
DATA MINING 

LECTURE 3 
Frequent Itemsets 

Association Rules 



This is how it all started… 

• Rakesh Agrawal, Tomasz Imielinski, Arun N. Swami: 
Mining Association Rules between Sets of Items in 
Large Databases. SIGMOD Conference 1993: 207-
216 

• Rakesh Agrawal, Ramakrishnan Srikant: Fast 
Algorithms for Mining Association Rules in Large 
Databases. VLDB 1994: 487-499 

 

• These two papers are credited with the birth of Data 
Mining 

• For a long time people were fascinated with 
Association Rules and Frequent Itemsets 
• Some people (in industry and academia) still are. 

http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod93.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/vldb94.html
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Market-Basket Data 

• A large set of items, e.g., things sold in a 

supermarket. 

• A large set of baskets, each of which is a small 

set of the items, e.g., the things one customer 

buys on one day. 
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Market-Baskets – (2) 

• Really, a general many-to-many mapping 

(association) between two kinds of things, where 

the one (the baskets) is a set of the other (the 

items)  

• But we ask about connections among “items,” not 

“baskets.” 

• The technology focuses on common events, not 

rare events (“long tail”). 



• Given a set of transactions, find combinations of items 
(itemsets) that occur frequently 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Examples of frequent itemsets 𝑠 𝐼  ≥ 3 

{Bread}: 4 

{Milk} : 4 

{Diaper} : 4 

{Beer}: 3 

{Diaper, Beer} : 3 

{Milk, Bread} : 3 

Frequent Itemsets 

Support 𝑠 𝐼 :  number of 

transactions that contain 

itemset I 
Items: {Bread, Milk, Diaper, Beer, Eggs, Coke} 
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Applications – (1) 

• Items = products; baskets = sets of products 

someone bought in one trip to the store. 

 

• Example application: given that many people buy 

beer and diapers together: 

• Run a sale on diapers; raise price of beer. 

• Only useful if many buy diapers & beer. 
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Applications – (2) 

• Baskets = Web pages; items = words. 

 

• Example application: Unusual words appearing 

together in a large number of documents, e.g., 

“Brad” and “Angelina,” may indicate an interesting 

relationship. 
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Applications – (3) 

• Baskets = sentences; items = documents 

containing those sentences. 

 

• Example application: Items that appear together 

too often could represent plagiarism. 

• Notice items do not have to be “in” baskets. 



Definition: Frequent Itemset 

• Itemset 

• A collection of one or more items 

• Example: {Milk, Bread, Diaper} 

• k-itemset 

• An itemset that contains k items 

• Support () 

• Count: Frequency of occurrence of an 

itemset 

• E.g.   ({Milk, Bread,Diaper}) = 2  

• Fraction: Fraction of transactions that 

contain an itemset 

• E.g.   s({Milk, Bread, Diaper}) = 40% 

• Frequent Itemset 

• An itemset whose support is greater 

than or equal to a minsup threshold 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

 𝑠 𝐼 ≥ minsup 



Mining Frequent Itemsets task 

• Input: A set of transactions T, over a set of items I  

• Output: All itemsets with items in I having  
• support ≥ minsup threshold 

 

• Problem parameters: 
• N = |T|: number of transactions 

• d = |I|: number of (distinct) items 

• w: max width of a transaction 

• Number of possible itemsets? 

 

• Scale of the problem: 
• WalMart sells 100,000 items and can store billions of baskets. 

• The Web has  billions of words and many billions of pages. 

 

M = 2d 



The itemset lattice 

 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Given d items, there are 

2d possible  itemsets 



A Naïve Algorithm 

• Brute-force approach, each itemset is a candidate :  
• Consider each itemset in the lattice, and count the support of each candidate by 

scanning the data 

• Time Complexity ~ O(NMw) , Space Complexity ~ O(M) 

• OR 
• Scan the data, and for each transaction generate all possible itemsets. Keep a count 

for each itemset in the data. 

• Time Complexity ~ O(N2w) , Space Complexity ~ O(M) 

 

•  Expensive since M = 2d !!! 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions List of

Candidates

M

w
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Computation Model 

• Typically, data is kept in flat files rather than in a 

database system. 

• Stored on disk. 

• Stored basket-by-basket. 

• Expand baskets into pairs, triples, etc. as you read 

baskets. 

• Use k  nested loops to generate all sets of size k. 



