
Models and Algorithms for
Complex Networks

Searching the Web

Why Web Search?

§ Search is the main motivation for the development of the
Web
§ people post information because they want it to be found
§ people are conditioned to searching for information on the Web

(“Google it”)
§ The main tool is text search

• directories cover less than 0.05% of the Web
• 13% of traffic is generated by search engines

§ Great motivation for academic and research work
§ Information Retrieval and data mining of massive data
§ Graph theory and mathematical models
§ Security and privacy issues

Top Online Activities

Feb 25, 2003: >600M queries per day

Outline

§ Web Search overview
§ from traditional IR to Web search engines

§ The anatomy of a search engine
§ Crawling, Duplicate elimination, indexing

… not so long ago

§ Information Retrieval as a scientific
discipline has been around for the last 40-
50 years
§ Mostly dealt with the problem of

developing tools for librarians for finding
relevant papers in scientific collections

Classical Information Retrieval

Search Engine

Info Need

Query

Corpus

Results

Query
Refinement

Goal: Return the documents
that best satisfy the
user’s information need

find information about
finnish train schedule

“finland train schedule”

Classical Information Retrieval

§ Implicit Assumptions
§ fixed and well structured corpus of

manageable size
§ trained cooperative users
§ controlled environment

Classic IR Goal

§ Classic Relevance
§ For each query Q and document D assume

that there exists a relevance score S(D,Q)
• score average over all users U and contexts C

§ Rank documents according to S(D,Q) as
opposed to S(D,Q,U,C)
• Context ignored
• Individual users ignored

IR Concepts

§ Models
§ Boolean model: retrieve all documents that contain the query

terms
• rank documents according to some term-weighting scheme

§ Term-vector model: docs and queries are vectors in the term
space

• rank documents according to the cosine similarity
§ Term weights

• tf × idf : (tf = term frequency, idf = log of inverse document
frequency – promote rare terms)

§ Measures
§ Precision: percentage of relevant documents over the returned

documents
§ Recall: percentage of relevant documents over all existing

relevant documents

IR Concepts - Boolean Model

§ Boolean model: Data is
represented as a 0/1
matrix

§ Query: a boolean
expression
§ the ∧ world ∧ war
§ the ∧ (world∨civil) ∧war

§ Return all the results that
match the query
§ docs D1 and D2

§ How are the documents
ranked?

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

1001D3

1111D2

1111D1

warworldcivilthe

IR Concepts - Term weighting

§ Assess the
importance wij of
term i in a document j
§ tfij = term frequency
§ frequency of term i in

document j

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

1001D3

1111D2

1111D1

warworldcivilthe

IR Concepts – Term weighting

§ Assess the
importance wij of
term i in a document j
§ tfij = term frequency
§ frequency of term i in

document j

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

5000150D3

405020200D2

25520100D1

warworldcivilthe

IR Concepts – Term weighting

§ Assess the
importance wij of
term i in a document j
§ tfij = term frequency
§ frequency of term i in

document j
§ normalized by max

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

0.33001D3

0.200.250.101D2

0.250.050.201D1

warworldcivilthe

IR Concepts – Term weighting

§ Assess the
importance wij of
term i in a document j
§ tfij = term frequency
§ not all words are

interesting
§ dfi = document

frequency of term i

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

0.33001D3

0.200.250.101D2

0.250.050.201D1

warworldcivilthe

10.660.661df

IR Concepts – Term weighting

§ Assess the
importance wij of
term i in a document j
§ tfij = term frequency
§ not all words are

interesting
§ dfi = document

frequency of term i
§ idfi = inverse

document frequency
• idfi = log (1/dfi)

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

0.33001D3

0.200.250.101D2

0.250.050.201D1

warworldcivilthe

00.170.170idf

IR Concepts – Term weighting

§ Assess the
importance wij of
term i in a document j
§ tfij = term frequency
§ idfi = inverse

document frequency
§ wij = tfij × idfi

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

0000D3

00.0420.0170D2

00.0080.0340D1

warworldcivilthe

IR Concepts – Term weighting

§ Assess the
importance wij of
term i in a document j
§ tfij = term frequency
§ idfi = inverse

document frequency
§ wij = tfij × idfi
§ Query: “the civil war”
§ document D1 is more

important

… … … … …
…the civil war
… world … …

… … … … …
the world war
… … civil …

… … … … …
… the war …
… …. …. ….

