
DATA MINING

LECTURE 3
Frequent Itemsets

Association Rules

This is how it all started…

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami:
Mining Association Rules between Sets of Items in
Large Databases. SIGMOD Conference 1993: 207-
216

• Rakesh Agrawal, Ramakrishnan Srikant: Fast
Algorithms for Mining Association Rules in Large
Databases. VLDB 1994: 487-499

• These two papers are credited with the birth of Data
Mining

• For a long time people were fascinated with
Association Rules and Frequent Itemsets
• Some people (in industry and academia) still are.

http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod93.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html

3

Market-Basket Data

• A large set of items, e.g., things sold in a

supermarket.

• A large set of baskets, each of which is a small

set of the items, e.g., the things one customer

buys on one day.

4

Market-Baskets – (2)

• Really, a general many-to-many mapping

(association) between two kinds of things, where

the one (the baskets) is a set of the other (the

items)

• But we ask about connections among “items,” not

“baskets.”

• The technology focuses on common events, not

rare events (“long tail”).

• Given a set of transactions, find combinations of items
(itemsets) that occur frequently

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Examples of frequent itemsets 𝑠 𝐼 ≥ 3

{Bread}: 4

{Milk} : 4

{Diaper} : 4

{Beer}: 3

{Diaper, Beer} : 3

{Milk, Bread} : 3

Frequent Itemsets

Support 𝑠 𝐼 : number of

transactions that contain

itemset I
Items: {Bread, Milk, Diaper, Beer, Eggs, Coke}

6

Applications – (1)

• Items = products; baskets = sets of products

someone bought in one trip to the store.

• Example application: given that many people buy

beer and diapers together:

• Run a sale on diapers; raise price of beer.

• Only useful if many buy diapers & beer.

7

Applications – (2)

• Baskets = Web pages; items = words.

• Example application: Unusual words appearing

together in a large number of documents, e.g.,

“Brad” and “Angelina,” may indicate an interesting

relationship.

8

Applications – (3)

• Baskets = sentences; items = documents

containing those sentences.

• Example application: Items that appear together

too often could represent plagiarism.

• Notice items do not have to be “in” baskets.

Definition: Frequent Itemset

• Itemset

• A collection of one or more items

• Example: {Milk, Bread, Diaper}

• k-itemset

• An itemset that contains k items

• Support ()

• Count: Frequency of occurrence of an

itemset

• E.g. ({Milk, Bread,Diaper}) = 2

• Fraction: Fraction of transactions that

contain an itemset

• E.g. s({Milk, Bread, Diaper}) = 40%

• Frequent Itemset

• An itemset whose support is greater

than or equal to a minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

 𝑠 𝐼 ≥ minsup

Mining Frequent Itemsets task

• Input: A set of transactions T, over a set of items I

• Output: All itemsets with items in I having
• support ≥ minsup threshold

• Problem parameters:
• N = |T|: number of transactions

• d = |I|: number of (distinct) items

• w: max width of a transaction

• Number of possible itemsets?

• Scale of the problem:
• WalMart sells 100,000 items and can store billions of baskets.

• The Web has billions of words and many billions of pages.

M = 2d

The itemset lattice

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are

2d possible itemsets

A Naïve Algorithm

• Brute-force approach, each itemset is a candidate :
• Consider each itemset in the lattice, and count the support of each candidate by

scanning the data

• Time Complexity ~ O(NMw) , Space Complexity ~ O(M)

• OR
• Scan the data, and for each transaction generate all possible itemsets. Keep a count

for each itemset in the data.

• Time Complexity ~ O(N2w) , Space Complexity ~ O(M)

• Expensive since M = 2d !!!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

13

Computation Model

• Typically, data is kept in flat files rather than in a

database system.

• Stored on disk.

• Stored basket-by-basket.

• Expand baskets into pairs, triples, etc. as you read

baskets.

• Use k nested loops to generate all sets of size k.

Example file: retail
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32

33 34 35

36 37 38 39 40 41 42 43 44 45 46

38 39 47 48

38 39 48 49 50 51 52 53 54 55 56 57 58

32 41 59 60 61 62

3 39 48

63 64 65 66 67 68

32 69

48 70 71 72

39 73 74 75 76 77 78 79

36 38 39 41 48 79 80 81

82 83 84

41 85 86 87 88

39 48 89 90 91 92 93 94 95 96 97 98 99 100 101

36 38 39 48 89

39 41 102 103 104 105 106 107 108

38 39 41 109 110

39 111 112 113 114 115 116 117 118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

48 134 135 136

39 48 137 138 139 140 141 142 143 144 145 146 147 148 149

39 150 151 152

38 39 56 153 154 155

Example: items are

positive integers,

and each basket

corresponds to a line in the

file of space separated

integers

15

Computation Model – (2)

• The true cost of mining disk-resident data is

usually the number of disk I/O’s.

