
Models and Algorithms for
Complex Networks

Theory and Algorithms for Link
Analysis Ranking, Rank
Aggregation, and Voting



Outline

§ Axiomatic Characterizations of Link
Analysis Ranking Algorithms
§ InDegree algorithm
§ PageRank algorithm

§ Rank Aggregation
§ Computing aggregate scores
§ Computing aggregate rankings - voting



Comparing LAR vectors

§ How close are the LAR vectors w1, w2?

w1 = [  1   0.8  0.5  0.3   0  ]

w2 = [ 0.9   1   0.7  0.6  0.8 ]



Distance between LAR vectors

§ Geometric distance: how close are the
numerical weights of vectors w1, w2?

( ) ∑ −= [i]w[i]ww,wd 21211

w1 = [ 1.0  0.8   0.5  0.3  0.0 ]

w2 = [ 0.9  1.0   0.7  0.6  0.8 ]

d1(w1,w2) =   0.1+0.2+0.2+0.3+0.8 = 1.6



Distance between LAR vectors

§ Rank distance: how close are the ordinal
rankings induced by the vectors w1, w2?
§ Kendal’s distance

( )
pairsdistinctofnumbertotal
orderdifferentainrankedpairs

w,wd 21r =



Similarity

§ Definition: Two algorithms A1, A2 are similar if

§ Definition: Two algorithms A1, A2 are rank similar if

§ Definition: Two algorithms A1, A2 are rank equivalent if
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Monotonicity

§ Monotonicity: Algorithm A is strictly
monotone if for any nodes x and y

A(G)[y]A(G)[x](y)B(x)B NN <⇔⊂

y

x

wx < wy



§ Locality: An algorithm A is strictly rank local if, for every
pair of graphs G=(P,E) and G’=(P,E’), and for every pair of
nodes x and y, if BG(x)=BG’(x) and BG(y)=BG’(y) then

§ the relative order of the nodes remains the same

§ The InDegree algorithm is strictly rank local

Locality
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Label Independence

§ Label Independence: An algorithm is label
independent if a permutation of the labels
of the nodes yields the same permutation
of the weights
§ the weights assigned by the algorithm do not

depend on the labels of the nodes



Axiomatic characterization of the
InDegree algorithm [BRRT05]

§ Theorem: Any algorithm that is strictly
rank local, strictly monotone and label
independent is rank equivalent to the
InDegree algorithm



Proof outline

§ Consider two nodes i and j with d(i) > d(j)
§ Assume that w(i) < w(j)

L C R E

j i

|R| = |L|

graph G

|E| > 0



Proof outline

§ Remove all links except to i and j
§ w1(i) < w1(j) (from locality)

graph G1

L C R E

j i



Proof outline

§ Add links from C and R to node k
§ w2(i) < w2(j) (from locality)
§ w2(k) < w2(i) (from monotonicity)
§ w2(k) < w2(j)

k

graph G2

L C R E

j i



Proof outline

§ Remove links from R to i and add links
from L to i
§ w3(k) < w3(j) (from locality)

graph G3

k

L C R E

j i



Proof outline

§ Graphs G2 and G3 are the same up to a
label permutation

graph G3

k
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graph G2
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Proof outline

§ Graphs G2 and G3 are the same up to a
label permutation

graph G3

k

L C R E

j i k

LCR E

j i

graph G2

RL ↔
kj ↔



Proof outline

§ We now have
§ w2(j) < w2(k) and w3(j) < w3(k) (shown before)
§ w2(j) = w3(k) and w2(k) = w3(j) (label

independ.)
§ w2(j) > w2(k) CONTRADICTION!

graph G3

k

L C R E

j i k

LCR E

j i
graph G2



Axiomatic characterization

§ All three properties are needed
§ locality

• PageRank is also strictly monotone and label
independent

§ monotonicity
• consider an algorithm that assigns 1 to nodes with

even degree, and 0 to nodes with odd degree
§ label independence

• consider and algorithm that gives the more weight
to links that come from some specific page (e.g.
the Yahoo page)
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Self-edge axiom

