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Why Link Analysis?

§ First generation search engines
§ view documents as flat text files
§ could not cope with size, spamming, user

needs
§ Second generation search engines
§ Ranking becomes critical
§ use of Web specific data: Link Analysis
§ shift from relevance to authoritativeness
§ a success story for the network analysis



Link Analysis: Intuition

§ A link from page p to page q denotes
endorsement
§ page p considers page q an authority on a

subject
§ mine the web graph of recommendations
§ assign an authority value to every page



Link Analysis Ranking Algorithms

§ Start with a collection
of web pages
§ Extract the underlying

hyperlink graph
§ Run the LAR

algorithm on the
graph
§ Output: an authority

weight for each node w w

w

w
w



Algorithm input

§ Query independent: rank the whole Web
§ PageRank (Brin and Page 98) was proposed

as query independent

§ Query dependent: rank a small subset of
pages related to a specific query
§ HITS (Kleinberg 98) was proposed as query

dependent



Query dependent input

Root Set



Query dependent input
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Query dependent input

Root Set
IN OUT
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Link Filtering

§ Navigational links: serve the purpose of moving
within a site (or to related sites)

• www.espn.com www.espn.com/nba
• www.yahoo.com www.yahoo.it
• www.espn.com www.msn.com

§ Filter out navigational links
§ same domain name

• www.yahoo.com vs yahoo.com

§ same IP address
§ other way?

http://www.espn.com
http://www.espn.com/nba
http://www.yahoo.com
http://www.yahoo.it
http://www.espn.com
http://www.msn.com
http://www.yahoo.com


Outline

§ previous work
§ …in the beginning…
§ some more algorithms
§ some experimental data
§ a theoretical framework



Previous work

§ The problem of identifying the most important
nodes in a network has been studied before in
social networks and bibliometrics
§ The idea is similar
§ A link from node p to node q denotes endorsement
§ mine the network at hand
§ assign an centrality/importance/standing value to

every node



Social network analysis

§ Evaluate the centrality of individuals in social
networks
§ degree centrality

• the (weighted) degree of a node

§ distance centrality
• the average (weighted) distance of a node to the rest in the

graph

§ betweenness centrality
• the average number of (weighted) shortest paths that use

node v
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Random walks on undirected graphs

§ In the stationary distribution of a random
walk on an undirected graph, the
probability of being at node i is
proportional to the (weighted) degree of
the vertex

§ Random walks on undirected graphs are
not “interesting”



Counting paths – Katz 53

§ The importance of a node is measured by the
weighted sum of paths that lead to this node
§ Am[i,j] = number of paths of length m from i to j
§ Compute

§ converges when b < 1(A)
§ Rank nodes according to the column sums of the

matrix P
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Bibliometrics

§ Impact factor (E. Garfield 72)
§ counts the number of citations received for

papers of the journal in the previous two
years

§ Pinsky-Narin 76
§ perform a random walk on the set of journals
§ Pij = the fraction of citations from journal i

that are directed to journal j
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InDegree algorithm

§ Rank pages according to in-degree
§ wi = |B(i)|

1. Red Page
2. Yellow Page
3. Blue Page
4. Purple Page
5. Green Page

w=1 w=1

w=2

w=3
w=2



PageRank algorithm [BP98]

§ Good authorities should be
pointed by good authorities

§ Random walk on the web graph
§ pick a page at random
§ with probability 1- jump to a

random page
§ with probability follow a random

outgoing link

§ Rank according to the
stationary distribution

§

1. Red Page
2. Purple Page
3. Yellow Page
4. Blue Page
5. Green Page
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Markov chains

§ A Markov chain describes a discrete time stochastic
process over a set of states

according to a transition probability matrix

§ Pij = probability of moving to state j when at state i
• jPij = 1 (stochastic matrix)

§ Memorylessness property: The next state of the chain
depends only at the current state and not on the past of
the process (first order MC)
§ higher order MCs are also possible