D1 D2 D3

0000D3

00.0420.0170D2

00.0080.0340D1

warworldcivilthe

IR Concepts – Vector model

§ Documents are vectors in
the term space (weighted
by wij), normalized on the
unit sphere

§ Query: “the civil war”
§ Q is a mini document -

vector

§ Similarity of Q and D is
the cosine of the angle
between Q and D
§ returns a set of ranked

results

0000D3

00.920.370D2

00.220.970D1

warworldcivilthe

0110Q

D1

D2

Q

IR Concepts – Measures

§ There are A relevant documents to the query in our
dataset.

§ Our algorithm returns D documents.
§ How good is it?

§ Precision: Fraction of returned documents that are
relevant

§ Recall: Fraction of all relevant documents that are
returned

A
AD

R
∩

=

D
AD

P
∩

=

Web Search

Search Engine

Need

Query

Corpus

Results

Query
Refinement

Goal: Return the results
that best satisfy the
user’s need

find information about
finnish train schedule

“finland train”

The need behind the query

§ Informational – learn about something (~40%)
§ “colors of greek flag”, “haplotype definition”

§ Navigational – locate something (~25%)
§ “microsoft”, “Jon Kleinberg”

§ Transactional – do something (~35%)
§ Access a service

• “train to Turku”
§ Download

• “earth at night”

§ Shop
• “Nicon Coolpix”

Web users

§ They ask a lot but they offer little in return
§ Make ill-defined queries

• short (2.5 avg terms, 80% <3 terms – AV, 2001)
• imprecise terms
• poor syntax
• low effort

§ Unpredictable
• wide variance in needs/expectations/expertise

§ Impatient
• 85% look one screen only (mostly “above the fold”)
• 78% queries not modified (one query per session)

§ …but they know how to spot correct information
§ follow “the scent of information”…

Web corpus

§ Immense amount of information
§ 2005, Google: 8 Billion pages, Yahoo! : 20(!) Billion
§ fast growth rate (double every 8-12 months)
§ Huge Lexicon: 10s-100s millions of words

§ Highly diverse content
§ many different authors, languages, encodings
§ different media (text, images, video)
§ highly un-structured content

§ Static + Dynamic (“the hidden Web”)
§ Volatile
§ crawling challenge

Rate of change [CGM00]

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

 1day 1day-
1week

1week-
1month

1month-
4months

4months

0

0,1

0,2

0,3

0,4

0,5

0,6

 1day 1day-
1week

1week-
1month

1month-
4months

4months

com
netorg
edu
gov

average rate of change

average rate of change
per domain

Rate of Change [FMNW03]

Rate of change per domain.
Change between two successive
downloads

Rate of change as a function
of document length

Other corpus characteristics

§ Links, graph topology, anchor text
§ this is now part of the corpus!

§ Significant amount of duplication
§ ~30% (near) duplicates [FMN03]

§ Spam!
§ 100s of million of pages
§ Add-URL robots

Query Results

§ Static documents
§ text, images, audio, video,etc

§ Dynamic documents (“the invisible Web”)
§ dynamic generated documents, mostly

database accesses

§ Extracts of documents, combinations of
multiple sources
§ www.googlism.com

http://www.googlism.com

Googlism

Googlism for: tsaparas

tsaparas is president and ceo of prophecy
entertainment inc
tsaparas is the only person who went to the
college of the holy cross
tsaparas is to be buried in thessaloniki this
morning following his death late on thursday
night at the age of 87

Googlism for: athens

athens is the home of the parthenon
athens is the capital of greece and the
country's economic

athens is 'racing against time'
athens is a hometown guy

The evolution of Search Engines

§ First Generation – text data only
§ word frequencies, tf × idf

§ Second Generation – text and web data
§ Link analysis
§ Click stream analysis
§ Anchor Text

§ Third Generation – the need behind the query
§ Semantic analysis: what is it about?
§ Integration of multiple sources
§ Context sensitive

• personalization, geographical context, browsing context

1995-1997: AltaVista
Lycos, Excite

1998 - now : Google
leads the way

Still experimental

First generation Web search

§ Classical IR techniques
§ Boolean model
§ ranking using tf × idf relevance scores

§ good for informational queries
§ quality degraded as the web grew
§ sensitive to spamming

Second generation Web search

§ Boolean model
§ Ranking using web specific data
§ HTML tag information
§ click stream information (DirectHit)

• people vote with their clicks

§ directory information (Yahoo! directory)
§ anchor text
§ link analysis

Link Analysis Ranking

§ Intuition: a link from q to p denotes
endorsement
§ people vote with their links

§ Popularity count
§ rank according to the incoming links

§ PageRank algorithm
§ perform a random walk on the Web graph. The pages

visited most often are the ones most important.

