
Models and Algorithms for
Complex Networks

Theory and Algorithms for Link
Analysis Ranking, Rank
Aggregation, and Voting



Outline

§ Axiomatic Characterizations of Link
Analysis Ranking Algorithms
§ InDegree algorithm
§ PageRank algorithm

§ Rank Aggregation
§ Computing aggregate scores
§ Computing aggregate rankings - voting



Comparing LAR vectors

§ How close are the LAR vectors w1, w2?

w1 = [  1   0.8  0.5  0.3   0  ]

w2 = [ 0.9   1   0.7  0.6  0.8 ]



Distance between LAR vectors

§ Geometric distance: how close are the
numerical weights of vectors w1, w2?

( ) ∑ −= [i]w[i]ww,wd 21211

w1 = [ 1.0  0.8   0.5  0.3  0.0 ]

w2 = [ 0.9  1.0   0.7  0.6  0.8 ]

d1(w1,w2) =   0.1+0.2+0.2+0.3+0.8 = 1.6



Distance between LAR vectors

§ Rank distance: how close are the ordinal
rankings induced by the vectors w1, w2?
§ Kendal’s distance

( )
pairsdistinctofnumbertotal
orderdifferentainrankedpairs

w,wd 21r =



Similarity

§ Definition: Two algorithms A1, A2 are similar if

§ Definition: Two algorithms A1, A2 are rank similar if

§ Definition: Two algorithms A1, A2 are rank equivalent if

( ) 0(G)A(G),Admaxlim 21rGGn n

=
∈∞→

( )
( ) 0

w,wdmax

(G)A(G),Admax
lim

211w,w

211GG

n

21

n =∈

∞→

( ) 0(G)A(G),Admax 21rGG n

=
∈



Monotonicity

§ Monotonicity: Algorithm A is strictly
monotone if for any nodes x and y

A(G)[y]A(G)[x](y)B(x)B NN <⇔⊂

y

x

wx < wy



§ Locality: An algorithm A is strictly rank local if, for every
pair of graphs G=(P,E) and G’=(P,E’), and for every pair of
nodes x and y, if BG(x)=BG’(x) and BG(y)=BG’(y) then

§ the relative order of the nodes remains the same

§ The InDegree algorithm is strictly rank local

Locality

[ ] [ ] [ ] [ ]y)A(G'x)A(G'yA(G)xA(G) <⇔<

G’G



Label Independence

§ Label Independence: An algorithm is label
independent if a permutation of the labels
of the nodes yields the same permutation
of the weights
§ the weights assigned by the algorithm do not

depend on the labels of the nodes



Axiomatic characterization of the
InDegree algorithm [BRRT05]

§ Theorem: Any algorithm that is strictly
rank local, strictly monotone and label
independent is rank equivalent to the
InDegree algorithm



Proof outline

§ Consider two nodes i and j with d(i) > d(j)
§ Assume that w(i) < w(j)

L C R E

j i

|R| = |L|

graph G

|E| > 0



Proof outline

§ Remove all links except to i and j
§ w1(i) < w1(j) (from locality)

graph G1

L C R E

j i



Proof outline

§ Add links from C and R to node k
§ w2(i) < w2(j) (from locality)
§ w2(k) < w2(i) (from monotonicity)
§ w2(k) < w2(j)

k

graph G2

L C R E

j i



Proof outline

§ Remove links from R to i and add links
from L to i
§ w3(k) < w3(j) (from locality)

graph G3

k

L C R E

j i



Proof outline

§ Graphs G2 and G3 are the same up to a
label permutation

graph G3

k

L C R E

j i k

L C R E

j i

graph G2

RL ↔
kj ↔



Proof outline

§ Graphs G2 and G3 are the same up to a
label permutation

graph G3

k

L C R E

j i k

LCR E

j i

graph G2

RL ↔
kj ↔



Proof outline

§ We now have
§ w2(j) < w2(k) and w3(j) < w3(k) (shown before)
§ w2(j) = w3(k) and w2(k) = w3(j) (label

independ.)
§ w2(j) > w2(k) CONTRADICTION!

graph G3

k

L C R E

j i k

LCR E

j i
graph G2



Axiomatic characterization

§ All three properties are needed
§ locality

• PageRank is also strictly monotone and label
independent

§ monotonicity
• consider an algorithm that assigns 1 to nodes with

even degree, and 0 to nodes with odd degree
§ label independence

• consider and algorithm that gives the more weight
to links that come from some specific page (e.g.
the Yahoo page)



