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LECTURE 7 
Hierarchical Clustering, DBSCAN 

The EM Algorithm 



CLUSTERING 



What is a Clustering? 

• In general a grouping of objects such that the objects in a 

group (cluster) are similar (or related) to one another and 

different from (or unrelated to) the objects in other groups 

Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 



Clustering Algorithms 

• K-means and its variants 
 

• Hierarchical clustering 

 

• DBSCAN 

 

 



HIERARCHICAL 

CLUSTERING 



Hierarchical Clustering 

• Two main types of hierarchical clustering 
• Agglomerative:   

•  Start with the points as individual clusters 

•  At each step, merge the closest pair of clusters until only one cluster (or 
k clusters) left 

 

• Divisive:   

•  Start with one, all-inclusive cluster  

•  At each step, split a cluster until each cluster contains a point (or there 
are k clusters) 

 

• Traditional hierarchical algorithms use a similarity or 
distance matrix 
• Merge or split one cluster at a time 

 



Hierarchical Clustering  

• Produces a set of nested clusters organized as a 

hierarchical tree 

• Can be visualized as a dendrogram 

• A tree like diagram that records the sequences of 

merges or splits 
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Strengths of Hierarchical Clustering 

• Do not have to assume any particular number of 
clusters 
• Any desired number of clusters can be obtained by 

‘cutting’ the dendogram at the proper level 

 

• They may correspond to meaningful taxonomies 
• Example in biological sciences (e.g., animal kingdom, 

phylogeny reconstruction, …) 



Agglomerative Clustering Algorithm 

• More popular hierarchical clustering technique 
 

• Basic algorithm is straightforward 
1. Compute the proximity matrix 

2. Let each data point be a cluster 

3. Repeat 

4.  Merge the two closest clusters 

5.  Update the proximity matrix 

6. Until only a single cluster remains 
  

• Key operation is the computation of the proximity 
of two clusters 

• Different approaches to defining the distance between 
clusters distinguish the different algorithms 



Starting Situation  

• Start with clusters of individual points and a 

proximity matrix 
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Intermediate Situation 

• After some merging steps, we have some clusters  
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Intermediate Situation 

• We want to merge the two closest clusters (C2 and C5)  and 

update the proximity matrix.  
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After Merging 

• The question is “How do we update the proximity matrix?”  
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How to Define Inter-Cluster Similarity 
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How to Define Inter-Cluster Similarity 
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Single Link – Complete Link 

• Another way to view the processing of the 

hierarchical algorithm is that we create links 

between their elements in order of increasing 

distance 

• The MIN – Single Link, will merge two clusters when a 

single pair of elements is linked 

• The MAX – Complete Linkage will merge two clusters 

when all pairs of elements have been linked. 



Hierarchical Clustering: MIN 

Nested Clusters Dendrogram 
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Strength of MIN 

Original Points Two Clusters 

• Can handle non-elliptical shapes 



Limitations of MIN 

Original Points Two Clusters 

• Sensitive to noise and outliers 



Hierarchical Clustering: MAX 

Nested Clusters Dendrogram 
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Strength of MAX 

Original Points Two Clusters 

• Less susceptible to noise and outliers 



Limitations of MAX 

Original Points Two Clusters 

•Tends to break large clusters 

•Biased towards globular clusters 



Cluster Similarity: Group Average 

• Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters. 

 

 

 

• Need to use average connectivity for scalability since total 

proximity favors large clusters 
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Hierarchical Clustering: Group Average 

Nested Clusters Dendrogram 
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Hierarchical Clustering: Group Average 

• Compromise between Single and 

Complete Link 

 

• Strengths 

• Less susceptible to noise and outliers 

 

• Limitations 

• Biased towards globular clusters 



Cluster Similarity: Ward’s Method 

• Similarity of two clusters is based on the increase 
in squared error (SSE) when two clusters are 
merged 
• Similar to group average if distance between points is 

distance squared 
 

• Less susceptible to noise and outliers 
 

• Biased towards globular clusters 
 

• Hierarchical analogue of K-means 
• Can be used to initialize K-means 



Hierarchical Clustering: Comparison 
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Hierarchical Clustering:   

Time and Space requirements 

• O(N2) space since it uses the proximity matrix.   

• N is the number of points. 