()
n
1

1
F(q)

PR(q)
PR(p)

pq

−+= ∑
→

Second generation SE performance

§ Good performance for answering
navigational queries
§ “finding needle in a haystack”

§ … and informational queries
§ e.g “oscar winners”

§ Resistant to text spamming
§ Generated substantial amount of research
§ Latest trend: specialized search engines

Result evaluation

§ recall becomes useless
§ precision measured over top-10/20 results
§ Shift of interest from “relevance” to

“authoritativeness/reputation”
§ ranking becomes critical

Second generation spamming

§ Online tutorials for “search engine
persuasion techniques”
§ “How to boost your PageRank”

§ Artificial links and Web communities
§ Latest trend: “Google bombing”
§ a community of people create (genuine) links

with a specific anchor text towards a specific
page. Usually to make a political point

Google Bombing

Google Bombing

§ Try also the following
§ “weapons of mass destruction”
§ “french victories”

§ Do Google bombs capture an actual trend?
§ How sensitive is Google to such bombs?

Spamming evolution

§ Spammers evolve together with the search
engines. The two seem to be intertwined.

Adversarial Information Retrieval

Third generation Search Engines: an
example

The need behind the query

Third generation Search Engines:
another example

Third generation Search Engines:
another example

Integration of Search and Mail?

Integration of Search Engines and
Social Networks

Integration of Search Engines and
Social Networks

Personalization

§ Use information from multiple sources
about the user to offer a personalized
search experience
§ bookmarks
§ mail
§ toolbar
§ social network

More services

§ Google/Yahoo maps
§ Google Earth
§ Mobile Phone Services
§ Google Desktop

§ The search engines war: Google, Yahoo, MSN
§ a very dynamic time for search engines

§ Search Engine Economics: How do the search engines
produce income?
§ advertising (targeted advertising)
§ privacy issues?

The future of Web Search?

EPIC

Outline

§§ Web Search overviewWeb Search overview
§§ from traditional IR to Web search enginesfrom traditional IR to Web search engines

§ The anatomy of a search engine
§ Crawling, Duplicate elimination, Indexing

The anatomy of a Search Engine

crawling
indexing query

processing

Crawling

§ Essential component of a search engine
§ affects search engine quality

§ Performance
§ 1995: single machine – 1M URLs/day
§ 2001: distributed – 250M URLs/day

§ Where do you start the crawl from?
§ directories
§ registration data
§ HTTP logs
§ etc…

Algorithmic issues

§ Politeness
§ do not hit a server too often (robots.txt)

§ Freshness
§ how often to refresh and which pages?

§ Crawling order
§ in which order to download the URLs

§ Coordination between distributed crawlers
§ Avoiding spam traps
§ Duplicate elimination
§ Research: focused crawlers

Poor man’s crawler

§ A home-made small-scale crawler

1 2 3
start with a queue of
URLs to be processed

Poor man’s crawler

§ A home-made small-scale crawler

1

2 3

fetch the first page
to be processed

Poor man’s crawler

§ A home-made small-scale crawler

1

2 3

extract the links,
check if they are
known URLs2

4

5

Poor man’s crawler

§ A home-made small-scale crawler

2 3

store to adjacency list
add new URLs to queue

4 5

1: 2 4 5

index textual content

adj list

Mercator Crawler [NH01]

§ Not much different from what we
described

Mercator Crawler [NH01]

the next page to be crawled is obtained from the URL frontier

Mercator Crawler [NH01]

the page is fetched using the appropriate protocol

Mercator Crawler [NH01]

Rewind Input Stream: an IO abstraction

Mercator Crawler [NH01]

check if the content of the page has been seen before
(duplicate, or near duplicate elimination)

Mercator Crawler [NH01]

process the page (e.g. extract links)

Mercator Crawler [NH01]

check if the links should be filtered out (e.g. spam)
or if they are already in the URL set

Mercator Crawler [NH01]

if not visited, add to the URL frontier, prioritized
(in the case of continuous crawling, you may add
also the source page, back to the URL frontier)

Distributed Crawling

§ Each process is
responsible for a
partition of URLs

§ The Host Splitter
assigns the URLs to
the correct process

§ Most links are local
so traffic is small

§ UbiCrawler: Use of
consistent hashing
to achieve load
balancing and fault
tolerance.