• In practice, association-rule algorithms read the

data in passes – all baskets read in turn.

• Thus, we measure the cost by the number of

passes an algorithm takes.

16

Main-Memory Bottleneck

• For many frequent-itemset algorithms, main

memory is the critical resource.

• As we read baskets, we need to count something, e.g.,

occurrences of pairs.

• The number of different things we can count is limited

by main memory.

• Swapping counts in/out is a disaster (why?).

The Apriori Principle

• Apriori principle (Main observation):

– If an itemset is frequent, then all of its subsets must also
be frequent

– If an itemset is not frequent, then all of its supersets
cannot be frequent

– The support of an itemset never exceeds the support of
its subsets

– This is known as the anti-monotone property of support

)()()(:, YsXsYXYX 

Illustration of the Apriori principle

Found to be frequent

Frequent

subsets

Illustration of the Apriori principle

Found to be

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned

Infrequent supersets

R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.

The Apriori algorithm

Level-wise approach
Ck = candidate itemsets of size k

Lk = frequent itemsets of size k

Candidate

generation

Frequent

itemset

generation

1. k = 1, C1 = all items

2. While Ck not empty

3. Scan the database to find which itemsets in

Ck are frequent and put them into Lk

4. Use Lk to generate a collection of candidate

itemsets Ck+1 of size k+1

5. k = k+1

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count

{Bread,Milk,Diaper} 2

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)

minsup = 3

If every subset is considered,
6
1

 +
6
2

 +
6
3

 = 6 + 15 + 20 = 41

With support-based pruning,

6
1

 +
4
2

 + 1 = 6 + 6 + 1 = 13

Illustration of the Apriori principle

Only this triplet has all subsets to be frequent

But it is below the minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Candidate Generation

• Basic principle (Apriori):

• An itemset of size k+1 is candidate to be frequent only if

all of its subsets of size k are known to be frequent

• Main idea:

• Construct a candidate of size k+1 by combining

frequent itemsets of size k

• If k = 1, take the all pairs of frequent items

• If k > 1, join pairs of itemsets that differ by just one item

• For each generated candidate itemset ensure that all subsets of

size k are frequent.

• Assumption: The items in an itemset are ordered

• E.g., if integers ordered in increasing order, if strings ordered in

lexicographic order

• The order ensures that if item y > x appears before x, then x is not in the

itemset

• The items in Lk are also listed in an order

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining

two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5

• Assumption: The items in an itemset are ordered

• E.g., if integers ordered in increasing order, if strings ordered in

lexicographic order

• The order ensures that if item y > x appears before x, then x is not in the

itemset

• The items in Lk are also listed in an order

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining

two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5

1 2 3 5

• Assumption: The items in an itemset are ordered

• E.g., if integers ordered in increasing order, if strings ordered in

lexicographic order

• The order ensures that if item y > x appears before x, then x is not in the

itemset

• The items in Lk are also listed in an order

Generate Candidates Ck+1

Create a candidate itemset of size k+1, by joining

two itemsets of size k, that share the first k-1 items

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5
1 2 4 5

Are we missing something?

What about this candidate?

Generating Candidates Ck+1 in SQL

• self-join Lk ‏

insert into Ck+1

select p.item1, p.item2, …, p.itemk, q.itemk

from Lk p, Lk q

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk

• L3={abc, abd, acd, ace, bcd}

• Self-join: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

Example I

{a,b,c} {a,b,d}

{a,b,c,d}

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

{a,c,d} {a,c,e}

{a,c,d,e}

Example I

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

item1 item2 item3

a b c

a b d

a c d

a c e

b c d

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3

Example II

 Itemset Count

{Beer,Diaper} 3
{Bread,Diaper} 3
{Bread,Milk} 3
{Diaper, Milk} 3

Itemset Count

{Beer,Diaper} 3
{Bread,Diaper} 3
{Bread,Milk} 3
{Diaper, Milk} 3

Itemset

{Bread,Diaper,Milk}

{Bread,Diaper}

{Bread,Milk}

{Diaper, Milk}







Generate Candidates Ck+1

• Are we done? Are all the candidates valid?

• Pruning step:
• For each candidate (k+1)-itemset create all subset k-itemsets

• Remove a candidate if it contains a subset k-itemset that is
not frequent

Item 1 Item 2 Item 3

1 2 3

1 2 5

1 4 5

1 2 3 5

Is this a valid candidate?