Example file: retail 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  

30 31 32  

33 34 35  

36 37 38 39 40 41 42 43 44 45 46  

38 39 47 48  

38 39 48 49 50 51 52 53 54 55 56 57 58  

32 41 59 60 61 62  

3 39 48  

63 64 65 66 67 68  

32 69  

48 70 71 72  

39 73 74 75 76 77 78 79  

36 38 39 41 48 79 80 81  

82 83 84  

41 85 86 87 88  

39 48 89 90 91 92 93 94 95 96 97 98 99 100 101  

36 38 39 48 89  

39 41 102 103 104 105 106 107 108  

38 39 41 109 110  

39 111 112 113 114 115 116 117 118  

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133  

48 134 135 136  

39 48 137 138 139 140 141 142 143 144 145 146 147 148 149  

39 150 151 152  

38 39 56 153 154 155  

Example: items are 

positive integers, 

and each basket 

corresponds to a line in the 

file of space separated 

integers 
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Computation Model – (2) 

• The true cost of mining disk-resident data is 

usually the number of disk I/O’s. 

• In practice, association-rule algorithms read the 

data in passes  –  all baskets read in turn. 

• Thus, we measure the cost by the number of 

passes an algorithm takes. 
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Main-Memory Bottleneck 

• For many frequent-itemset algorithms, main 

memory is the critical resource. 

• As we read baskets, we need to count something, e.g., 

occurrences of pairs. 

• The number of different things we can count is limited 

by main memory. 

• Swapping counts in/out is a disaster (why?). 



The Apriori Principle 

• Apriori principle (Main observation): 

– If an itemset is frequent, then all of its subsets must also 
be frequent 

– If an itemset is not frequent, then all of its supersets 
cannot be frequent 

 

 

– The support of an itemset never exceeds the support of 
its subsets 

– This is known as the anti-monotone property of support 

)()()(:, YsXsYXYX 



Illustration of the Apriori principle 

Found to be frequent 

Frequent 

subsets   



Illustration of the Apriori principle 

Found to be 

Infrequent 

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDEPruned 

Infrequent supersets 



R. Agrawal, R. Srikant: "Fast Algorithms for Mining Association Rules",  

Proc. of the 20th Int'l Conference on Very Large Databases, 1994.  

The Apriori algorithm 

Level-wise approach 
Ck = candidate itemsets of size k 

Lk = frequent itemsets of size k 

Candidate 

generation 

Frequent 

itemset 

generation 

1. k = 1, C1 = all items 

2. While Ck not empty 

3. Scan the database to find which itemsets in 

Ck are frequent and put them into Lk 

4. Use Lk to generate a collection of candidate 

itemsets Ck+1 of size k+1  

5. k = k+1 



Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count 

{Bread,Milk,Diaper} 2 

 

Items (1-itemsets)  

Pairs (2-itemsets)  

 
(No need to generate 
candidates involving Coke 
or Eggs)  

Triplets (3-itemsets)  

minsup = 3 

If every subset is considered,  
6
1

 + 
6
2

 + 
6
3

 = 6 + 15 + 20 = 41 

With support-based pruning, 

 
6
1

 + 
4
2

 + 1  = 6 + 6 + 1 = 13 

Illustration of the Apriori principle 

Only this triplet has all subsets to be frequent 

But it is below the minsup threshold 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Candidate Generation 

• Basic principle (Apriori): 

• An itemset of size k+1 is candidate to be frequent only if 

all of its subsets of size k are known to be frequent 

• Main idea: 

• Construct a candidate of size k+1 by combining 

frequent itemsets of size k 

• If k = 1, take the all pairs of frequent items 

• If k > 1, join pairs of itemsets that differ by just one item 

• For each generated candidate itemset ensure that all subsets of 

size k are frequent. 



• Assumption: The items in an itemset are ordered 

• E.g., if integers ordered in increasing order, if strings ordered in 

lexicographic order 

• The order ensures that if item y > x appears before x, then x is not in the 

itemset 

• The items in Lk are also listed in an order 

Generate Candidates Ck+1 

Create a candidate itemset of size k+1, by joining 

two itemsets of size k, that share the first k-1 items 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 



• Assumption: The items in an itemset are ordered 

• E.g., if integers ordered in increasing order, if strings ordered in 

lexicographic order 

• The order ensures that if item y > x appears before x, then x is not in the 

itemset 

• The items in Lk are also listed in an order 

Generate Candidates Ck+1 

Create a candidate itemset of size k+1, by joining 

two itemsets of size k, that share the first k-1 items 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 

1 2 3 5 



• Assumption: The items in an itemset are ordered 

• E.g., if integers ordered in increasing order, if strings ordered in 

lexicographic order 

• The order ensures that if item y > x appears before x, then x is not in the 

itemset 

• The items in Lk are also listed in an order 

Generate Candidates Ck+1 

Create a candidate itemset of size k+1, by joining 

two itemsets of size k, that share the first k-1 items 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 
1 2 4 5 

Are we missing something? 