S = {s1, s2, … sn}

P = {Pij}



Random walks

§ Random walks on graphs correspond to
Markov Chains
§ The set of states S is the set of nodes of the

graph G
§ The transition probability matrix is the

probability that we follow an edge from one
node to another



An example
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State probability vector

§ The vector qt = (qt
1,qt

2, … ,qt
n) that stores

the probability of being at state i at time t
§ q0

i
= the probability of starting from state i

qt = qt-1 P



An example























=

0210021
00313131
00010
10000
0021210

P

v1
v2

v3

v4
v5

qt+1
1 = 1/3 qt

4 + 1/2 qt
5

qt+1
2 = 1/2 qt

1 + qt
3 + 1/3 qt

4

qt+1
3 = 1/2 qt

1 + 1/3 qt
4

qt+1
4 = 1/2 qt

5

qt+1
5 = qt

2



Stationary distribution

§ A stationary distribution for a MC with transition matrix
P, is a probability distribution , such that = P

§ A MC has a unique stationary distribution if
§ it is irreducible

• the underlying graph is strongly connected
§ it is aperiodic

• for random walks, the underlying graph is not bipartite
§ The probability i is the fraction of times that we visited

state i as t
§ The stationary distribution is an eigenvector of matrix P
§ the principal left eigenvector of P – stochastic matrices have

maximum eigenvalue 1



Computing the stationary distribution

§ The Power Method
§ Initialize to some distribution q0

§ Iteratively compute qt = qt-1P
§ After enough iterations qt

§ Power method because it computes qt = q0Pt

§ Why does it converge?
§ follows from the fact that any vector can be written

as a linear combination of the eigenvectors
• q0 = v1 + c2v2 +  … cnvn

§ Rate of convergence
§ determined by 2

t



The PageRank random walk

§ Vanilla random walk
§ make the adjacency matrix stochastic and run

a random walk
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The PageRank random walk

§ What about sink nodes?
§ what happens when the random walk moves

to a node without any outgoing inks?
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The PageRank random walk

§ Replace these row vectors with a vector v
§ typically, the uniform vector

P’ = P + dvT
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The PageRank random walk

§ How do we guarantee irreducibility?
§ add a random jump to vector v with prob

• typically, to a uniform vector

P’’ = P’ + (1- )uvT,  where u is the vector of all 1s



Effects of random jump

§ Guarantees irreducibility
§ Motivated by the concept of random surfer
§ Offers additional flexibility
§ personalization
§ anti-spam

§ Controls the rate of convergence
§ the second eigenvalue of matrix P’’ is



A PageRank algorithm

§ Performing vanilla power method is now
too expensive – the matrix is not sparse
q0 = v
t = 1
repeat

t = t +1
until < 
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xPy
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P = normalized adjacency matrix

P’’ = P’ + (1- )uvT,  where u is the vector of all 1s

P’ = P + dvT, where di is 1 if i is sink and 0 o.w.



Research on PageRank

§ Specialized PageRank
§ personalization [BP98]

• instead of picking a node uniformly at random favor specific nodes
that are related to the user

§ topic sensitive PageRank [H02]
• compute many PageRank vectors, one for each topic
• estimate relevance of query with each topic
• produce final PageRank as a weighted combination

§ Updating PageRank [Chien et al 2002]
§ Fast computation of PageRank
§ numerical analysis tricks
§ node aggregation techniques
§ dealing with the “Web frontier”



Hubs and Authorities [K98]

§ Authority is not
necessarily transferred
directly between
authorities
§ Pages have double

identity
§ hub identity
§ authority identity

§ Good hubs point to good
authorities
§ Good authorities are

pointed by good hubs hubs authorities



HITS Algorithm

§ Initialize all weights to 1.
§ Repeat until convergence
§ O operation : hubs collect the weight of the authorities

§ I operation: authorities collect the weight of the hubs

§ Normalize weights under some norm
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HITS and eigenvectors

§ The HITS algorithm is a power-method
eigenvector computation
§ in vector terms at = ATht-1 and ht = Aat-1

§ so a = ATAat-1 and ht = AATht-1

§ The authority weight vector a is the eigenvector of
ATA and the hub weight vector h is the eigenvector of
AAT

§ Why do we need normalization?