Outline

§ Axiomatic Characterizations of Link
Analysis Ranking Algorithms
§ InDegree algorithm
§ PageRank algorithm

§ Rank Aggregation
§ Computing aggregate scores
§ Computing aggregate rankings - voting



Self-edge axiom

§ Algorithm A satisfies the self-edge axiom if
the following is true: If page a is ranked at
least as high as page b in a graph G(V,E),
where a does not have a link to itself, then
a should be ranked higher than b in G(V,E
U {v,v})



Vote by committee axiom

§ Algorithm A satisfies the vote by
committee axiom if the following is true: If
page a links to pages b and c, then the
relative ranking of all the pages should be
the same as in the case where the direct
links from a to b and c are replaced by
links from a to a new set of pages which
link (only) to b and c



Vote by committee (example)

a

b

c

a

b

c



Collapsing axiom

§ If there is a pair of pages a and b that link
to the same set of pages, but the set of
pages that link to a and b are disjoint,
then if a and b are collapsed into a single
page (a), where links of b become links of
a, then the relative rankings of all pages
(except a and b) should remain the same.



Collapsing axiom (example)

b

c

c



Proxy axiom

§ If there is a set of k pages with the same
importance that link to a, and a itself links
to k other pages, then by dropping a and
connect the pages in N(a) and P(a), the
relative ranking of all pages (excluding a)
should remain the same



Proxy axiom (example)

c



Axiomatic Characterization of
PageRank Algorithm [AT04]

§ The PageRank algorithm satisfies label
independence, self-edge, vote by
committee, collapsing and proxy axioms.



Outline

§ Axiomatic Characterizations of Link
Analysis Ranking Algorithms
§ InDegree algorithm
§ PageRank algorithm

§ Rank Aggregation
§ Computing aggregate scores
§ Computing aggregate rankings - voting



Rank Aggregation

§ Given a set of rankings R1,R2,…,Rm of a
set of objects X1,X2,…,Xn produce a single
ranking R that is in agreement with the
existing rankings



Examples

§ Voting
§ rankings R1,R2,…,Rm are the voters, the

objects X1,X2,…,Xn are the candidates.



Examples

§ Combining multiple scoring functions
§ rankings R1,R2,…,Rm are the scoring functions,

the objects X1,X2,…,Xn are data items.
• Combine the PageRank scores with term-weighting

scores
• Combine scores for multimedia items
§ color, shape, texture

• Combine scores for database tuples
§ find the best hotel according to price and location



Examples

§ Combining multiple sources
§ rankings R1,R2,…,Rm are the sources, the

objects X1,X2,…,Xn are data items.
• meta-search engines for the Web
• distributed databases
• P2P sources



Variants of the problem

§ Combining scores
§ we know the scores assigned to objects by

each ranking, and we want to compute a
single score

§ Combining ordinal rankings
§ the scores are not known, only the ordering is

known
§ the scores are known but we do not know

how, or do not want to combine them
• e.g. price and star rating



Combining scores

§ Each object Xi has m
scores (ri1,ri2,…,rim)
§ The score of object Xi is

computed using an
aggregate scoring
function f(ri1,ri2,…,rim)

0.80.20.3X4

0.10.10.1X5

0.6

0

0.2

R3

0.70.5X3

0.80.8X2

0.31X1

R2R1



Combining scores

§ Each object Xi has m scores
(ri1,ri2,…,rim)
§ The score of object Xi is

computed using an
aggregate scoring function
f(ri1,ri2,…,rim)
§ f(ri1,ri2,…,rim) =

min{ri1,ri2,…,rim} 0.1

0.8

0.6

0

0.2

R3

0.1

0.2

0.5

0

0.2

R

0.20.3X4

0.10.1X5

0.70.5X3

0.80.8X2

0.31X1

R2R1



Combining scores

§ Each object Xi has m scores
(ri1,ri2,…,rim)
§ The score of object Xi is

computed using an
aggregate scoring function
f(ri1,ri2,…,rim)
§ f(ri1,ri2,…,rim) =

max{ri1,ri2,…,rim} 0.1

0.8

0.6

0

0.2

R3

0.1

0.8

0.7

0.8

1

R

0.20.3X4

0.10.1X5

0.70.5X3

0.80.8X2

0.31X1

R2R1



Combining scores

§ Each object Xi has m scores
(ri1,ri2,…,rim)
§ The score of object Xi is

computed using an
aggregate scoring function
f(ri1,ri2,…,rim)
§ f(ri1,ri2,…,rim) = ri1 + ri2 + …+

rim 0.1

0.8

0.6

0

0.2

R3

0.3

1.3

1.8

1.6

1.5

R

0.20.3X4

0.10.1X5

0.70.5X3

0.80.8X2

0.31X1

R2R1



Top-k

§ Given a set of n objects and m scoring lists
sorted in decreasing order, find the top-k objects
according to a scoring function f