What about this candidate? 



Generating Candidates Ck+1 in SQL 

 

• self-join Lk ‏ 

insert into Ck+1 

select p.item1, p.item2, …, p.itemk, q.itemk 

from Lk p, Lk q 

where p.item1=q.item1, …, p.itemk-1=q.itemk-1, p.itemk < q.itemk 

 



• L3={abc, abd, acd, ace, bcd} 

• Self-join: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

Example I 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

Example I 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

Example I 

{a,b,c} {a,b,d} 

{a,b,c,d} 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

{a,c,d} {a,c,e} 

{a,c,d,e} 

Example I 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

item1 item2 item3 

a b c 

a b d 

a c d 

a c e 

b c d 

p.item1=q.item1,p.item2=q.item2, p.item3< q.item3 



Example II 

 Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset Count 

{Beer,Diaper} 3 
{Bread,Diaper} 3 
{Bread,Milk} 3 
{Diaper, Milk} 3 

 

Itemset 

{Bread,Diaper,Milk} 

 

{Bread,Diaper} 

{Bread,Milk} 

{Diaper, Milk} 

 

 

 



Generate Candidates Ck+1 

• Are we done? Are all the candidates valid? 

 

 

 

 

 

 

 

 

• Pruning step:  
• For each candidate (k+1)-itemset create all subset k-itemsets  

• Remove a candidate if it contains a subset k-itemset that is 
not frequent 

Item 1 Item 2 Item 3 

1 2 3 

1 2 5 

1 4 5 

1 2 3 5 

Is this a valid candidate? 

No. Subsets (1,3,5) and (2,3,5) should also be frequent 

Apriori principle 



• L3={abc, abd, acd, ace, bcd} 

• Self-joining: L3*L3 

– abcd  from abc and abd 

– acde  from acd and ace 

• Pruning: 

– abcd is kept since all subset itemsets are 

in L3  

– acde is removed because ade is not in L3 

• C4={abcd} 

{a,c,d} {a,c,e} 

{a,c,d,e} 

acd ace ade cde 
  X 

Example I 
{a,b,c} {a,b,d} 

{a,b,c,d} 

abc abd acd bcd 

    



• We have all frequent k-itemsets Lk 

• Step 1: self-join Lk  

• Create set Ck+1 by joining frequent k-itemsets that 

share the first k-1 items 

• Step 2: prune 

• Remove from Ck+1 the itemsets that contain a subset  

k-itemset that is not frequent 

Generate Candidates Ck+1 



Computing Frequent Itemsets 

• Given the set of candidate itemsets Ck, we need to compute 

the support and find the frequent itemsets Lk.  

• Scan the data, and use a hash structure to keep a counter 

for each candidate itemset that appears in the data 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke 

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke 
 

N

Transactions Hash Structure

k

Buckets

Ck 



A simple hash structure 

• Create a dictionary (hash table) that stores the 

candidate itemsets as keys, and the number of 

appearances as the value. 

• Increment the counter for each itemset that you 

see in the  



Example 

Suppose you have 15 candidate 

itemsets of length 3:  

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8},  

{1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},  

{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} 

 

Hash table stores the counts of the 

candidate itemsets as they have been 

computed so far 

Key Value 

{3 6 7} 0 

{3 4 5} 1 

{1 3 6}  3 

{1 4 5} 5 

{2 3 4} 2 

{1 5 9} 1 

{3 6 8} 0 

{4 5 7} 2 

{6 8 9} 0 

{5 6 7} 3 

{1 2 4} 8 

{3 5 7} 1 

{1 2 5} 0 

{3 5 6} 1 

{4 5 8}  0 



Subset Generation 

1  2  3  5  6

Transaction, t

2  3  5  61 3  5  62

5  61 33  5  61 2 61 5 5  62 3 62 5

5  63

1 2 3

1 2 5

1 2 6

1 3 5

1 3 6
1 5 6

2 3 5

2 3 6
2 5 6 3 5 6

Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 

are the possible subsets of 

size 3? 

Recursion! 