§ Algorithm A satisfies the self-edge axiom if
the following is true: If page a is ranked at
least as high as page b in a graph G(V,E),
where a does not have a link to itself, then
a should be ranked higher than b in G(V,E
U {v,v})



Vote by committee axiom

§ Algorithm A satisfies the vote by
committee axiom if the following is true: If
page a links to pages b and c, then the
relative ranking of all the pages should be
the same as in the case where the direct
links from a to b and c are replaced by
links from a to a new set of pages which
link (only) to b and c



Vote by committee (example)

a

b

c

a

b

c



Collapsing axiom

§ If there is a pair of pages a and b that link
to the same set of pages, but the set of
pages that link to a and b are disjoint,
then if a and b are collapsed into a single
page (a), where links of b become links of
a, then the relative rankings of all pages
(except a and b) should remain the same.



Collapsing axiom (example)

b

c

c



Proxy axiom

§ If there is a set of k pages with the same
importance that link to a, and a itself links
to k other pages, then by dropping a and
connect the pages in N(a) and P(a), the
relative ranking of all pages (excluding a)
should remain the same



Proxy axiom (example)

c



Axiomatic Characterization of
PageRank Algorithm [AT04]

§ The PageRank algorithm satisfies label
independence, self-edge, vote by
committee, collapsing and proxy axioms.
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Rank Aggregation

§ Given a set of rankings R1,R2,…,Rm of a
set of objects X1,X2,…,Xn produce a single
ranking R that is in agreement with the
existing rankings



Examples

§ Voting
§ rankings R1,R2,…,Rm are the voters, the

objects X1,X2,…,Xn are the candidates.



Examples

§ Combining multiple scoring functions
§ rankings R1,R2,…,Rm are the scoring functions,

the objects X1,X2,…,Xn are data items.
• Combine the PageRank scores with term-weighting

scores
• Combine scores for multimedia items
§ color, shape, texture

• Combine scores for database tuples
§ find the best hotel according to price and location



Examples

§ Combining multiple sources
§ rankings R1,R2,…,Rm are the sources, the

objects X1,X2,…,Xn are data items.
• meta-search engines for the Web
• distributed databases
• P2P sources



Variants of the problem

§ Combining scores
§ we know the scores assigned to objects by

each ranking, and we want to compute a
single score

§ Combining ordinal rankings
§ the scores are not known, only the ordering is

known
§ the scores are known but we do not know

how, or do not want to combine them
• e.g. price and star rating



Combining scores

§ Each object Xi has m
scores (ri1,ri2,…,rim)
§ The score of object Xi is

computed using an
aggregate scoring
function f(ri1,ri2,…,rim)
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Combining scores

§ Each object Xi has m scores
(ri1,ri2,…,rim)
§ The score of object Xi is

computed using an
aggregate scoring function
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Combining scores

§ Each object Xi has m scores
(ri1,ri2,…,rim)
§ The score of object Xi is

computed using an
aggregate scoring function
f(ri1,ri2,…,rim)
§ f(ri1,ri2,…,rim) = ri1 + ri2 + …+

rim 0.1
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Top-k

§ Given a set of n objects and m scoring lists
sorted in decreasing order, find the top-k objects
according to a scoring function f

§ top-k: a set T of k objects such that f(rj1,…,rjm)
f(ri1,…,rim) for every object Xi in T and every
object Xj not in T

§ Assumption: The function f is monotone
§ f(r1,…,rm) f(r1’,…,rm’) if ri ri’ for all i

§ Objective: Compute top-k with the minimum
cost



Cost function

§ We want to minimize the number of accesses to
the scoring lists
§ Sorted accesses: sequentially access the objects

in the order in which they appear in a list
§ cost Cs

§ Random accesses: obtain the cost value for a
specific object in a list
§ cost Cr

§ If s sorted accesses and r random accesses
minimize s Cs + r Cr



Example

§ Compute top-2 for the sum aggregate function
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Fagin’s Algorithm

1. Access sequentially all lists in parallel
until there are k objects that have been
seen in all lists
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Fagin’s Algorithm

1. Access sequentially all lists in parallel
until there are k objects that have been
seen in all lists
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Fagin’s Algorithm

