Models and Algorithms for Complex Networks

Theory and Algorithms for Link Analysis Ranking, Rank Aggregation, and Voting

Outline

B Axiomatic Characterizations of Link Analysis Ranking Algorithms
BInDegree algorithm
ß PageRank algorithm
ß Rank Aggregation
B Computing aggregate scores
ß Computing aggregate rankings - voting

Comparing LAR vectors

$$
\left.\begin{array}{rl}
\square & \square \\
\square & \square \\
\square
\end{array}\right]
$$

$ß$ How close are the LAR vectors w_{1}, w_{2} ?

Distance between LAR vectors

B Geometric distance: how close are the numerical weights of vectors w_{1}, w_{2} ?

$$
\begin{aligned}
& \mathrm{d}_{1}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=\sum\left|\mathrm{w}_{1}[\mathrm{i}]-\mathrm{w}_{2}[\mathrm{i}]\right| \\
& \text { ㅁㅁㅁ } \\
& w_{1}=\left[\begin{array}{lllll}
1.0 & 0.8 & 0.5 & 0.3 & 0.0
\end{array}\right] \\
& w_{2}=\left[\begin{array}{lllll}
0.9 & 1.0 & 0.7 & 0.6 & 0.8
\end{array}\right] \\
& d_{1}\left(w_{1}, w_{2}\right)=0.1+0.2+0.2+0.3+0.8=1.6
\end{aligned}
$$

Distance between LAR vectors

$ß$ Rank distance: how close are the ordinal rankings induced by the vectors w_{1}, w_{2} ? B Kendal's t distance

$$
\mathrm{d}_{\mathrm{r}}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right)=\frac{\text { pairs ranked in a different order }}{\text { total number of distinct pairs }}
$$

Similarity

B Definition: Two algorithms A_{1}, A_{2} are similar if

$$
\lim _{n \rightarrow \infty} \frac{\max _{G \in G_{n}} d_{1}\left(A_{1}(G), A_{2}(G)\right)}{\max _{w_{1}, w_{2}} d_{1}\left(w_{1}, w_{2}\right)}=0
$$

A Definition: Two algorithms A_{1}, A_{2} are rank similar if

$$
\lim _{n \rightarrow \infty} \max _{G \in G_{n}} d_{r}\left(A_{1}(G), A_{2}(G)\right)=0
$$

B Definition: Two algorithms A_{1}, A_{2} are rank equivalent if

$$
\max _{G \in G_{n}} d_{r}\left(A_{1}(G), A_{2}(G)\right)=0
$$

Monotonicity

B Monotonicity: Algorithm A is strictly monotone if for any nodes x and y

$$
B_{N}(x) \subset B_{N}(y) \Leftrightarrow A(G)[x]<A(G)[y]
$$

$$
\mathbf{w}_{\mathrm{x}}<\mathbf{w}_{\mathrm{y}}
$$

Locality

B Locality: An algorithm A is strictly rank local if, for every pair of graphs $G=(P, E)$ and $G^{\prime}=\left(P, E^{\prime}\right)$, and for every pair of nodes x and y, if $B_{G}(x)=B_{G^{\prime}}(x)$ and $B_{G}(y)=B_{G^{\prime}}(y)$ then

$$
A(G)[x]<A(G)[y] \Leftrightarrow A\left(G^{\prime}\right)[x]<A\left(G^{\prime}\right)[y]
$$

B the relative order of the nodes remains the same

B The InDegree algorithm is strictly rank local

Label Independence

B Label Independence: An algorithm is label independent if a permutation of the labels of the nodes yields the same permutation of the weights
$ß$ the weights assigned by the algorithm do not depend on the labels of the nodes

Axiomatic characterization of the InDegree algorithm [BRRT05]

B Theorem: Any algorithm that is strictly rank local, strictly monotone and label independent is rank equivalent to the InDegree algorithm

Proof outline

B Consider two nodes i and j with $d(i)>d(j)$ ß Assume that $w(i)<w(j)$
$|R|=|L|$
\mid E $\mid>0$

graph G

Proof outline

$ß$ Remove all links except to i and j
$ß W_{1}(i)<W_{1}(j)$ (from locality)

Proof outline

B Add links from C and R to node k
$B W_{2}(i)<W_{2}(j) \quad$ (from locality)
$B w_{2}(k)<w_{2}(i)$ (from monotonicity)
$B W_{2}(k)<W_{2}(j)$