Example 

Tuple {1,2,3,5,6} generates the 

following itemsets of length 3:  

 

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},  

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},  

 

Increment the counters for the itemsets 

in the dictionary 

Key Value 

{3 6 7} 0 

{3 4 5} 1 

{1 3 6}  3 

{1 4 5} 5 

{2 3 4} 2 

{1 5 9} 1 

{3 6 8} 0 

{4 5 7} 2 

{6 8 9} 0 

{5 6 7} 3 

{1 2 4} 8 

{3 5 7} 1 

{1 2 5} 0 

{3 5 6} 1 

{4 5 8}  0 



Example 

Tuple {1,2,3,5,6} generates the 

following itemsets of length 3:  

 

{1 2 3}, {1 2 5}, {1 2 6}, {1 3 5}, {1 3 6},  

{1 5 6}, {2 3 5}, {2 3 6}, {3 5 6},  

 

Increment the counters for the itemsets 

in the dictionary 

Key Value 

{3 6 7} 0 

{3 4 5} 1 

{1 3 6}  4 

{1 4 5} 5 

{2 3 4} 2 

{1 5 9} 1 

{3 6 8} 0 

{4 5 7} 2 

{6 8 9} 0 

{5 6 7} 3 

{1 2 4} 8 

{3 5 7} 1 

{1 2 5} 1 

{3 5 6} 2 

{4 5 8}  0 



The Hash Tree Structure 

2 3 4 

5 6 7 

1 4 5 
1 3 6 

1 2 4 

4 5 7 1 2 5 

4 5 8 

1 5 9 

3 4 5 3 5 6 

3 5 7 

6 8 9 

3 6 7 

3 6 8 

1,4,7 

2,5,8 

3,6,9 
Hash function = x mod 3 

Suppose you have the same 15 candidate itemsets of length 3:  

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4},  

{5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8} 

You need: 

• Hash function  

• Leafs: Store the itemsets 

At the i-th level we hash on the i-th item 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1 2 3 5 6 

1 + 2 3 5 6 
3 5 6 2 + 

5 6 3 + 

1,4,7 

2,5,8 

3,6,9 

Hash Function transaction 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function 
1 2 3 5 6 

3 5 6 1 2 + 

5 6 1 3 + 

6 1 5 + 

3 5 6 2 + 

5 6 3 + 

1 + 2 3 5 6 

transaction 



Subset Operation Using Hash Tree 

1 5 9 

1 4 5 1 3 6 

3 4 5 3 6 7 

3 6 8 

3 5 6 

3 5 7 

6 8 9 

2 3 4 

5 6 7 

1 2 4 

4 5 7 

1 2 5 

4 5 8 

1,4,7 

2,5,8 

3,6,9 

Hash Function 
1 2 3 5 6 

3 5 6 1 2 + 

5 6 1 3 + 

6 1 5 + 

3 5 6 2 + 

5 6 3 + 

1 + 2 3 5 6 

transaction 

Match transaction against 9 out of 15 candidates 

Hash-tree enables to enumerate itemsets in transaction  

and match them against candidates 

Increment the counters 



C1 L1 C2 L2 C3 
Filter Filter Construct Construct 

First 

pass 

Second 

pass 

All 

items 

All pairs 

of items 

from L1 

  Count 

the pairs 

  Count 

the items 

Frequent 

items 

Frequent 

pairs 
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A-Priori for All Frequent Itemsets 

• One pass for each k. 

• Needs room in main memory to count each 

candidate k -set. 

• For typical market-basket data and reasonable 

support (e.g., 1%), k = 2 requires the most 

memory. 



47 

Picture of A-Priori 

   

Item counts 

Pass 1 Pass 2 

Frequent items 

Counts of 

  pairs of 

 frequent 

   items 
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Details of Main-Memory Counting 

• Two approaches: 

1. Count all pairs, using a “triangular matrix” = one 

dimensional array that stores the lower diagonal. 

2. Keep a table of triples [i, j, c] = “the count of the 

pair of items {i, j } is c.” 

• (1) requires only 4 bytes/pair. 

• Note: always assume integers are 4 bytes. 

• (2) requires 12 bytes, but only for those pairs 

with count > 0. 
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4 per pair 

Method (1) Method (2) 

12 per 

occurring pair 
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Triangular-Matrix Approach – (1) 

• Number items 1, 2,… 

• Requires table of size O(n) to convert item names to 

consecutive integers. 

• Count {i, j } only if i < j.  

• Keep pairs in the order {1,2}, {1,3},…, {1,n }, 

{2,3}, {2,4},…,{2,n }, {3,4},…, {3,n },…{n -1,n }. 
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Triangular-Matrix Approach – (2) 

• Find pair {i, j } at the position           

 (i –1)(n –i /2) + j – i. 

 

• Total number of pairs n (n –1)/2; total bytes 

about 2n 2. 
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Details of Approach #2 

• Total bytes used is about 12p, where p  is the 

number of pairs that actually occur. 