Crawling order

§ Best pages first
§ possible quality measures

• in-degree
• PageRank

§ possible orderings
• Breadth First Search (FIFO)
• in-degree (so far)
• PageRank (so far)
• random

Crawling order [CGP98]

% of
“hot”
pages

“hot” page = high in-degree

percentage of pages crawled

“hot page = high PageRank

Crawling order [NW01]

BFS brings pages of high
PageRank early in the crawl.

Duplication

§ Approximately 30% of the Web pages are
duplicates or near duplicates
§ Sources of duplication
§ Legitimate: mirrors, aliases, updates
§ Malicious: spamming, crawler traps
§ Crawler mistakes

§ Costs:
§ wasted resources
§ unhappy users

Observations

§ Eliminate both duplicates and near
duplicates
§ Computing pairwise edit distance is too

expensive
§ Solution
§ reduce the problem to set intersection
§ sample documents to produce small sketches
§ estimate the intersection using the sketches

Shingling

§ Shingle: a sequence of w contiguous
words
a rose is a rose is a rose
a rose is a

rose is a rose
is a rose is

a rose is a
rose is a rose

D Shingling Shingles
set S of
64-bit

integers

Rabin’s
fingerprints

Rabin’s fingerprinting technique

§ Comparing two strings of size n

§ if a=b then f(a)=f(b)
if f(a)=f(b) then a=b with high probability

a = 10110
b = 11010

a=b?
O(n) too expensive!

f(a)=f(b)?
01234 2021212021 ∗+∗+∗+∗+∗=A
01234 2021202121 ∗+∗+∗+∗+∗=B

f(a)= A mod p
f(b)= B mod p

p = small random prime
size O(logn loglogn)

Defining Resemblance

D1 D2

S1 S2

21

21

SS
SS

reseblance
∪
∩

= Jaccard coefficient

Sampling from a set

§ Assume that S ⊂ U
§ e.g. U = {a,b,c,d,e,f}, S={a,b,c}

§ Pick uniformly at random a permutation of the
universe U
§ e.g =‹d,f,b,e,a,c›

§ Represent S with the element that has the
smallest image under
§ e.g. =‹d,f,b,e,a,c› b = -min(S)

§ Each element in S has equal probability of being
-min(S)

Estimating resemblance

§ Apply a permutation to the universe of all
possible fingerprints U=[1…264]
§ Let = -min(S1) and = -min(S2)

() ?Pr ==

Estimating resemblance

§ Apply a permutation to the universe of all
possible fingerprints U=[1…264]
§ Let = -min(S1) and = -min(S2)

§ Proof:
§ The elements in S1∪S2 are mapped by the same permutation .
§ The two sets have the same -min value if -min(S1∪S2)

belongs to S1∩S2

()
21

21

SS
SS

Pr
∪
∩

==

Example

Universe U = {a,b,c,d,e,f}

S1 = {a,b,c} S2 = {b,c,d}

S1U S2 = {a,b,c,d}

S1 S2 = {b,c}

(U) = ‹e,*,*,f,*,*›
-min(S1) = -min(S2) if * is from {b,c}

The element in * can be any of the {a,b,c,d}

We do not care where the
elements e and f are placed
in the permutation

() ()() { }
{ } 21

21
21 SS

SS
dc,b,a,

cb,
SminSminPr

∪
∩

==−=−

Filtering duplicates

§ Sample k permutations of the universe
U=[1…264]
§ Represent fingerprint set S as

S’={ 1-min(S), 2-min(S),… k-min(S)}
§ For two sets S1 and S2 estimate their

resemblance as the number of elements
S1’ and S2’ have in common
§ Discard as duplicates the ones with

estimated similarity above some
threshold r

min-wise independent permutations

§ Problem: There is no practical way to
sample from the universe U=[1…264]
§ Solution: Sample from the (smaller) set of

min-wise independent permutations
[BCFM98]

§ min-wise independent permutation
for every set X

for every element x of X
x has equal probability of being the
minimum element of X under