§ The vectors a and h are singular vectors of the
matrix A



Singular Value Decomposition

§ r : rank of matrix A

§ 1 2 … r : singular values (square roots of eig-vals AAT, ATA)

§ : left singular vectors (eig-vectors of AAT)

§ : right singular vectors (eig-vectors of ATA)

§
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38

Singular Value Decomposition

§ Linear trend v in matrix A:
§ the tendency of the row

vectors of A to align with
vector v

§ strength of the linear
trend: Av

§ SVD discovers the linear
trends in the data

§ ui , vi : the i-th strongest
linear trends

§ i : the strength of the i-th
strongest linear trend

1

2
v1

v2

§ HITS discovers the strongest linear trend in the
authority space



HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect



HITS and the TKC effect

§ The HITS algorithm favors the most dense
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect
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HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect

32n

32n

32n

3n 2n

3n 2n

3n 2n

after n iterationsweight of node p is
proportional to the number
of (BF)n paths that leave
node p



HITS and the TKC effect

§ The HITS algorithm favors the most dense
community of hubs and authorities
§ Tightly Knit Community (TKC) effect

1
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0

0

0

after normalization
with the max
element as n



Outline

§ previous work
§ …in the beginning…
§ some more algorithms
§ some experimental data
§ a theoretical framework



Combining link and text analysis [BH98]

§ Problems with HITS
§ multiple links from or to a single host

• view them as one node and normalize the weight
of edges to sum to 1

§ topic drift: many unrelated pages
• prune pages that are not related to the topic
• weight the edges of the graph according the

relevance of the source and destination

§ Other approaches?



The SALSA algorithm [LM00]

§ Perform a random walk
alternating between hubs and
authorities

hubs authorities



The SALSA algorithm [LM00]

§ Start from an authority chosen
uniformly at random
§ e.g. the red authority

hubs authorities



The SALSA algorithm [LM00]

§ Start from an authority chosen
uniformly at random
§ e.g. the red authority

§ Choose one of the in-coming links
uniformly at random and move to a
hub
§ e.g. move to the yellow authority with

probability 1/3

hubs authorities



The SALSA algorithm [LM00]

§ Start from an authority chosen
uniformly at random
§ e.g. the red authority

§ Choose one of the in-coming links
uniformly at random and move to a
hub
§ e.g. move to the yellow authority with

probability 1/3

§ Choose one of the out-going links
uniformly at random and move to an
authority
§ e.g. move to the blue authority with

probability 1/2

hubs authorities



The SALSA algorithm [LM00]

§ In matrix terms
§ Ac = the matrix A where columns are

normalized to sum to 1
§ Ar = the matrix A where rows are

normalized to sum to 1
§ p = the probability state vector

§ The first step computes
§ y = Ac p

§ The second step computes
§ p = Ar

T y = Ar
T Ac p

§ In MC terms the transition matrix
§ P  = Ar Ac

T

hubs authorities

p1 = y1 + 1/2 y2 + 1/3 y3

y2 = 1/3 p1 + 1/2 p2



The SALSA algorithm [LM00]

§ The SALSA performs a random walk on the
authority (right) part of the bipartite graph
§ There is a transition between two authorities if there is

a BF path between them

hubs authorities
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The SALSA algorithm [LM00]

§ Stationary distribution of SALSA
§ authority weight of node i =

fraction of authorities in the hub-authority community of i
×

fraction of links in the community that point to node i

§ Reduces to InDegree for single community graphs

hubs authorities

w =  1/5  × 1

w = 4/5 × 3/8



The BFS algorithm [BRRT01]