No. Subsets (1,3,5) and (2,3,5) should also be frequent

Apriori principle

• L3={abc, abd, acd, ace, bcd}

• Self-joining: L3*L3

– abcd from abc and abd

– acde from acd and ace

• Pruning:

– abcd is kept since all subset itemsets are

in L3

– acde is removed because ade is not in L3

• C4={abcd}

{a,c,d} {a,c,e}

{a,c,d,e}

acd ace ade cde
  X

Example I
{a,b,c} {a,b,d}

{a,b,c,d}

abc abd acd bcd

   

• We have all frequent k-itemsets Lk

• Step 1: self-join Lk

• Create set Ck+1 by joining frequent k-itemsets that

share the first k-1 items

• Step 2: prune

• Remove from Ck+1 the itemsets that contain a subset

k-itemset that is not frequent

Generate Candidates Ck+1

Computing Frequent Itemsets

• Given the set of candidate itemsets Ck, we need to compute

the support and find the frequent itemsets Lk.

• Scan the data, and use a hash structure to keep a counter

for each candidate itemset that appears in the data

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

Ck

A simple hash structure

• Create a dictionary (hash table) that stores the

candidate itemsets as keys, and the number of

appearances as the value.

• Increment the counter for each itemset that you

see in the

Example

Suppose you have 15 candidate

itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8},

{1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

Hash table stores the counts of the

candidate itemsets as they have been

computed so far

Key Value

{3 6 7} 0

{3 4 5} 1

{1 3 6} 3

{1 4 5} 5

{2 3 4} 2

{1 5 9} 1

{3 6 8} 0

{4 5 7} 2

{6 8 9} 0

{5 6 7} 3

{1 2 4} 8

{3 5 7} 1

{1 2 5} 0

{3 5 6} 1

{4 5 8} 0

Subset Generation

1 2 3 5 6

Transaction, t

2 3 5 61 3 5 62

5 61 33 5 61 2 61 5 5 62 3 62 5

5 63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what

are the possible subsets of

size 3?

Recursion!

Example

Tuple {1,2,3,5,6} generates the

following itemsets of length 3:

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},

Increment the counters for the itemsets

in the dictionary

Key Value

{3 6 7} 0

{3 4 5} 1

{1 3 6} 3

{1 4 5} 5

{2 3 4} 2

{1 5 9} 1

{3 6 8} 0

{4 5 7} 2

{6 8 9} 0

{5 6 7} 3

{1 2 4} 8

{3 5 7} 1

{1 2 5} 0

{3 5 6} 1

{4 5 8} 0

Example

Tuple {1,2,3,5,6} generates the

following itemsets of length 3:

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},

Increment the counters for the itemsets

in the dictionary

Key Value

{3 6 7} 0

{3 4 5} 1

{1 3 6} 4

{1 4 5} 5

{2 3 4} 2

{1 5 9} 1

{3 6 8} 0

{4 5 7} 2

{6 8 9} 0

{5 6 7} 3

{1 2 4} 8

{3 5 7} 1

{1 2 5} 1

{3 5 6} 2

{4 5 8} 0

The Hash Tree Structure

2 3 4

5 6 7

1 4 5
1 3 6

1 2 4

4 5 7 1 2 5

4 5 8

1 5 9

3 4 5 3 5 6

3 5 7

6 8 9

3 6 7

3 6 8

1,4,7

2,5,8

3,6,9
Hash function = x mod 3

Suppose you have the same 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4},

{5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

• Hash function

• Leafs: Store the itemsets

At the i-th level we hash on the i-th item

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

1 + 2 3 5 6
3 5 6 2 +

5 6 3 +

1,4,7

2,5,8

3,6,9

Hash Function transaction

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1,4,7

2,5,8

3,6,9

Hash Function
1 2 3 5 6

3 5 6 1 2 +

5 6 1 3 +

6 1 5 +

3 5 6 2 +

5 6 3 +

1 + 2 3 5 6

transaction

Match transaction against 9 out of 15 candidates

Hash-tree enables to enumerate itemsets in transaction

and match them against candidates

Increment the counters

C1 L1 C2 L2 C3
Filter Filter Construct Construct

First

pass

Second

pass

All

items

All pairs

of items

from L1

 Count

the pairs

 Count

the items

Frequent

items

Frequent

pairs

46

A-Priori for All Frequent Itemsets

• One pass for each k.

• Needs room in main memory to count each

candidate k -set.

• For typical market-basket data and reasonable

support (e.g., 1%), k = 2 requires the most

memory.

47

Picture of A-Priori

Item counts

Pass 1 Pass 2

Frequent items

Counts of

 pairs of

 frequent

 items

48

Details of Main-Memory Counting

• Two approaches:

1. Count all pairs, using a “triangular matrix” = one

dimensional array that stores the lower diagonal.

2. Keep a table of triples [i, j, c] = “the count of the

pair of items {i, j } is c.”