2. Perform random accesses to obtain the
scores of all seen objects
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Fagin’s Algorithm

3. Compute score for all objects and find
the top-k
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Fagin’s Algorithm

§ X5 cannot be in the top-2 because of the
monotonicity property
§ f(X5) f(X1) f(X3)
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Fagin’s Algorithm

§ The algorithm is cost optimal under some
probabilistic assumptions for a restricted
class of aggregate functions



Threshold algorithm

1. Access the elements sequentially
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Threshold algorithm

1. At each sequential access
a. Set the threshold t to be the aggregate of

the scores seen in this access
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Threshold algorithm

1. At each sequential access
b. Do random accesses and compute the score

of the objects seen
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Threshold algorithm

1. At each sequential access
c. Maintain a list of top-k objects seen so far
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Threshold algorithm

1. At each sequential access
d. When the scores of the top-k are greater or

equal to the threshold, stop
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Threshold algorithm

1. At each sequential access
d. When the scores of the top-k are greater or

equal to the threshold, stop
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Threshold algorithm

2. Return the top-k seen so far
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Threshold algorithm

§ From the monotonicity property for any
object not seen, the score of the object is
less than the threshold
§ f(X5) t f(X2)

§ The algorithm is instance cost-optimal
§ within a constant factor of the best algorithm

on any database



Combining rankings

§ In many cases the scores are not known
§ e.g. meta-search engines – scores are proprietary

information
§ … or we do not know how they were obtained
§ one search engine returns score 10, the other 100.

What does this mean?
§ … or the scores are incompatible
§ apples and oranges: does it make sense to combine

price with distance?

§ In this cases we can only work with the rankings



The problem

§ Input: a set of rankings R1,R2,…,Rm of the
objects X1,X2,…,Xn. Each ranking Ri is a
total ordering of the objects
§ for every pair Xi,Xj either Xi is ranked above Xj

or Xj is ranked above Xi

§ Output: A total ordering R that aggregates
rankings R1,R2,…,Rm



Voting theory

§ A voting system is a rank aggregation
mechanism
§ Long history and literature
§ criteria and axioms for good voting systems



What is a good voting system?

§ The Condorcet criterion
§ if object A defeats every other object in a pairwise

majority vote, then A should be ranked first

§ Extended Condorcet criterion
§ if the objects in a set X defeat in pairwise

comparisons the objects in the set Y then the objects
in X should be ranked above those in Y

§ Not all voting systems satisfy the Condorcet
criterion!



Pairwise majority comparisons

§ Unfortunately the Condorcet winner does
not always exist
§ irrational behavior of groups
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Pairwise majority comparisons

§ Resolve cycles by imposing an agenda
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Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

§ C is the winner
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Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

§ But everybody prefers A or B over C
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Pairwise majority comparisons

§ The voting system is not Pareto optimal
§ there exists another ordering that everybody

prefers

§ Also, it is sensitive to the order of voting



Plurality vote

§ Elect first whoever has more 1st position
votes

§ Does not find a Condorcet winner (C in
this case)

ABC3

C
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810voters



Plurality with runoff

§ If no-one gets more than 50% of the 1st
position votes, take the majority winner of
the first two
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810voters

first round: A 10, B 9, C 8
second round: A 18, B 9
winner: A



Plurality with runoff

§ If no-one gets more than 50% of the 1st
position votes, take the majority winner of
the first two

A

C

B

7

CBC3

B

A

2

AB2

CA1

810voters

first round: A 12, B 7, C 8
second round: A 12, C 15
winner: C!

change the order of
A and B in the last
column



Positive Association axiom

§ Plurality with runoff violates the positive
association axiom

§ Positive association axiom: positive
changes in preferences for an object
should not cause the ranking of the object
to decrease



Borda Count

§ For each ranking, assign to object X,
number of points equal to the number of
objects it defeats
§ first position gets n-1 points, second n-2, …,

last 0 points

§ The total weight of X is the number of
points it accumulates from all rankings



Borda Count

§ Does not always produce Condorcet
winner
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Borda Count

§ Assume that D is removed from the vote

§ Changing the position of D changes the
order of the other elements!
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B: 3*1 + 2*2 + 2*0 = 7p
C: 3*0 + 2*1 + 2*2 = 6p

A

C

B

BC



Independence of Irrelevant
Alternatives

§ The relative ranking of X and Y should not
depend on a third object Z
§ heavily debated axiom



Borda Count

§ The Borda Count of an an object X is the
aggregate number of pairwise
comparisons that the object X wins
§ follows from the fact that in one ranking X

wins all the pairwise comparisons with objects
that are under X in the ranking



Voting Theory

§ Is there a voting system that does not
suffer from the previous shortcomings?