§ Rank a node according to
the reachability of the
node
§ Create the neighborhood

by alternating between
Back and Forward steps
§ Apply exponentially

decreasing weight as you
move further away

hubs authorities

w =



The BFS algorithm [BRRT01]

§ Rank a node according to
the reachability of the
node
§ Create the neighborhood

by alternating between
Back and Forward steps
§ Apply exponentially

decreasing weight as you
move further away

hubs authorities

w = 3*1



The BFS algorithm [BRRT01]

§ Rank a node according to
the reachability of the
node
§ Create the neighborhood

by alternating between
Back and Forward steps
§ Apply exponentially

decreasing weight as you
move further away

hubs authorities

w = 3+(1/2)*0



The BFS algorithm [BRRT01]

§ Rank a node according to
the reachability of the
node
§ Create the neighborhood

by alternating between
Back and Forward steps
§ Apply exponentially

decreasing weight as you
move further away

hubs authorities

w = 3 +(1/4)*1



Implicit properties of the HITS
algorithm

§ Symmetry
§ both hub and authority weights are defined in

the same way (through the sum operator)
§ reversing the links, swaps values

§ Equality
§ the sum operator assumes that all weights are

equally important



A bad example

§ The red authority seems
better than the blue
authorities.
§ quantity becomes quality

§ Is the hub quality the same as
the authority quality?
§ asymmetric definitions
§ preferential treatment

0

1

1

1

1



Authority Threshold AT(k) algorithm

§ Small authority weights should not contribute to
the computation of the hub weights

§ Repeat until convergence
§ O operation : hubs collect the k highest authority

weights

§ I operation: authorities collect the weight of hubs

§ Normalize weights under some norm
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Norm(p) algorithm

§ Small authority weights should contribute less to
the computation of the hub weights

§ Repeat until convergence
§ O operation : hubs compute the p-norm of the

authority weight vector

§ I operation: authorities collect the weight of hubs

§ Normalize weights under some norm
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The MAX algorithm

§ A hub is as good as the best authority it points to

§ Repeat until convergence
§ O operation : hubs collect the highest authority weight

§ I operation: authorities collect the weight of hubs

§ Normalize weights under some norm

§ Special case of AT(k) (for k=1) and Norm(p) (p= )
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Dynamical Systems

§ Discrete Dynamical System: The repeated application of
a function g on a set of weights

§ LAR algorithms: the function g propagates the weight on
the graph G

§ Linear vs Non-Linear dynamical systems
§ eigenvector analysis algorithms (PageRank, HITS) are linear

dynamical systems
§ AT(k), Norm(p) and MAX are non-linear

Initialize weights to w0

For t=1,2,…
wt=g(wt-1)



Non-Linear dynamical systems

§ Notoriously hard to analyze not well
understood
§ we cannot easily prove convergence
§ we do not know much about stationary

weights
§ Convergence is important for an LAR

algorithm to be well defined.

§ The MAX algorithm converges for any
initial configuration



The stationary weights of MAX

§ The node with the highest in-degree (seed
node) receives maximum weight
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The stationary weights of MAX

§ The node with the highest in-degree (seed
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The stationary weights of MAX

§ The node with the highest in-degree (seed
node) receives maximum weight
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The stationary weights of MAX