• (1) requires only 4 bytes/pair.

• Note: always assume integers are 4 bytes.

• (2) requires 12 bytes, but only for those pairs

with count > 0.

49

4 per pair

Method (1) Method (2)

12 per

occurring pair

50

Triangular-Matrix Approach – (1)

• Number items 1, 2,…

• Requires table of size O(n) to convert item names to

consecutive integers.

• Count {i, j } only if i < j.

• Keep pairs in the order {1,2}, {1,3},…, {1,n },

{2,3}, {2,4},…,{2,n }, {3,4},…, {3,n },…{n -1,n }.

51

Triangular-Matrix Approach – (2)

• Find pair {i, j } at the position

 (i –1)(n –i /2) + j – i.

• Total number of pairs n (n –1)/2; total bytes

about 2n 2.

52

Details of Approach #2

• Total bytes used is about 12p, where p is the

number of pairs that actually occur.

• Beats triangular matrix if at most 1/3 of possible pairs

actually occur.

• May require extra space for retrieval structure, e.g.,

a hash table.

53

Detail for A-Priori

• You can use the triangular matrix method with

n = number of frequent items.

• May save space compared with storing triples.

• Trick: number frequent items 1,2,… and keep

a table relating new numbers to original item

numbers.

54

A-Priori Using Triangular Matrix for Counts

Item counts

Pass 1 Pass 2

1. Freq- Old

 2. quent item

… items #’s

Counts of

 pairs of

 frequent

 items

Factors Affecting Complexity

• Choice of minimum support threshold
• lowering support threshold results in more frequent itemsets

• this may increase number of candidates and max length of frequent
itemsets

• Dimensionality (number of items) of the data set
• more space is needed to store support count of each item

• if number of frequent items also increases, both computation and I/O
costs may also increase

• Size of database
• since Apriori makes multiple passes, run time of algorithm may

increase with number of transactions

• Average transaction width
• transaction width increases with denser data sets

• This may increase max length of frequent itemsets and traversals of
hash tree (number of subsets in a transaction increases with its width)

ASSOCIATION RULES

Association Rule Mining

• Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper}  {Beer},

{Milk, Bread}  {Eggs,Coke},

{Beer, Bread}  {Milk},

Implication means co-occurrence,

not causality!

Definition: Association Rule

Example:

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

 Association Rule

– An implication expression of the form

X  Y, where X and Y are itemsets

– Example:

 {Milk, Diaper}  {Beer}

 Rule Evaluation Metrics

– Support (s)

 Fraction of transactions that contain

both X and Y

 the probability P(X,Y) that X and Y

occur together

– Confidence (c)

 Measures how often items in Y

appear in transactions that

contain X

 the conditional probability P(X|Y) that X

occurs given that Y has occurred.

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Association Rule Mining Task

• Input: A set of transactions T, over a set of items I

• Output: All rules with items in I having

• support ≥ minsup threshold

• confidence ≥ minconf threshold

Mining Association Rules

• Two-step approach:

1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup

2. Rule Generation

– Generate high confidence rules from each frequent itemset,

where each rule is a partitioning of a frequent itemset into

Left-Hand-Side (LHS) and Right-Hand-Side (RHS)

 Frequent itemset: {A,B,C,D}

Rule: ABCD

Rule Generation

• We have all frequent itemsets, how do we get the

rules?

• For every frequent itemset S, we find rules of the form

L  S – L , where L  S, that satisfy the minimum confidence

requirement

• Example: L = {A,B,C,D}

• Candidate rules:

 A BCD, B ACD, C ABD, D ABC

AB CD, AC  BD, AD  BC, BD AC, CD AB,

 ABC D, BCD A, BC AD,

• If |L| = k, then there are 2k – 2 candidate association

rules (ignoring L   and   L)

Rule Generation

• How to efficiently generate rules from frequent
itemsets?
• In general, confidence does not have an anti-monotone

property
 c(ABC D) can be larger or smaller than c(AB D)

• But confidence of rules generated from the same
itemset has an anti-monotone property

• e.g., L = {A,B,C,D}:

 c(ABC  D)  c(AB  CD)  c(A  BCD)

• Confidence is anti-monotone w.r.t. number of items on the RHS
of the rule

Rule Generation for Apriori Algorithm
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules created by the RHS

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned

Rules

Low

Confidence

Rule

Rule Generation for APriori Algorithm

• Candidate rule is generated by merging two rules that
share the same prefix
in the RHS

• join(CDAB,BDAC)
would produce the candidate
rule D  ABC

• Prune rule D  ABC if its
subset ADBC does not have
high confidence

• Essentially we are doing APriori on the RHS

BD->ACCD->AB

D->ABC