§ top-k: a set T of k objects such that f(rj1,…,rjm)
f(ri1,…,rim) for every object Xi in T and every
object Xj not in T

§ Assumption: The function f is monotone
§ f(r1,…,rm) f(r1’,…,rm’) if ri ri’ for all i

§ Objective: Compute top-k with the minimum
cost



Cost function

§ We want to minimize the number of accesses to
the scoring lists
§ Sorted accesses: sequentially access the objects

in the order in which they appear in a list
§ cost Cs

§ Random accesses: obtain the cost value for a
specific object in a list
§ cost Cr

§ If s sorted accesses and r random accesses
minimize s Cs + r Cr



Example

§ Compute top-2 for the sum aggregate function

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Fagin’s Algorithm

1. Access sequentially all lists in parallel
until there are k objects that have been
seen in all lists

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Fagin’s Algorithm

1. Access sequentially all lists in parallel
until there are k objects that have been
seen in all lists

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Fagin’s Algorithm

1. Access sequentially all lists in parallel
until there are k objects that have been
seen in all lists

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Fagin’s Algorithm

1. Access sequentially all lists in parallel
until there are k objects that have been
seen in all lists

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Fagin’s Algorithm

1. Access sequentially all lists in parallel
until there are k objects that have been
seen in all lists

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Fagin’s Algorithm

2. Perform random accesses to obtain the
scores of all seen objects

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Fagin’s Algorithm

3. Compute score for all objects and find
the top-k

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.3X4

1.5X1

1.6X2

1.8X3

R



Fagin’s Algorithm

§ X5 cannot be in the top-2 because of the
monotonicity property
§ f(X5) f(X1) f(X3)

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.3X4

1.5X1

1.6X2

1.8X3

R



Fagin’s Algorithm

§ The algorithm is cost optimal under some
probabilistic assumptions for a restricted
class of aggregate functions



Threshold algorithm

1. Access the elements sequentially

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3



Threshold algorithm

1. At each sequential access
a. Set the threshold t to be the aggregate of

the scores seen in this access

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 2.6



Threshold algorithm

1. At each sequential access
b. Do random accesses and compute the score

of the objects seen

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.3X4

1.6X2

1.5X1

t = 2.6



Threshold algorithm

1. At each sequential access
c. Maintain a list of top-k objects seen so far

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

1.5X1

1.6X2

t = 2.6



Threshold algorithm

1. At each sequential access
d. When the scores of the top-k are greater or

equal to the threshold, stop

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 2.1

1.6X2

1.8X3



Threshold algorithm

1. At each sequential access
d. When the scores of the top-k are greater or

equal to the threshold, stop

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 1.0

1.6X2

1.8X3



Threshold algorithm

2. Return the top-k seen so far

0.3X4

0.1X5

0.5X3

0.8X2

1X1

R1

0.2X4

0.1X5

0.3X1

0.7X3

0.8X2

R2

0.1X5

0X2

0.2X1

0.6X3

0.8X4

R3

t = 1.0

1.6X2

1.8X3



Threshold algorithm

§ From the monotonicity property for any
object not seen, the score of the object is
less than the threshold
§ f(X5) t f(X2)

§ The algorithm is instance cost-optimal
§ within a constant factor of the best algorithm

on any database



Combining rankings

§ In many cases the scores are not known
§ e.g. meta-search engines – scores are proprietary

information
§ … or we do not know how they were obtained
§ one search engine returns score 10, the other 100.

What does this mean?
§ … or the scores are incompatible
§ apples and oranges: does it make sense to combine

price with distance?

§ In this cases we can only work with the rankings



The problem

§ Input: a set of rankings R1,R2,…,Rm of the
objects X1,X2,…,Xn. Each ranking Ri is a
total ordering of the objects
§ for every pair Xi,Xj either Xi is ranked above Xj

or Xj is ranked above Xi

§ Output: A total ordering R that aggregates
rankings R1,R2,…,Rm



Voting theory

§ A voting system is a rank aggregation
mechanism
§ Long history and literature
§ criteria and axioms for good voting systems



What is a good voting system?