Proof outline

B Remove links from R to i and add links from L to i $B w_{3}(k)<w_{3}(j)$ (from locality)

Proof outline

$ß$ Graphs G_{2} and G_{3} are the same up to a label permutation

$$
L \leftrightarrow R
$$

$$
j \leftrightarrow k
$$

Proof outline

B Graphs G_{2} and G_{3} are the same up to a label permutation

$$
L \leftrightarrow R
$$

$$
j \leftrightarrow k
$$

Proof outline

ß We now have
B $w_{2}(j)<w_{2}(k)$ and $w_{3}(j)<w_{3}(k)$ (shown before)
$B w_{2}(j)=w_{3}(k)$ and $w_{2}(k)=w_{3}(j)$ (label independ.)

ß $w_{2}(j)>w_{2}(k) \quad$ CONTRADICTION!

Axiomatic characterization

$ß$ All three properties are needed

 B locality- PageRank is also strictly monotone and label independent
B monotonicity
- consider an algorithm that assigns 1 to nodes with even degree, and 0 to nodes with odd degree
ß label independence
- consider and algorithm that gives the more weight to links that come from some specific page (e.g. the Yahoo page)

Outline

B Axiomatic Characterizations of Link Analysis Ranking Algorithms
B InDegree algorithm
B PageRank algorithm
ß Rank Aggregation
B Computing aggregate scores
ß Computing aggregate rankings - voting

Self-edge axiom

B Algorithm A satisfies the self-edge axiom if the following is true: If page a is ranked at least as high as page b in a graph $G(V, E)$, where a does not have a link to itself, then a should be ranked higher than b in $\mathrm{G}(\mathrm{V}, \mathrm{E}$ $u\{v, v\}$)

Vote by committee axiom

B Algorithm A satisfies the vote by committee axiom if the following is true: If page a links to pages b and c, then the relative ranking of all the pages should be the same as in the case where the direct links from a to b and c are replaced by links from a to a new set of pages which link (only) to b and c

Vote by committee (example)

Collapsing axiom

B If there is a pair of pages a and b that link to the same set of pages, but the set of pages that link to a and b are disjoint, then if a and b are collapsed into a single page (a), where links of b become links of a, then the relative rankings of all pages (except a and b) should remain the same.

Collapsing axiom (example)

Proxy axiom

$ß$ If there is a set of k pages with the same importance that link to a, and a itself links to k other pages, then by dropping a and connect the pages in $N(a)$ and $P(a)$, the relative ranking of all pages (excluding a) should remain the same

Proxy axiom (example)

Axiomatic Characterization of PageRank Algorithm [AT04]

B The PageRank algorithm satisfies label independence, self-edge, vote by committee, collapsing and proxy axioms.

Outline

B Axiomatic Characterizations of Link Analysis Ranking Algorithms
ß InDegree algorithm
ß PageRank algorithm
ß Rank Aggregation
B Computing aggregate scores
ß Computing aggregate rankings - voting

Rank Aggregation

B Given a set of rankings $R_{1}, R_{2}, \ldots, R_{m}$ of a set of objects $X_{1}, X_{2}, \ldots, X_{n}$ produce a single ranking R that is in agreement with the existing rankings

Examples

B Voting

Brankings $R_{1}, R_{2}, \ldots, R_{m}$ are the voters, the objects $X_{1}, X_{2}, \ldots, X_{n}$ are the candidates.

Examples

B Combining multiple scoring functions

B rankings $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{\mathrm{m}}$ are the scoring functions, the objects $X_{1}, X_{2}, \ldots, X_{n}$ are data items.

- Combine the PageRank scores with term-weighting scores
- Combine scores for multimedia items

B color, shape, texture

- Combine scores for database tuples
\lesssim find the best hotel according to price and location

Examples

B Combining multiple sources

B rankings $R_{1}, R_{2}, \ldots, R_{m}$ are the sources, the objects $X_{1}, X_{2}, \ldots, X_{n}$ are data items.