• Beats triangular matrix if at most 1/3 of possible pairs 

actually occur. 

 

• May require extra space for retrieval structure, e.g., 

a hash table. 
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Detail for A-Priori 

• You can use the triangular matrix method with 

n  = number of frequent items. 

• May save space compared with storing triples. 

 

• Trick: number frequent items 1,2,… and keep 

a table relating new numbers to original item 

numbers. 
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A-Priori Using Triangular Matrix for Counts 

Item counts 

Pass 1 Pass 2 

1. Freq-    Old   

 2. quent   item   

… items   #’s   

Counts of 

 pairs of 

 frequent 

   items 



Factors Affecting Complexity 

• Choice of minimum support threshold 
•  lowering support threshold results in more frequent itemsets 

•  this may increase number of candidates and max length of frequent 
itemsets 

• Dimensionality (number of items) of the data set 
•  more space is needed to store support count of each item 

•  if number of frequent items also increases, both computation and I/O 
costs may also increase 

• Size of database 
•  since Apriori makes multiple passes, run time of algorithm may 

increase with number of transactions 

• Average transaction width 
•  transaction width increases with denser data sets 

• This may increase max length of frequent itemsets and traversals of 
hash tree (number of subsets in a transaction increases with its width) 



ASSOCIATION RULES 



Association Rule Mining 

• Given a set of transactions, find rules that will predict the 
occurrence of an item based on the occurrences of other 
items in the transaction 

Market-Basket transactions 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Example of Association Rules 

{Diaper}  {Beer}, 

{Milk, Bread}  {Eggs,Coke}, 

{Beer, Bread}  {Milk}, 

Implication means co-occurrence, 

not causality! 



Definition: Association Rule 

Example: 

Beer}Diaper,Milk{ 

4.0
5

2

|T|

)BeerDiaper,,Milk(



s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(





c

 Association Rule 

– An implication expression of the form 

X  Y, where X and Y are itemsets 

– Example: 

   {Milk, Diaper}  {Beer}  

 Rule Evaluation Metrics 

– Support (s) 

 Fraction of transactions that contain 

both X and Y 

 the probability P(X,Y) that X and Y 

occur together 

– Confidence (c) 

 Measures how often items in Y  

appear in transactions that 

contain X 

 the conditional probability P(X|Y) that X 

occurs given that Y has occurred. 

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Association Rule Mining Task 

• Input: A set of transactions T, over a set of items I  

• Output: All rules with items in I having  

• support ≥ minsup threshold 

• confidence ≥ minconf threshold 

 



Mining Association Rules 

• Two-step approach:  

1. Frequent Itemset Generation 

– Generate all itemsets whose support  minsup 

 

2. Rule Generation 

– Generate high confidence rules from each frequent itemset, 

where each rule is a partitioning of a frequent itemset into 

Left-Hand-Side (LHS) and Right-Hand-Side (RHS) 

 

 Frequent itemset: {A,B,C,D} 

Rule:           ABCD  



Rule Generation 

• We have all frequent itemsets, how do we get the 

rules? 

• For every frequent itemset S, we find rules of the form          

L  S – L , where L  S, that satisfy the minimum confidence 

requirement 

• Example: L = {A,B,C,D}  

• Candidate rules: 

 A BCD,   B ACD,   C ABD,    D ABC 

AB CD,   AC  BD,   AD  BC,   BD AC,  CD AB,  

          ABC D,     BCD A,      BC AD,   

• If |L| = k, then there are 2k – 2 candidate association 

rules (ignoring L   and   L) 



Rule Generation 

• How to efficiently generate rules from frequent 
itemsets? 
• In general, confidence does not have an anti-monotone 

property 
 c(ABC D) can be larger or smaller than c(AB D) 

 

• But confidence of rules generated from the same 
itemset has an anti-monotone property 

• e.g., L = {A,B,C,D}: 
  
  c(ABC  D)  c(AB  CD)  c(A  BCD) 
  

•  Confidence is anti-monotone w.r.t. number of items on the RHS 
of the rule 



Rule Generation for Apriori Algorithm 
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules created by the RHS 

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Pruned 

Rules 

Low 

Confidence 

Rule 



Rule Generation for APriori Algorithm 

• Candidate rule is generated by merging two rules that 
share the same prefix 
in the RHS 

 

• join(CDAB,BDAC) 
would produce the candidate 
rule D  ABC 

 

• Prune rule D  ABC if its 
subset ADBC does not have 
high confidence 

 

• Essentially we are doing APriori on the RHS  

BD->ACCD->AB

D->ABC