 

• O(N3) time in many cases 

• There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched 

• Complexity can be reduced to O(N2 log(N) ) time for 

some approaches 

 

 

 



Hierarchical Clustering:   

Problems and Limitations 
• Computational complexity in time and space 

 

• Once a decision is made to combine two clusters, it 
cannot be undone 

 

• No objective function is directly minimized 
 

• Different schemes have problems with one or more of 
the following: 
• Sensitivity to noise and outliers 

• Difficulty handling different sized clusters and convex shapes 

• Breaking large clusters 



DBSCAN 



DBSCAN: Density-Based Clustering 

• DBSCAN is a Density-Based Clustering algorithm 

 

• Reminder: In density based clustering we partition points 
into dense regions separated by not-so-dense regions. 

 

• Important Questions: 
• How do we measure density? 

• What is a dense region? 

 

• DBSCAN: 
• Density at point p: number of points within a circle of radius Eps 

• Dense Region: A circle of radius Eps that contains at least MinPts 
points 



DBSCAN 

• Characterization of points 
• A point is a core point if it has more than a specified 

number of points (MinPts) within Eps 
• These points belong in a dense region and are at the interior of 

a cluster 

 

• A border point has fewer than MinPts within Eps, but 
is in the neighborhood of a core point. 

 

• A noise point is any point that is not a core point or a 
border point.  

 



DBSCAN: Core, Border, and Noise Points 



DBSCAN: Core, Border and Noise Points 

Original Points 
Point types: core, 

border and noise 

Eps = 10, MinPts = 4 



Density-Connected points 

• Density edge 

• We place an edge between two core 

points q and p if they are within 

distance Eps. 

• Density-connected 

• A point p is density-connected to a 

point q if there is a path of edges 

from p to q 
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DBSCAN Algorithm 

• Label points as core, border and noise 

• Eliminate noise points 

• For every core point p that has not been assigned 

to a cluster 

• Create a new cluster with the point p and all the 

points that are density-connected to p. 

• Assign border points to the cluster of  the closest 

core point. 



DBSCAN: Determining Eps and MinPts 

• Idea is that for points in a cluster, their kth nearest neighbors 
are at roughly the same distance 

• Noise points have the kth nearest neighbor at farther distance 

• So, plot sorted distance of every point to its kth nearest 
neighbor 

• Find the distance d where there is a “knee” in the curve 
• Eps = d, MinPts = k 

 

Eps ~ 7-10 

MinPts = 4 



When DBSCAN Works Well 

Original Points 
Clusters 

• Resistant to Noise 

• Can handle clusters of different shapes and sizes 



When DBSCAN Does NOT Work Well 

Original Points 

(MinPts=4, Eps=9.75).  

 (MinPts=4, Eps=9.92) 

• Varying densities 

• High-dimensional data 



DBSCAN: Sensitive to Parameters 



Other algorithms 

• PAM, CLARANS: Solutions for the k-medoids 
problem 

• BIRCH: Constructs a hierarchical tree that acts a 
summary of the data, and then clusters the leaves. 

• MST: Clustering using the Minimum Spanning Tree. 

• ROCK: clustering categorical data by neighbor and 
link analysis 

• LIMBO, COOLCAT: Clustering categorical data using 
information theoretic tools. 

• CURE: Hierarchical algorithm uses different 
representation of the cluster 

• CHAMELEON: Hierarchical algorithm uses closeness 
and interconnectivity for merging 

 



MIXTURE MODELS AND 

THE EM ALGORITHM 



Model-based clustering 

• In order to understand our data, we will assume that there 
is a generative process (a model) that creates/describes 
the data, and we will try to find the model that best fits the 
data. 
• Models of different complexity can be defined, but we will assume 

that our model is a distribution from which data points are sampled 

• Example: the data is the height of all people in Greece 

 

• In most cases, a single distribution is not good enough to 
describe all data points: different parts of the data follow a 
different distribution 
• Example: the data is the height of all people in Greece and China 

• We need a mixture model 

• Different distributions correspond to different clusters in the data. 



Gaussian Distribution 

• Example: the data is the height of all people in 

Greece 

• Experience has shown that this data follows a Gaussian 

(Normal) distribution 

• Reminder: Normal distribution: 

 

 

 

• 𝜇 = mean, 𝜎 = standard deviation 
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Gaussian Model 

• What is a model? 

• A Gaussian distribution is fully defined by the mean 

𝜇 and the standard deviation 𝜎 

• We define our model as the pair of parameters 

𝜃 =  (𝜇, 𝜎) 

 

• This is a general principle: a model is defined as 

a vector of parameters 𝜃  



Fitting the model 

• We want to find the normal distribution that best 

fits our data 

• Find the best values for 𝜇 and 𝜎 

• But what does best fit mean? 