Arrow’s Impossibility Theorem

§ There is no voting system that satisfies the following
axioms
§ Universality

• all inputs are possible
§ Completeness and Transitivity

• for each input we produce an answer and it is meaningful
§ Positive Assosiation
§ Independence of Irrelevant Alternatives
§ Non-imposition
§ Non-dictatoriship

§ KENNETH J. ARROW Social Choice and Individual
Values (1951). Won Nobel Prize in 1972



Kemeny Optimal Aggregation

§ Kemeny distance K(R1,R2): The number of pairs of nodes
that are ranked in a different order (Kendall-tau)
§ number of bubble-sort swaps required to transform one ranking

into another

§ Kemeny optimal aggregation minimizes

§ Kemeny optimal aggregation satisfies the Condorcet
criterion and the extended Condorcet criterion
§ maximum likelihood interpretation: produces the ranking that is

most likely to have generated the observed rankings
§ …but it is NP-hard to compute
§ easy 2-approximation by obtaining the best of the input

rankings, but it is not “interesting”

( ) ( )∑
=

=
m

1i
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Locally Kemeny optimal aggregation

§ A ranking R is locally Kemeny optimal if
there is no bubble-sort swap that
produces a ranking R’ such that

K(R’,R1,…,Rm) K(R’,R1,…,Rm)

§ Locally Kemeny optimal is not necessarily
Kemeny optimal
§ Definitions apply for the case of partial

lists also



Locally Kemeny optimal aggregation

§ Locally Kemeny optimal aggregation can be
computed in polynomial time
§ At the i-th iteration insert the i-th element x in the

bottom of the list, and bubble it up until there is an
element y such that the majority places y over x

§ Locally Kemeny optimal aggregation satisfies the
Condorcet and extended Condorcet criterion



Rank Aggregation algorithm [DKNS01]

§ Start with an aggregated ranking and
make it into a locally Kemeny optimal
aggregation
§ How do we select the initial aggregation?
§ Use another aggregation method
§ Create a Markov Chain where you move from

an object X, to another object Y that is ranked
higher by the majority



Spearman’s footrule distance

§ Spearman’s footrule distance: The
difference between the ranks R(i) and R’(i)
assigned to object i

§ Relation between Spearman’s footrule and
Kemeny distance

( ) ∑
=

−=
n

1i

(i)R'R(i)R'R,F

( ) ( ) ( )R'R,2KR'R,FR'R,K ≤≤



Spearman’s footrule aggregation

§ Find the ranking R, that minimizes

§ The optimal Spearman’s footrule aggregation
can be computed in polynomial time
§ It also gives a 2-approximation to the Kemeny

optimal aggregation

§ If the median ranks of the objects are unique
then this ordering is optimal

( ) ( )∑
=

=
m

1i
im1 RR,FR,,RR,F K



Example
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The MedRank algorithm

§ Access the rankings sequentially
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The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than

half of the rankings, output it in the
aggregated ranking
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The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than
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The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than

half of the rankings, output it in the
aggregated ranking
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The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than

half of the rankings, output it in the
aggregated ranking
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The Spearman’s rank correlation

§ Spearman’s rank correlation

§ Computing the optimal rank aggregation
with respect to Spearman’s rank
correlation is the same as computing
Borda Count
§ Computable in polynomial time

( ) ( )∑
=

−=
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Extensions and Applications

§ Rank distance measures between partial
orderings and top-k lists
§ Similarity search
§ Ranked Join Indices
§ Analysis of Link Analysis Ranking

algorithms
§ Connections with machine learning
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