- meta-search engines for the Web
- distributed databases
- P2P sources

Variants of the problem

BCombining scores
ß we know the scores assigned to objects by each ranking, and we want to compute a single score
B Combining ordinal rankings
B the scores are not known, only the ordering is known
B the scores are known but we do not know how, or do not want to combine them

- e.g. price and star rating

Combining scores

β Each object X_{i} has m scores ($r_{i 1}, r_{i 2}, \ldots, r_{\text {im }}$)
B The score of object X_{i} is computed using an aggregate scoring function $f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$

	R_{1}	R_{2}	R_{3}
X_{1}	1	0.3	0.2
X_{2}	0.8	0.8	0
X_{3}	0.5	0.7	0.6
X_{4}	0.3	0.2	0.8
X_{5}	0.1	0.1	0.1

Combining scores

ß Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
B The score of object X_{i} is computed using an aggregate scoring function $\mathrm{f}\left(\mathrm{r}_{\mathrm{i} 1}, \mathrm{r}_{\mathrm{i} 2}, \ldots, \mathrm{r}_{\mathrm{im}}\right)$
if $f\left(r_{11}, r_{i 2}, \ldots, r_{i m}\right)=$ $\min \left\{r_{11}, r_{i 2}, \ldots, r_{i m}\right\}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	0.2
X_{2}	0.8	0.8	0	0
X_{3}	0.5	0.7	0.6	0.5
X_{4}	0.3	0.2	0.8	0.2
X_{5}	0.1	0.1	0.1	0.1

Combining scores

ß Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
B The score of object X_{i} is computed using an aggregate scoring function $\mathrm{f}\left(\mathrm{r}_{\mathrm{i} 1}, \mathrm{r}_{\mathrm{i} 2}, \ldots, \mathrm{r}_{\mathrm{im}}\right)$

$$
\text { Bf } f\left(r_{r_{1}}, r_{i_{12}}, \ldots, r_{\text {in }}\right)=
$$ $\max \left\{r_{i 1}, r_{i 2}, \ldots, r_{i m}\right\}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	1
X_{2}	0.8	0.8	0	0.8
X_{3}	0.5	0.7	0.6	0.7
X_{4}	0.3	0.2	0.8	0.8
X_{5}	0.1	0.1	0.1	0.1

Combining scores

B Each object X_{i} has m scores $\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)$
B The score of object X_{i} is computed using an aggregate scoring function $\mathrm{f}\left(\mathrm{r}_{\mathrm{i} 1}, \mathrm{r}_{\mathrm{i} 2}, \ldots, \mathrm{r}_{\mathrm{im}}\right)$ B $f\left(r_{i 1}, r_{i 2}, \ldots, r_{i m}\right)=r_{i 1}+r_{i 2}+\ldots+$ $r_{\text {im }}$

	R_{1}	R_{2}	R_{3}	R
X_{1}	1	0.3	0.2	1.5
X_{2}	0.8	0.8	0	1.6
X_{3}	0.5	0.7	0.6	1.8
X_{4}	0.3	0.2	0.8	1.3
X_{5}	0.1	0.1	0.1	0.3

Top-k

B Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f

B top-k: a set T of k objects such that $f\left(r_{i 1}, \ldots, r_{j m}\right) \leq$ $f\left(r_{i 1}, \ldots, r_{i m}\right)$ for every object X_{i} in T and every object X_{j} not in T

B Assumption: The function f is monotone ß $f\left(r_{1}, \ldots, r_{m}\right) \leq f\left(r_{1}{ }^{\prime}, \ldots, r_{m}{ }^{\prime}\right)$ if $r_{i} \leq r_{i}^{\prime}$ for all i
B Objective: Compute top-k with the minimum cost

Cost function

B We want to minimize the number of accesses to the scoring lists
B Sorted accesses: sequentially access the objects in the order in which they appear in a list B cost C_{5}
B Random accesses: obtain the cost value for a specific object in a list B cost C_{r}
$ß$ If s sorted accesses and r random accesses minimize s $C_{s}+r C_{r}$

Example

R_{1}	
X_{1}	1
X_{2}	0.8
X_{3}	0.5
X_{4}	0.3
X_{5}	0.1

R_{2}	
X_{2}	0.8
X_{3}	0.7
X_{1}	0.3
X_{4}	0.2
X_{5}	0.1

R_{3}	
X_{4}	0.8
X_{3}	0.6
X_{1}	0.2
X_{5}	0.1
X_{2}	0

B Compute top- 2 for the sum aggregate function

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}	
X_{1}	1
X_{2}	0.8
X_{3}	0.5
X_{4}	0.3
X_{5}	0.1