§ The Condorcet criterion
§ if object A defeats every other object in a pairwise

majority vote, then A should be ranked first

§ Extended Condorcet criterion
§ if the objects in a set X defeat in pairwise

comparisons the objects in the set Y then the objects
in X should be ranked above those in Y

§ Not all voting systems satisfy the Condorcet
criterion!



Pairwise majority comparisons

§ Unfortunately the Condorcet winner does
not always exist
§ irrational behavior of groups

B

A

C

V3

AC3

CB2

BA1

V2V1

A > B B > C C > A



Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

CBD4

BAC3

DCE5

A

E

V3

EB2

DA1

V2V1



Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

CBD4

BAC3

DCE5

A

E

V3

EB2

DA1

V2V1 A B

A



Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

CBD4

BAC3

DCE5

A

E

V3

EB2

DA1

V2V1 A B

A E

E



Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

CBD4

BAC3

DCE5

A

E

V3

EB2

DA1

V2V1 A B

A E

E D

D



Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

§ C is the winner

CBD4

BAC3

DCE5

A

E

V3

EB2

DA1

V2V1 A B

A E

E D

D C

C



Pairwise majority comparisons

§ Resolve cycles by imposing an agenda

§ But everybody prefers A or B over C

CBD4

BAC3

DCE5

A

E

V3

EB2

DA1

V2V1 A B

A E

E D

D C

C



Pairwise majority comparisons

§ The voting system is not Pareto optimal
§ there exists another ordering that everybody

prefers

§ Also, it is sensitive to the order of voting



Plurality vote

§ Elect first whoever has more 1st position
votes

§ Does not find a Condorcet winner (C in
this case)

ABC3

C

B

7

AB2

CA1

810voters



Plurality with runoff

§ If no-one gets more than 50% of the 1st
position votes, take the majority winner of
the first two

A

C

B

7

CBC3

A

B

2

AB2

CA1

810voters

first round: A 10, B 9, C 8
second round: A 18, B 9
winner: A



Plurality with runoff

§ If no-one gets more than 50% of the 1st
position votes, take the majority winner of
the first two

A

C

B

7

CBC3

B

A

2

AB2

CA1

810voters

first round: A 12, B 7, C 8
second round: A 12, C 15
winner: C!

change the order of
A and B in the last
column



Positive Association axiom

§ Plurality with runoff violates the positive
association axiom

§ Positive association axiom: positive
changes in preferences for an object
should not cause the ranking of the object
to decrease



Borda Count

§ For each ranking, assign to object X,
number of points equal to the number of
objects it defeats
§ first position gets n-1 points, second n-2, …,

last 0 points

§ The total weight of X is the number of
points it accumulates from all rankings



Borda Count

§ Does not always produce Condorcet
winner

ADC3 (1p)

BAD4 (0p)

D

C

2

CB2 (2p)

BA1 (3p)

23voters
A: 3*3 + 2*0 + 2*1 = 11p
B: 3*2 + 2*3 + 2*0 = 12p
C: 3*1 + 2*2 + 2*3 = 13p
D: 3*0 + 2*1 + 2*2 = 6p

A

D

B

C

BC



Borda Count

§ Assume that D is removed from the vote

§ Changing the position of D changes the
order of the other elements!

BAC3 (0p)

A

C

2

CB2 (1p)

BA1 (2p)

23voters A: 3*2 + 2*0 + 2*1 = 7p
B: 3*1 + 2*2 + 2*0 = 7p
C: 3*0 + 2*1 + 2*2 = 6p

A

C

B

BC



Independence of Irrelevant
Alternatives

§ The relative ranking of X and Y should not
depend on a third object Z
§ heavily debated axiom



Borda Count

§ The Borda Count of an an object X is the
aggregate number of pairwise
comparisons that the object X wins
§ follows from the fact that in one ranking X

wins all the pairwise comparisons with objects
that are under X in the ranking



Voting Theory

§ Is there a voting system that does not
suffer from the previous shortcomings?



Arrow’s Impossibility Theorem

§ There is no voting system that satisfies the following
axioms
§ Universality

• all inputs are possible
§ Completeness and Transitivity

• for each input we produce an answer and it is meaningful
§ Positive Assosiation
§ Independence of Irrelevant Alternatives
§ Non-imposition
§ Non-dictatoriship

§ KENNETH J. ARROW Social Choice and Individual
Values (1951). Won Nobel Prize in 1972