Other applications

§ This technique has also been applied to
other data mining applications
§ for example find words that appear often

together in documents

0111d5

0001d4

1010d3

1101d2

1101d1

w4w3w2w1 w1 = {d1,d2,d4,d5}
w2 = {d3,d5}
w3 = {d1,d2,d3,d5}
w4 = {d1,d2,d3}

Other applications

§ This technique has also been applied to
other data mining applications
§ for example find words that appear often

together in documents

0111d5

0001d4

1010d3

1101d2

1101d1

w4w3w2w1 w1 = {d1,d2,d4,d5}
w2 = {d3,d5}
w3 = {d1,d2,d3,d5}
w4 = {d1,d2,d3}

‹d2,d5,d4,d1,d3›
‹d3,d1,d5,d2,d4›

w1 = {d1,d2}
w2 = {d3,d5}
w3 = {d1,d2}
w4 = {d2,d3}

The indexing module

§ Inverted Index
§ for every word store the doc ID in which it appears

§ Forward Index
§ for every document store the word ID of each word in the doc.

§ Lexicon
§ a hash table with all the words

§ Link Structure
§ store the graph structure so that you can retrieve in nodes, out

nodes, “sibling” nodes

§ Utility Index
§ stores useful information about pages (e.g. PageRank values)

Google’s Indexing module (circa 98)

§ For a word w appearing in document D,
create a hit entry
§ plain hit: [cap | font | position]
§ fancy hit: [cap | 111 | type | pos]
§ anchor hit: [cap | 111 | type | docID | pos]

Forward Index

§ For each document store the list of words
that appear in the document, and for each
word the list of hits in the document

docID

docID

wordID

wordID

wordID

wordID

NULL

NULL

nhits

nhits

nhits

nhits

hit

hit

hit

hit hit

hit hit

hit

hit hit

hit hit hit hit hit

docIDs are replicated in
different barrels that store
specific range of wordIDs
This allows to delta-encode
the wordIDs and save space

Inverted Index

§ For each word, the lexicon entry points to
a list of document entries in which the
word appears

wordID

wordID

wordID

ndocs

ndocs

ndocs

docID nhits hit hit hit hit

docID nhits hit hit hit

docID nhits hit hit hit hit hit

docID nhits hit hit hit

docID nhits hit hit hit hitLexicon

document order?
sorted by docID

sorted by rank
+

Query Processing

§ Convert query terms into wordIDs
§ Scan the docID lists to find the common

documents.
§ phrase queries are handled using the pos field

§ Rank the documents, return top-k
§ PageRank
§ hits of each type × type weight
§ proximity of terms

Disclaimer

No, this talk is not sponsored by Google

Acknowledgements

§ Many thanks to Andrei Broder for many of
the slides

References

§ Ricardo Baeza-Yates, Berthier Ribeirio-Neto, Modern Information Retrieval, Adison-Wesley, 1999
§ [NH01] Marc Najork, Allan Heydon High Performance Web Crawling, SRC Research Report, 2001
§ A. Broder, On the resemblance and containment of documents
§ [BP98] S. Brin, L. Page, The anatomy of a large scale search engine, WWW 1998
§ [FMNW03] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet Wiener. A Large-Scale Study

of the Evolution of Web Pages. 12th International World Wide Web Conference (May 2003),
pages 669-678

§ [NW01] Marc Najork and Janet L. Wiener. Breadth-First Search Crawling Yields High-Quality
Pages. 10th International World Wide Web Conference (May 2001), pages 114-118.

§ Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, Sriram Raghavan "Searching
the Web." ACM Transactions on Internet Technology, 1(1): August 2001.

§ [CGP98] Junghoo Cho, Hector Garcia-Molina, Lawrence Page "Efficient Crawling Through URL
Ordering." In Proceedings of the 7th World Wide Web conference (WWW7), Brisbane, Australia,
April 1998.

§ [CGM00] Junghoo Cho, Hector Garcia-Molina "The Evolution of the Web and Implications for an
incremental Crawler." In Proceedings of 26th International Conference on Very Large Databases
(VLDB), September 2000.

§ [BCSV04] P. Boldi, B. Codenotti, M. Santini, S. Vigna, UbiCrawler: a scalable fully distributed Web
crawler, Software Practice and Experience, Volume 34(8), pp 711-726

