within a constant factor of the best algorithm on any database

- § In many cases the scores are not known
 - § e.g. meta-search engines scores are proprietary information
- § ... or we do not know how they were obtained
 - § one search engine returns score 10, the other 100. What does this mean?
- § ... or the scores are incompatible
 - § apples and oranges: does it make sense to combine price with distance?
- § In this cases we can only work with the rankings

- § Input: a set of rankings R₁, R₂,..., R_m of the objects X₁, X₂,..., X_n. Each ranking R_i is a total ordering of the objects
 - § for every pair X_i, X_j either X_i is ranked above X_j or X_j is ranked above X_i
- § Output: A total ordering R that aggregates rankings R₁, R₂,..., R_m

- § A voting system is a rank aggregation mechanism
- § Long history and literature
 - § criteria and axioms for good voting systems

- § The Condorcet criterion
 - § if object A defeats every other object in a pairwise majority vote, then A should be ranked first
- § Extended Condorcet criterion
 - § if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- § Not all voting systems satisfy the Condorcet criterion!

- § Unfortunately the Condorcet winner does not always exist
 - § irrational behavior of groups

A > B B > C C > A

	V ₁	V_2	V_3
1	А	D	E
2	В	Ε	А
3	С	А	В
4	D	В	С
5	Ε	С	D

Α

В

Α

	V_1	V_2	V ₃
1	Α	D	Е
2	В	Ε	А
3	С	Α	В
4	D	В	С
5	Ε	С	D

Α

В

A E

F

	V ₁	V_2	V_3	
1	Α	D	Ε	
2	В	Е	Α	
3	С	А	В	
4	D	В	С	
5	Ε	С	D	

Ε

|)

D

С

§ C is the winner

§ But everybody prefers A or B over C

§ The voting system is not Pareto optimal § there exists another ordering that everybody prefers

§ Also, it is sensitive to the order of voting

§ Elect first whoever has more 1st position votes

voters	10	8	7
1	А	С	В
2	В	А	С
3	С	В	А

§ Does not find a Condorcet winner (C in this case)

§ If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	А	С	В	В
2	В	А	С	А
3	С	В	А	С

first round: A 10, B 9, C 8 second round: A 18, B 9 winner: A

§ If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	А	С	В	Α
2	В	А	С	В
3	С	В	А	С

change the order of A and B in the last column

first round: A 12, B 7, C 8 second round: A 12, C 15 winner: C!

§ Plurality with runoff violates the positive association axiom

§ Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

- § For each ranking, assign to object X, number of points equal to the number of objects it defeats
 - § first position gets n-1 points, second n-2, ..., last 0 points
- § The total weight of X is the number of points it accumulates from all rankings

voters	3	2	2	<u>۲</u> ۰3
1 (3p)	А	В	С	B: 3
2 (2p)	В	С	D	C: 3 D: 3
3 (1p)	С	D	А	
4 (0p)	D	А	В	

A: $3^*3 + 2^*0 + 2^*1 = 11p$ B: $3^*2 + 2^*3 + 2^*0 = 12p$ C: $3^*1 + 2^*2 + 2^*3 = 13p$ D: $3^*0 + 2^*1 + 2^*2 = 6p$

§ Does not always produce Condorcet winner

§ Assume that D is removed from the vote

voters	3	2	2
1 (2p)	А	В	С
2 (1p)	В	С	А
3 (0p)	С	А	В

A: 3*2 + 2*0 + 2*1 = 7p B: 3*1 + 2*2 + 2*0 = 7p C: 3*0 + 2*1 + 2*2 = 6p

§ Changing the position of D changes the order of the other elements!

Independence of Irrelevant Alternatives

§ The relative ranking of X and Y should not depend on a third object Z

§ heavily debated axiom

- § The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object X wins
 - § follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking

§ Is there a voting system that does not suffer from the previous shortcomings?