§ The node with the highest in-degree (seed
node) receives maximum weight

1

2/3

2/3

1/3

1/3

after normalization
with the max weight



The stationary weights of MAX

§ The node with the highest in-degree (seed
node) receives maximum weight

1

2/3

2/3

1/3

1/3

The hubs are mapped
to the seed node

before normalization w=3
after normalization with
the max weight w=1

normalization factor = 3



The stationary weights of MAX

§ The weights of the non-seed nodes depend on
their relation with the seed node

1

2/3 w = 2w/3 = 2/3

weight of blue node



The stationary weights of MAX

§ The weights of the non-seed nodes depend on
their relation with the seed node

1 weight of yellow node
w = (1+ w)/3

2/3

w = 1/21/2



The stationary weights of MAX

§ The weights of the non-seed nodes depend on
their relation with the seed node

1 weight of green node
w = w/3

2/3

w = 1/6

1/2

1/6



The stationary weights of MAX

§ The weights of the non-seed nodes depend on
their relation with the seed node

1 weight of purple node

2/3

w = 0

1/2

1/6

0
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Some experimental results

§ 34 different queries
§ user relevance feedback
§ high relevant/relevant/non-relevant

§ measures of interest
§ “high relevance ratio”
§ “relevance ratio”

§ Data (and code?) available at
http://www.cs.toronto.edu/~tsap/experiments/journal (or /thesis)

http://www.cs.toronto.edu/~tsap/experiments/journal(or
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HITS and the TKC effect

“recipes”

§ 1. (1.000) HonoluluAdvertiser.com
URL: http://www.hawaiisclassifieds.com

§ 2. (0.999) Gannett Company, Inc.
URL: http://www.gannett.com

§ 3. (0.998) AP MoneyWire
URL: http://apmoneywire.mm.ap.org

§ 4. (0.990) e.thePeople : Honolulu Advertiser
URL: http://www.e-thepeople.com/

§ 5. (0.989) News From The Associated Press
URL: http://customwire.ap.org/

§ 6. (0.987) Honolulu Traffic
URL: http://www.co.honolulu.hi.us/

§ 7. (0.987) News From The Associated Press
URL: http://customwire.ap.org/

§ 8. (0.987) News From The Associated Press
URL: http://customwire.ap.org/

§ 9. (0.987) News From The Associated Press
URL: http://customwire.ap.org/

10. (0.987) News From The Associated Press
URL: http://customwire.ap.org/

http://www.hawaiisclassifieds.com
http://www.gannett.com
http://apmoneywire.mm.ap.org
http://www.e-thepeople.com/
http://customwire.ap.org/
http://www.co.honolulu.hi.us/
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MAX – “net censorship”

§ 1. (1.000) EFF: Homepage
URL: http://www.eff.org

§ 2. (0.541) Internet Free Expression Alliance
URL: http://www.ifea.net

§ 3. (0.517) The Center for Democracy and Technology
URL: http://www.cdt.org

§ 4. (0.517) American Civil Liberties Union
URL: http://www.aclu.org

§ 5. (0.386) Vtw Directory Page
URL: http://www.vtw.org

§ 6. (0.357) P E A C E F I R E
URL: http://www.peacefire.org

§ 7. (0.277) Global Internet Liberty Campaign Home Page
URL: http://www.gilc.org

§ 8. (0.254) libertus.net: about censorship and free speech
URL: http://libertus.net

§ 9. (0.196) EFF Blue Ribbon Campaign Home Page
URL: http://www.eff.org/blueribbon.html

§ 10. (0.144) The Freedom Forum
URL: http://www.freedomforum.org

http://www.eff.org
http://www.ifea.net
http://www.cdt.org
http://www.aclu.org
http://www.vtw.org
http://www.peacefire.org
http://www.gilc.org
http://libertus.net
http://www.eff.org/blueribbon.html
http://www.freedomforum.org


MAX – “affirmative action”

§ 1. (1.000) Copyright Information
URL: http://www.psu.edu/copyright.html

§ 2. (0.447) PSU Affirmative Action
URL: http://www.psu.edu/dept/aaoffice

§ 3. (0.314) Welcome to Penn State's Home on the Web
URL: http://www.psu.edu

§ 4. (0.010) University of Illinois
URL: http://www.uiuc.edu

§ 5. (0.009) Purdue University-West Lafayette, Indiana
URL: http://www.purdue.edu