R_{2}	
X_{2}	0.8
X_{3}	0.7
X_{1}	0.3
X_{4}	0.2
X_{5}	0.1

R_{3}	
X_{4}	0.8
X_{3}	0.6
X_{1}	0.2
X_{5}	0.1
X_{2}	0

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{5}	0.2			
X_{2}	0			

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

Fagin's Algorithm

1. Access sequentially all lists in parallel until there are k objects that have been seen in all lists

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---:	:---:		
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			
X_{2}	0			

Fagin's Algorithm

2. Perform random accesses to obtain the scores of all seen objects

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			

Fagin's Algorithm

3. Compute score for all objects and find the top-k

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
	0.1			

R	
X_{3}	1.8
X_{2}	1.6
X_{1}	1.5
X_{4}	1.3

Fagin's Algorithm

B X_{5} cannot be in the top- 2 because of the monotonicity property
B $f\left(X_{5}\right) \leq f\left(X_{1}\right) \leq f\left(X_{3}\right)$

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{1}	0.6			
X_{5}	0.2			
	0			

R	
X_{3}	1.8
X_{2}	1.6
X_{1}	1.5
X_{4}	1.3

Fagin's Algorithm

$ß$ The algorithm is cost optimal under some probabilistic assumptions for a restricted class of aggregate functions

Threshold algorithm

1. Access the elements sequentially

R_{1}	
X_{1}	1
X_{2}	0.8
X_{3}	0.5
X_{4}	0.3
X_{5}	0.1

R_{2}	
X_{2}	0.8
X_{3}	0.7
X_{1}	0.3
X_{4}	0.2
X_{5}	0.1

R_{3}	
X_{4}	0.8
X_{3}	0.6
X_{1}	0.2
X_{5}	0.1
X_{2}	0

Threshold algorithm

1. At each sequential access

a. Set the threshold t to be the aggregate of the scores seen in this access

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{1}	0.6			
X_{5}	0.2			
X_{2}	0			

Threshold algorithm

1. At each sequential access

b. Do random accesses and compute the score of the objects seen

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{5}	0.2			
X_{2}	0			

| $t=2.6$ |
| :--- | :--- |
| X_{1} 1.5
 X_{2} 1.6
 X_{4} 1.3 |

Threshold algorithm

1. At each sequential access

c. Maintain a list of top-k objects seen so far

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---:	:---:			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{5}	0.2			
X_{2}	0			

$t=2.6$	
X_{2}	1.6
X_{1}	1.5

Threshold algorithm

1. At each sequential access

d. When the scores of the top- k are greater or equal to the threshold, stop

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---:	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			

Threshold algorithm

1. At each sequential access

d. When the scores of the top- k are greater or equal to the threshold, stop

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---	:---:			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			

Threshold algorithm

2. Return the top-k seen so far

R_{1}				
X_{1}	1			
X_{2}	0.8			
X_{3}	0.5			
X_{4}	0.3			
X_{5}	0.1	\quad	R_{2}	
:---	:---			
X_{2}	0.8			
X_{3}	0.7			
X_{1}	0.3			
X_{4}	0.2			
X_{5}	0.1	\quad	R_{3}	
:---	:---			
X_{4}	0.8			
X_{3}	0.6			
X_{1}	0.2			
X_{5}	0.1			

Threshold algorithm

$ß$ From the monotonicity property for any object not seen, the score of the object is less than the threshold Bf $\left(X_{5}\right) \leq \mathrm{t} \leq \mathrm{f}\left(\mathrm{X}_{2}\right)$
B The algorithm is instance cost-optimal
B within a constant factor of the best algorithm on any database

Combining rankings

B In many cases the scores are not known
B e.g. meta-search engines - scores are proprietary information
B ... or we do not know how they were obtained
ß one search engine returns score 10, the other 100. What does this mean?
ß ... or the scores are incompatible
B apples and oranges: does it make sense to combine price with distance?
$ß$ In this cases we can only work with the rankings

The problem

$ß$ Input: a set of rankings $R_{1}, R_{2}, \ldots, R_{m}$ of the objects $X_{1}, X_{2}, \ldots, X_{n}$. Each ranking R_{i} is a total ordering of the objects
Bfor every pair X_{i}, X_{j} either X_{i} is ranked above X_{j} or X_{j} is ranked above X_{i}
\mathcal{B} Output: A total ordering R that aggregates rankings $R_{1}, R_{2}, \ldots, R_{m}$

Voting theory

B A voting system is a rank aggregation mechanism
$ß$ Long history and literature
$ß$ criteria and axioms for good voting systems

What is a good voting system?