Arrow's Impossibility Theorem

- § There is no voting system that satisfies the following axioms
 - § Universality
 - all inputs are possible
 - § Completeness and Transitivity
 - for each input we produce an answer and it is meaningful
 - § Positive Assosiation
 - § Independence of Irrelevant Alternatives
 - § Non-imposition
 - § Non-dictatoriship
- § KENNETH J. ARROW *Social Choice and Individual Values* (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

- § Kemeny distance K(R₁, R₂): The number of pairs of nodes that are ranked in a different order (Kendall-tau)
 - § number of bubble-sort swaps required to transform one ranking into another
- § Kemeny optimal aggregation minimizes

$$K(R,R_1, \backslash, R_m) = \sum_{i=1}^m K(R,R_i)$$

- § Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
 - § maximum likelihood interpretation: produces the ranking that is most likely to have generated the observed rankings
- § ...but it is NP-hard to compute
 - § easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

- § A ranking R is locally Kemeny optimal if there is no bubble-sort swap that produces a ranking R' such that $K(R',R_1,...,R_m) \leq K(R',R_1,...,R_m)$
- § Locally Kemeny optimal is not necessarily Kemeny optimal
- § Definitions apply for the case of partial lists also

- § Locally Kemeny optimal aggregation can be computed in polynomial time
 - § At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
- § Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

- § Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
- § How do we select the initial aggregation?
 § Use another aggregation method
 - § Create a Markov Chain where you move from an object X, to another object Y that is ranked higher by the majority

§ Spearman's footrule distance: The difference between the ranks R(i) and R'(i) assigned to object i

$$F(R, R') = \sum_{i=1}^{n} |R(i) - R'(i)|$$

§ Relation between Spearman's footrule and Kemeny distance

 $K(R,R') \le F(R,R') \le 2K(R,R')$

- § Find the ranking R, that minimizes $F(R,R_1, \land, R_m) = \sum_{i=1}^{m} F(R,R_i)$
- § The optimal Spearman's footrule aggregation can be computed in polynomial time
 - § It also gives a 2-approximation to the Kemeny optimal aggregation
- § If the median ranks of the objects are unique then this ordering is optimal

R ₁				
1	А			
2	В			
3	С			
4	D			

R_3				
1	В			
2	С			
3	А			
4	D			

	R				
1	В				
2	Α				
3	С				
4	D				

R ₂				
1	В			
2	А			
3	D			
4	С			

	R_3				
1	В				
2	С				
3	A				
4	D				

	R				
1					
2					
3					
4					

F	R_1	0	R ₂		F	R ₃
1	Α		1	В	1	В
2	В		2	А	2	С
3	С		3	D	3	А
4	D		4	С	4	D

F	R_1	R ₂		ŀ	R ₃
1	Α	1	В	1	В
2	В	2	А	2	С
3	С	3	D	3	Α
4	D	4	С	4	D

F	R_1	0	R ₂		F	R ₃
1	Α		1	В	1	В
2	В		2	Α	2	С
3	С		3	D	3	А
4	D		4	С	4	D

F	R_1	0	R ₂		R_2		F	R ₃
1	Α		1	В	1	В		
2	В		2	А	2	С		
3	С		3	D	3	А		
4	D		4	С	4	D		

§ Spearman's rank correlation $S(R,R') = \sum_{i=1}^{n} (R(i) - R'(i))^{2}$

- § Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count
 - § Computable in polynomial time

- § Rank distance measures between partial orderings and top-k lists
- § Similarity search
- § Ranked Join Indices
- § Analysis of Link Analysis Ranking algorithms
- § Connections with machine learning

- § A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005
- § Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and aggregating rankings with ties, PODS 2004
- § M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems", Proceedings of IJCAI, 2005
- § Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.
- § Alex Tabbarok Lecture Notes
- § Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
- § Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the Web. 10th International World Wide Web Conference, May 2001.
- § C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected as Web Search Area highlight, 2001.