§ 6. (0.008) UC Berkeley home page
URL: http://www.berkeley.edu

§ 7. (0.008) University of Michigan
URL: http://www.umich.edu

§ 8. (0.008) The University of Arizona
URL: http://www.arizona.edu

§ 9. (0.008) The University of Iowa Homepage
URL: http://www.uiowa.edu

§ 10. (0.008) Penn: University of Pennsylvania
URL: http://www.upenn.edu

http://www.psu.edu/copyright.html
http://www.psu.edu/dept/aaoffice
http://www.psu.edu
http://www.uiuc.edu
http://www.purdue.edu
http://www.berkeley.edu
http://www.umich.edu
http://www.arizona.edu
http://www.uiowa.edu
http://www.upenn.edu


PageRank

§ 1. (1.000) WCLA Feedback
URL: http://www.janeylee.com/wcla

§ 2. (0.911) Planned Parenthood Action Network
URL: http://www.ppaction.org/ppaction/

§ 3. (0.837) Westchester Coalition for Legal Abortion
URL: http://www.wcla.org

§ 4. (0.714) Planned Parenthood Federation
URL: http://www.plannedparenthood.org

§ 5. (0.633) GeneTree.com Page Not Found
URL: http://www.qksrv.net/click

§ 6. (0.630) Bible.com Prayer Room
URL: http://www.bibleprayerroom.com

§ 7. (0.609) United States Department of Health
URL: http://www.dhhs.gov

8. (0.538) Pregnancy Centers Online
URL: http://www.pregnancycenters.org

§ 9. (0.517) Bible.com Online World
URL: http://bible.com

§ 10. (0.516) National Organization for Women
URL: http://www.now.org

link-spam structure

http://www.janeylee.com/wcla
http://www.ppaction.org/ppaction/
http://www.wcla.org
http://www.plannedparenthood.org
http://www.qksrv.net/click
http://www.bibleprayerroom.com
http://www.dhhs.gov
http://www.pregnancycenters.org
http://bible.com
http://www.now.org


Outline

§ …in the beginning…
§ previous work
§ some more algorithms
§ some experimental data
§ a theoretical framework



Theoretical Analysis of LAR
algorithms [BRRT05]

§ Why bother?
§ Plethora of LAR algorithms: we need a formal

way to compare and analyze them
§ Need to define properties that are useful

• sensitivity to spam

§ Need to discover the properties that
characterize each LAR algorithm



A Theoretical Framework

§ A Link Analysis Ranking Algorithm is a
function that maps a graph to a real
vector

A:Gn Rn

§ Gn : class of graphs of size n
§ LAR vector the output A(G) of an

algorithm A on a graph G
§ Gn : the class of all possible graphs of size

n



Comparing LAR vectors

§ How close are the LAR vectors w1, w2?

w1 = [  1   0.8  0.5  0.3   0  ]

w2 = [ 0.9   1   0.7  0.6  0.8 ]



Distance between LAR vectors

§ Geometric distance: how close are the
numerical weights of vectors w1, w2?

( ) ∑ −= [i]w[i]ww,wd 21211

w1 = [ 1.0  0.8   0.5  0.3  0.0 ]

w2 = [ 0.9  1.0   0.7  0.6  0.8 ]

d1(w1,w2) =   0.1+0.2+0.2+0.3+0.8 = 1.6



Distance between LAR vectors

§ Rank distance: how close are the ordinal
rankings induced by the vectors w1, w2?
§ Kendal’s distance

( )
pairsdistinctofnumbertotal
orderdifferentainrankedpairs

w,wd 21r =



Rank distance

w1 = [  1   0.8  0.5  0.3   0  ]

w2 = [ 0.9   1   0.7  0.6  0.8 ]

( ) 0.3
4/2*5
3

w,wd 21r ==

Ordinal Ranking
of vector w1

Ordinal Ranking
of vector w2



Rank distance of partial rankings

w1 = [  1   0.8  0.5  0.3   0  ]

w2 = [ 0.9   1   0.7  0.7 0.3 ]

Ordinal Ranking
of vector w1

Ordinal Ranking
of vector w2

what do we do with such pairs?