B The Condorcet criterion
B if object A defeats every other object in a pairwise majority vote, then A should be ranked first

B Extended Condorcet criterion
ß if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
ß Not all voting systems satisfy the Condorcet criterion!

Pairwise majority comparisons

B Unfortunately the Condorcet winner does not always exist
B irrational behavior of groups

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	B	C
2	B	C	A
3	C	A	B

$$
\mathrm{A}>\mathrm{B} \quad \mathrm{~B}>\mathrm{C} \quad \mathrm{C}>\mathrm{A}
$$

Pairwise majority comparisons

B Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

B Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

$A /$
A

Pairwise majority comparisons

B Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

$ß$ Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

Pairwise majority comparisons

ß Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

$B C$ is the winner

Pairwise majority comparisons

ß Resolve cycles by imposing an agenda

	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$
1	A	D	E
2	B	E	A
3	C	A	B
4	D	B	C
5	E	C	D

B But everybody prefers A or B over C

Pairwise majority comparisons

B The voting system is not Pareto optimal is there exists another ordering that everybody prefers
$ß$ Also, it is sensitive to the order of voting

Plurality vote

B Elect first whoever has more 1st position votes

voters	10	8	7
1	A	C	B
2	B	A	C
3	C	B	A

ß Does not find a Condorcet winner (C in this case)

Plurality with runoff

B If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	A	C	B	B
2	B	A	C	A
3	C	B	A	C

first round: A 10, B 9, C 8
second round: A 18, B 9
winner: A

Plurality with runoff

B If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	A	C	B	A
2	B	A	C	B
3	C	B	A	C

change the order of A and B in the last column
first round: A 12, B 7, C 8
second round: A 12, C 15
winner: C!

Positive Association axiom

ß Plurality with runoff violates the positive association axiom
ß Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

Borda Count

B For each ranking, assign to object X, number of points equal to the number of objects it defeats
Bfirst position gets $\mathrm{n}-1$ points, second $\mathrm{n}-2, \ldots$, last 0 points
B The total weight of X is the number of points it accumulates from all rankings

Borda Count

voters	3	2	2
$1(3 p)$	A	B	C
$2(2 p)$	B	C	D
$3(1 p)$	C	D	A
$4(0 p)$	D	A	B

A: $3^{*} 3+2^{*} 0+2^{*} 1=11 p$	$B C$
B: $3^{*} 2+2^{*} 3+2^{*} 0=12 p$	C
C: $3^{*} 1+2^{*} 2+2^{*} 3=13 p$	B
D: $3^{*} 0+2^{*} 1+2^{*} 2=6 p$	A

$ß$ Does not always produce Condorcet winner

Borda Count

$ß$ Assume that D is removed from the vote

voters	3	2	2
$1(2 p)$	A	B	C
$2(1 p)$	B	C	A
$3(0 p)$	C	A	B

$\begin{aligned} & \mathrm{A}: 3^{*} 2+2^{*} 0+2^{*}=7 \mathrm{p} \\ & \mathrm{~B}: 3^{*}+2^{*} 2+2^{*}=7 \mathrm{p} \\ & \mathrm{C}: 3^{*} 0+2^{*} 1+2^{*} 2=6 \mathrm{p} \end{aligned}$	BC
	B
	A
	C

B Changing the position of D changes the order of the other elements!

Independence of Irrelevant Alternatives

B The relative ranking of X and Y should not depend on a third object Z
B heavily debated axiom

Borda Count

B The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object \times wins
$ß$ follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking

Voting Theory

BIs there a voting system that does not suffer from the previous shortcomings?

Arrow's Impossibility Theorem

B There is no voting system that satisfies the following axioms
B Universality

- all inputs are possible

B Completeness and Transitivity

- for each input we produce an answer and it is meaningful

B Positive Assosiation
B Independence of Irrelevant Alternatives
is Non-imposition
B Non-dictatoriship
ß KENNETH J. ARROW Social Choice and Individual Values (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

B Kemeny distance $K\left(R_{1}, R_{2}\right)$: The number of pairs of nodes that are ranked in a different order (Kendall-tau)
B number of bubble-sort swaps required to transform one ranking into another
B Kemeny optimal aggregation minimizes

$$
K\left(R, R_{1}, K, R_{m}\right)=\sum_{i=1}^{m} K\left(R, R_{i}\right)
$$

B Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
B maximum likelihood interpretation: produces the ranking that is most likely to have generated the observed rankings
ß ...but it is NP-hard to compute
B easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