Kemeny Optimal Aggregation

§ Kemeny distance K(R1,R2): The number of pairs of nodes
that are ranked in a different order (Kendall-tau)
§ number of bubble-sort swaps required to transform one ranking

into another

§ Kemeny optimal aggregation minimizes

§ Kemeny optimal aggregation satisfies the Condorcet
criterion and the extended Condorcet criterion
§ maximum likelihood interpretation: produces the ranking that is

most likely to have generated the observed rankings
§ …but it is NP-hard to compute
§ easy 2-approximation by obtaining the best of the input

rankings, but it is not “interesting”

( ) ( )∑
=

=
m

1i
im1 RR,KR,,RR,K K



Locally Kemeny optimal aggregation

§ A ranking R is locally Kemeny optimal if
there is no bubble-sort swap that
produces a ranking R’ such that

K(R’,R1,…,Rm) K(R’,R1,…,Rm)

§ Locally Kemeny optimal is not necessarily
Kemeny optimal
§ Definitions apply for the case of partial

lists also



Locally Kemeny optimal aggregation

§ Locally Kemeny optimal aggregation can be
computed in polynomial time
§ At the i-th iteration insert the i-th element x in the

bottom of the list, and bubble it up until there is an
element y such that the majority places y over x

§ Locally Kemeny optimal aggregation satisfies the
Condorcet and extended Condorcet criterion



Rank Aggregation algorithm [DKNS01]

§ Start with an aggregated ranking and
make it into a locally Kemeny optimal
aggregation
§ How do we select the initial aggregation?
§ Use another aggregation method
§ Create a Markov Chain where you move from

an object X, to another object Y that is ranked
higher by the majority



Spearman’s footrule distance

§ Spearman’s footrule distance: The
difference between the ranks R(i) and R’(i)
assigned to object i

§ Relation between Spearman’s footrule and
Kemeny distance

( ) ∑
=

−=
n

1i

(i)R'R(i)R'R,F

( ) ( ) ( )R'R,2KR'R,FR'R,K ≤≤



Spearman’s footrule aggregation

§ Find the ranking R, that minimizes

§ The optimal Spearman’s footrule aggregation
can be computed in polynomial time
§ It also gives a 2-approximation to the Kemeny

optimal aggregation

§ If the median ranks of the objects are unique
then this ordering is optimal

( ) ( )∑
=

=
m

1i
im1 RR,FR,,RR,F K



Example

D4

C3

B2

A1

R1

C4

D3

A2

B1

R2

D4

A3

C2

B1

R3

A: ( 1 , 2 , 3 )
B: ( 1 , 1 , 2 )
C: ( 3 , 3 , 4 )
D: ( 3 , 4 , 4 )

D4

C3

A2

B1

R



The MedRank algorithm

§ Access the rankings sequentially

D4

C3

B2

A1

R1

C4

D3

A2

B1

R2

D4

A3

C2

B1

R3

4

3

2

1

R



The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than

half of the rankings, output it in the
aggregated ranking

D4

C3

B2

A1

R1

C4

D3

A2

B1

R2

D4

A3

C2

B1

R3

4

3

2

B1

R



The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than

half of the rankings, output it in the
aggregated ranking

D4

C3

B2

A1

R1

C4

D3

A2

B1

R2

D4

A3

C2

B1

R3

4

3

A2

B1

R



The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than

half of the rankings, output it in the
aggregated ranking

D4

C3

B2

A1

R1

C4

D3

A2

B1

R2

D4

A3

C2

B1

R3

4

C3

A2

B1

R



The MedRank algorithm

§ Access the rankings sequentially
§ when an element has appeared in more than

half of the rankings, output it in the
aggregated ranking

D4

C3

B2

A1

R1

C4

D3

A2

B1

R2

D4

A3

C2

B1

R3

D4

C3

A2

B1

R



The Spearman’s rank correlation

§ Spearman’s rank correlation

§ Computing the optimal rank aggregation
with respect to Spearman’s rank
correlation is the same as computing
Borda Count
§ Computable in polynomial time

( ) ( )∑
=

−=
n

1i

2(i)R'R(i)R'R,S



Extensions and Applications

§ Rank distance measures between partial
orderings and top-k lists
§ Similarity search
§ Ranked Join Indices
§ Analysis of Link Analysis Ranking

algorithms
§ Connections with machine learning



References

§ A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms,
Theory and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1),
2005

§ Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar,  Erik Vee, Comparing
and aggregating rankings with ties , PODS 2004

§ M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking
Systems", Proceedings of IJCAI, 2005

§ Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for
middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended
abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems
(PODS '01), pp. 102-113.

§ Alex Tabbarok Lecture Notes
§ Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via

rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
§ Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for

the Web. 10th International World Wide Web Conference, May 2001.
§ C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10;

selected as Web Search Area highlight, 2001.