Rank distance of partial rankings

§ Charge penalty p for each pair (i,j) of
nodes such that w1[i] w1[j] and w2[i] =
w2[j]

Ordinal Ranking
of vector w1

Ordinal Ranking
of vector w2

( )
10

p1
w,wd 21r

+
=



Rank distance of partial rankings

§ Extreme value p = 1
§ charge for every potential conflict

§ Extreme value p = 0
§ charge only for inconsistencies
§ problem: not a metric

§ Intermediate values 0 < p < 1
§ Details [FMNKS04] [T04]
§ Interesting case p = 1/2

§ We will use whatever gives a stronger result



Stability: graph distance

§ Intuition: a small change on a graph should cause
a small change on the output of the algorithm.
§ Definition: Link distance between graphs G=(P,E)

and G’=(P,E’)
( ) |E'E||E'E|G'G,d ∩−∪=l

G G’
( ) 2G'G,d =l



Stability

§ Ck(G) : set of graphs G’ such that d (G,G’) k

§ Definition: Algorithm A is stable if

§ Definition: Algorithm A is rank stable if

0))A(G'(A(G),dmaxmaxlim 1(G)CG'Gn k

=
∈∞→

( ) 0)A(G'A(G),dmaxmaxlim r(G)CG'Gn k

=
∈∞→



Stability: Results

§ InDegree algorithm is stable and rank
stable on the class Gn

§ HITS, Max are neither stable nor rank
stable on the class Gn



Instability of HITS

2

1

n n-1

n n+1

2

111 =a 02 =a

01 =a 12 =a

Eigengap 1 - 2 = 1

G

G’



Stability of HITS

§ HITS is stable if 1 2 [NZJ01]
§ The two strongest linear trends are well

separated

§ What about the converse?



Instability of PageRank

§ PageRank is unstable

§ PageRank is rank unstable [Lempel Moran
2003]

O(n)



Stability of PageRank

§ Perturbations to unimportant nodes have
small effect on the PageRank values
[NZJ01][BGS03]

( ) ( )( ) ( )[ ]iGA
1

2
G'A,GAd

Pi
1 ∑

∈−
≤



Stability of PageRank

§ Lee Borodin model [LB03]
§ upper bounds depend on authority and hub

values
§ PageRank, Randomized SALSA are stable
§ HITS, SALSA are unstable

§ Open question: Can we derive conditions
for the stability of PageRank in the general
case?



Similarity

§ Definition: Two algorithms A1, A2 are similar if

§ Definition: Two algorithms A1, A2 are rank similar if

§ Definition: Two algorithms A1, A2 are rank equivalent if

( ) 0(G)A(G),Admaxlim 21rGGn n

=
∈∞→

( )
( ) 0

w,wdmax

(G)A(G),Admax
lim

211w,w

211GG

n

21

n =∈

∞→

( ) 0(G)A(G),Admax 21rGG n

=
∈



Similarity: Results

§ No pairwise combination of InDegree,
SALSA, HITS and MAX algorithms is
similar, or rank similar on the class of all
possible graphs Gn



Product Graphs

§ Latent authority and hub vectors
§ hi = probability of node i being a good hub
§ aj = probability of node j being a good authority

§ Generate a link i j with probability hiaj

§ Azar, Fiat, Karlin, McSherry Saia 2001, Michail, Papadimitriou
2002,Chung, Lu, Vu 2002

§ The class of product graphs Gn
p

[ ]




−
=

ji

ji

ah1yprobabilitwith0
ahyprobabilitwith1

ji,W

h,a
rr



Similarity on Product Graphs

§ Theorem: HITS and InDegree are similar
with high probability on the class of
product graphs, Gn

p (subject to some
assumptions)
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