Locally Kemeny optimal aggregation

$B A$ ranking R is locally Kemeny optimal if there is no bubble-sort swap that produces a ranking R^{\prime} such that

$$
K\left(R^{\prime}, R_{1}, \ldots, R_{m}\right) \leq K\left(R^{\prime}, R_{1}, \ldots, R_{m}\right)
$$

ß Locally Kemeny optimal is not necessarily Kemeny optimal
ß Definitions apply for the case of partial lists also

Locally Kemeny optimal aggregation

ß Locally Kemeny optimal aggregation can be computed in polynomial time
\& At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
ß Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNS01]

B Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
ß How do we select the initial aggregation?
ß Use another aggregation method
B Create a Markov Chain where you move from an object X, to another object Y that is ranked higher by the majority

Spearman's footrule distance

ß Spearman's footrule distance: The difference between the ranks $R(i)$ and $R^{\prime}(i)$ assigned to object

$$
F\left(R, R^{\prime}\right)=\sum_{i=1}^{n}\left|R(i)-R^{\prime}(i)\right|
$$

ß Relation between Spearman's footrule and Kemeny distance

$$
K\left(R, R^{\prime}\right) \leq F\left(R, R^{\prime}\right) \leq 2 K\left(R, R^{\prime}\right)
$$

Spearman's footrule aggregation

B Find the ranking R, that minimizes

$$
F\left(R, R_{1}, K, R_{m}\right)=\sum_{i=1}^{m} F\left(R, R_{i}\right)
$$

B The optimal Spearman's footrule aggregation can be computed in polynomial time $ß$ It also gives a 2-approximation to the Kemeny optimal aggregation
$ß$ If the median ranks of the objects are unique then this ordering is optimal

Example

R_{1}	
1	A
2	B
3	C
4	D

R_{2}	
1	B
2	A
3	D
4	C

R_{3}	
1	B
2	C
3	A
4	D

R	
1	B
2	A
3	C
4	D

The MedRank algorithm

$ß$ Access the rankings sequentially

R_{1}	
1	A
2	B
3	C
4	D

R_{2}	
1	B
2	A
3	D
4	C

R_{3}	
1	B
2	C
3	A
4	D

R	
1	
2	
3	
4	

The MedRank algorithm

β Access the rankings sequentially
$ß$ when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}				
1	A			
2	B			
3	C			
4	D	\quad	R_{2}	
:---	:---			
1	B			
2	A			
3	D			
4	C	\quad	R_{3}	
:---	:---			
1	B			
2	C			
4	D			

R	
1	B
2	
3	
4	

The MedRank algorithm

β Access the rankings sequentially
$ß$ when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1	A	1	B	1	B
2	B	2	A	2	C
3	C	3	D	3	A
4	D	4	C	4	D

R	
1	B
2	A
3	
4	

The MedRank algorithm

β Access the rankings sequentially
$ß$ when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1	A	1	B	1	B
2	B	2	A	2	C
3	C	3	D	3	A
4	D	4	C	4	D

R	
1	B
2	A
3	C
4	

The MedRank algorithm

β Access the rankings sequentially
$ß$ when an element has appeared in more than half of the rankings, output it in the aggregated ranking

R_{1}		R_{2}		R_{3}	
1	A	1	B	1	B
2	B	2	A	2	C
3	C	3	D	3	A
4	D	4	C	4	D

R	
1	B
2	A
3	C
4	D

The Spearman's rank correlation

ß Spearman's rank correlation

$$
S\left(R, R^{\prime}\right)=\sum_{i=1}^{n}\left(R(i)-R^{\prime}(i)\right)^{2}
$$

ß Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count
BComputable in polynomial time

Extensions and Applications

$ß$ Rank distance measures between partial orderings and top-k lists
B Similarity search
ß Ranked Join Indices
ß Analysis of Link Analysis Ranking algorithms
ß Connections with machine learning

References

ß A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005
ß Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and aggregating rankings with ties, PODS 2004
B M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems", Proceedings of IJ CAI, 2005
B Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.
B Alex Tabbarok Lecture Notes
ß Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
B Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the Web. 10th International World Wide Web Conference, May 2001.
B C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected as Web Search Area highlight, 2001.

