
University of Ioannina,                 Data Mining – CS 059 

Computer Science Department            Fall 2012 

Assignment 3 
 

The deadline for the assignment is Friday, December 7. For late submissions the late policy on the page 

of the course will be applied. The details for the turn-in will be announced on the page of the course.  

 

Question 1  
In the course textbook (Introduction to Data Mining by Tan, Steinbach, Kumar) except for the clustering 

algorithms that we described in class, there are also the algorithms CLARANS, BIRCH, ROCK, 

CHAMELEON, DENCLUE, and CURE (also described in the free online textbook Mining Massive Datasets 

by Rajaraman and Ullman). Select one of these algorithms, and describe the main idea in your own 

words in 2-3 paragraphs. You can read the corresponding paper if you need additional details. 

 

Question 2  
This is Exercise 8.27 from the textbook Introduction to Data Mining by Tan, Steinbach, Kumar. Prove that 

the Sum of Square Errors (SSE) for a cluster    is proportional to the sum of distances between all points 

in the cluster   . More specifically, prove that  
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where:    is the number of points in the cluster    ;    is the centroid of the cluster   ; the clustered 

points are  -dimensional real vectors; and  ‖ ‖ is the Euclidean distance. (Hint: Start with the case that 

     ). 

 

Question 3 
We have a collection   of   documents, where each document is “bag of words” drawn from a 

vocabulary   of   words. Document    can be represented as an  -dimensional vector where     is 

the number of times that word    appears in document   . Consider a clustering     {      } of the 

documents in   where       . When     each document is in a cluster by itself (singleton 

clusters), while when      , all documents are together in a single cluster. A cluster    contains the 

concatenation of all words of all the documents in the cluster. Therefore, it can also be represented as 

an  -dimensional vector over the set   of words: the sum of the vectors of all the documents in the 

cluster. For cluster    we use     to denote the number of times that word    appears in the cluster. We 



use    to denote the number of words in cluster   , and   to denote the number of all words in all 

documents. If we normalize the vector for cluster    we obtain a probability distribution          where 

                
   

  
 is the conditional probability of word    in cluster   . This is the probability that if 

we randomly select a word from the cluster   this word will be   .  We use    to denote the distribution 

       . We also define        
  

 
 to denote the probability of cluster   . This is the probability that if 

we pick a randomly a word among all the words in all documents, this will be from cluster   .  

We can now define the conditional entropy of the words   given the clustering  . We have 
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The entropy of the words in cluster    is given by              , the entropy of the word distribution 

within the cluster. We call       the entropy of the cluster   , and       , the entropy of the clustering 

 . 

Consider now two clusters (e.g., cluster    and cluster   ), and suppose we merge them to create a new 

cluster   . We have that                   

1. Show that  

            
     

     
    

     

     
   

We define a generalized version of Jenshen-Shannon divergence between distributions    and    as 

           
     

     
             

     

     
            

            is the KL-divergence between distributions    and   . Now, let C be the clustering that has 

clusters    and   , and C* the clustering after merging the clusters    and    into cluster   . 

2. Show that the increase in entropy is 

                                

There are clustering approaches that aim at minimizing the entropy of a clustering and use the 

increase in entropy as a distance metric between two clusters. We can then apply an 

agglomerative algorithm, or a k-means like algorithm 

Consider a toy example were the vocabulary consists of just two words W = {“sports”, “politics”}, and we 

have three documents         . Document   contains two occurrences of word “sports”, document    

contains three occurrences of word “sports”, and document   contains five occurrences of word 

“politics”. 

3. What is the entropy of the documents, and what does this mean? What is the distance of the 

two closest documents and what does this mean? What is the entropy of a cluster that contains 

all three documents? 



Question 4  
The goal of this question is to experiment with K-means clustering. You can do your own 

implementation of the K-means algorithm that we described in class, or use a suitable existing 

implementation. (K-means is implemented in MATLAB, WEKA, and there are several available 

implementations online but it is a simple algorithm and it may be easier to implement it yourselves).  

You will apply the algorithm to the Twitter data that you used for Assignment 1. For this question you 

will not use all of the data. Using the location field (the 7th field in the file) you will select the users that 

live in following cities: London, Los Angeles, New York, San Francisco, and Hollywood. Make sure that 

the method you use for selecting the users finds most of the different ways in which the city is described 

(e.g., ”NYC” for “New York”, “Los Angeles” v.s. “Los Angeles, CA”). Inspect the data manually, and throw 

away users that specify more than one city.  

After obtaining the appropriate users, take the profile description and do the same preprocessing 

(removing stop-words, etc) as in Assignment 1. The result will be a real vector for each with one entry 

for each term, and the count of times that the term appears in the profile description. The 

implementation of the vectors will depend on the implementation of K-means that you use (e.g., you 

will probably not need to create the zero entries of the vector). Apply K-means clustering on these 

vectors, for K = 5. 

Evaluate the results of the K-means clustering by comparing against the five classes defined by the five 

cities. These will serve as the external validation of your algorithm. Produce the cluster-city confusion 

matrix, and compute the Precision and Recall for each cluster. 

Submit your code, the file with the users that you selected (two columns, one with the city and one with 

the profile description), and the same file with the users grouped by cluster. Submit also a report with 

the details of your experiment: the implementation that you used for K-means; the pre-processing that 

you did on the data and the way you selected the input users; the confusion matrix and the Precision-

Recall values for your clustering. 

Similar to Assignment 1 if there is another dataset that you are interested in analyzing and clustering, 

you can contact me with your suggestion. 

 

Question 5  
In class we described the Minimum Description Length principle and its application to the problem of co-

clustering. In this question you will apply MDL to the problem of segmentation of a one-dimensional 

sequence. The input is a sequence of 0/1 numbers, and the goal is to segment the sequence into 

segments such that the total cost of encoding the sequence is minimized. Note that in this variation of 

the problem you are not given the number K of segments as input. 



1. Define the encoding cost of the sequence. Clearly state what is the model cost and what is the 

data cost given the model.  Hint: A segmentation into K segments is defined by K-1 boundary 

points.  

2. Give a heuristic algorithm for the problem of finding a segmentation that minimizes the 

encoding cost. Describe the algorithm in English and/or using pseudocode. 

3. The segmentation problem can be solved optimally in polynomial time using dynamic 

programming. Define the dynamic programming recurrence, and the dynamic programming 

array.  

4. Bonus: Implement an algorithm that solves the problem. Test your algorithm on a sequence of 

1000 values that you will create as follows: 

a. Select two boundary points randomly. 

b. Create random 0/1 for each segment with different probability: in the first segment the 

probability of value 1 is 0.7, in the second 0.3, and in the third 0.9 

c. Submit a file with the true breakpoints and one with the ones that your algorithm finds 

on 3 different random inputs.  