 



Maximum Likelihood Estimation (MLE) 

• Suppose that we have a vector 𝑋 = (𝑥1, … , 𝑥𝑛) of values 

• And we want to fit a Gaussian 𝑁(𝜇, 𝜎) model to the data 

• Probability of observing point 𝑥𝑖: 

 

 

• Probability of observing all points (assume independence) 

 

 

 

• We want to find the parameters 𝜃 =  (𝜇, 𝜎) that maximize 
the probability 𝑃(𝑋|𝜃) 
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Maximum Likelihood Estimation (MLE) 

• The probability 𝑃(𝑋|𝜃) as a function of 𝜃 is called the 
Likelihood function 

 

 

• It is usually easier to work with the Log-Likelihood 
function 

 

 

• Maximum Likelihood Estimation 
• Find parameters 𝜇, 𝜎 that maximize 𝐿𝐿(𝜃) 
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MLE 

• Note: these are also the most likely parameters 

given the data 

 

𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃 𝑃(𝜃) 

𝑃(𝑋)
 

 

• If we have no prior information about 𝜃, or X, then 

maximizing 𝑃 𝑋 𝜃  is the same as maximizing 

𝑃 𝜃 𝑋  





Mixture of Gaussians 

• Suppose that you have the heights of people from 

Greece and China and the distribution looks like 

the figure below (dramatization) 



Mixture of Gaussians 

• In this case the data is the result of the mixture of 

two Gaussians  

• One for Greek people, and one for Chinese people 

• Identifying for each value which Gaussian is most likely 

to have generated it will give us a clustering. 



Mixture model 

• A value 𝑥𝑖 is generated according to the following 

process: 

• First select the nationality 

• With probability 𝜋𝐺 select Greek, with probability 𝜋𝐶 select China 

(𝜋𝐺  + 𝜋𝐶  =  1) 

 

• Given the nationality, generate the point from the 

corresponding Gaussian 

• 𝑃 𝑥𝑖 𝜃𝐺  ~ 𝑁 𝜇𝐺 , 𝜎𝐺  if Greece 

• 𝑃 𝑥𝑖 𝜃𝐺  ~ 𝑁 𝜇𝐺 , 𝜎𝐺  if China 

 

We can also thing of this as a Hidden Variable Z 



• Our model has the following parameters 

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜇𝐶 , 𝜎𝐺 , 𝜎𝐶) 

 

 

• For value 𝑥𝑖, we have: 

𝑃 𝑥𝑖|Θ = 𝜋𝐺𝑃 𝑥𝑖 𝜃𝐺 + 𝜋𝐶𝑃(𝑥𝑖|𝜃𝐶) 

• For all values 𝑋 =  𝑥1, … , 𝑥𝑛  

𝑃 𝑋|Θ =   𝑃(𝑥𝑖|Θ)

𝑛
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• We want to estimate the parameters that maximize 
the Likelihood of the data 

Mixture Model 

Mixture probabilities Distribution Parameters 



Mixture Models 

• Once we have the parameters 

Θ = (𝜋𝐺 , 𝜋𝐶 , 𝜇𝐺 , 𝜇𝐶 , 𝜎𝐺 , 𝜎𝐶) we can estimate the 

membership probabilities 𝑃 𝐺 𝑥𝑖  and 𝑃 𝐶 𝑥𝑖  for 

each point 𝑥𝑖:  

• This is the probability that point 𝑥𝑖 belongs to the Greek 

or the Chinese population (cluster) 

 

𝑃 𝐺 𝑥𝑖 = 
𝑃 𝑥𝑖 𝐺 𝑃(𝐺)

𝑃 𝑥𝑖 𝐺 𝑃 𝐺 + 𝑃 𝑥𝑖 𝐶 𝑃(𝐶)
  

=
𝑃 𝑥𝑖 𝐺 𝜋𝐺

𝑃 𝑥𝑖 𝐺 𝜋𝐺 + 𝑃 𝑥𝑖 𝐶 𝜋𝐶
 

 



EM (Expectation Maximization) Algorithm 

• Initialize the values of the parameters in Θ to some 
random values 

• Repeat until convergence 
• E-Step: Given the parameters Θ estimate the membership 

probabilities 𝑃 𝐺 𝑥𝑖  and 𝑃 𝐶 𝑥𝑖   

• M-Step: Compute the parameter values that (in expectation) 
maximize the data likelihood 
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MLE Estimates 

if 𝜋’s were fixed 

Fraction of 

population in G,C 



Relationship to K-means 

• E-Step: Assignment of points to clusters  

• K-means: hard assignment, EM: soft assignment 

• M-Step: Computation of centroids 

• K-means assumes common fixed variance (spherical 

clusters) 

• EM: can change the variance for different clusters or 

different dimensions (elipsoid clusters) 

• If the variance is fixed then both minimize the 

same error function 








