
Review Synthesis for Micro-Review Summarization

Thanh-Son Nguyen
School of Information Systems

Singapore Management
University

tsnguyen.2013@phdis.
smu.edu.sg

Hady W. Lauw
School of Information Systems

Singapore Management
University

hadywlauw@smu.edu.sg

Panayiotis Tsaparas
∗

Dept. of Computer Science
University of Ioannina

Greece
tsap@cs.uoi.gr

ABSTRACT
Micro-reviews is a new type of user-generated content aris-
ing from the prevalence of mobile devices and social media
in the past few years. Micro-reviews are bite-size reviews
(usually under 200 characters), commonly posted on social
media or check-in services, using a mobile device. They cap-
ture the immediate reaction of users, and they are rich in
information, concise, and to the point. However, the abun-
dance of micro-reviews, and their telegraphic nature make
it increasingly difficult to go through them and extract the
useful information, especially on a mobile device. In this
paper, we address the problem of summarizing the micro-
reviews of an entity, such that the summary is representa-
tive, compact, and readable. We formulate the summariza-
tion problem as that of synthesizing a new “review” using
snippets of full-text reviews. To produce a summary that
naturally balances compactness and representativeness, we
work within the Minimum Description Length framework.
We show that finding the optimal summary is NP-hard, and
we consider approximation and heuristic algorithms. We
perform a thorough evaluation of our methodology on real-
life data collected from Foursquare and Yelp. We demon-
strate that our summaries outperform individual reviews,
as well as existing summarization approaches.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, Experimentation

Keywords
micro-review summarization; review synthesis

∗This work has been supported by the Marie Curie Rein-
tegration Grant project titled JMUGCS which has received
research funding from the European Union.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM’15, February 2–6, 2015, Shanghai, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3317-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684822.2685321.

1. INTRODUCTION
The confluence of the two fast-moving trends, the increas-

ing penetration of mobile devices and the prevalence of social
media, has given rise to a new breed of mobile social media
platforms. Exemplars of such platforms include the well-
known check-in services Foursquare and Facebook Places.
In such services, users interact by sharing their experiences
on various venues and services (restaurants, pubs, salons,
etc.) with their friends and the public, providing invaluable
decision aids to future customers.

A byproduct of this behavior is micro-reviews: concise,
bite-sized reviews produced on micro-blogging platforms and
location-based social networks. For instance, in Foursquare,
micro-reviews, more popularly known as tips, are limited to
200 characters, and they are written by users when checking
in at a particular point of interest. These tips serve several
purposes: They may offer opinion on some aspects of the
restaurant (“Great place to stop by for a quick bite or for
a good cup of coffee. Bustling atmosphere and reasonable
prices.”); They may give recommendations on what to order
(“We particularly love the coffee gelato flavor from Eataly.
Light and creamy.”); They may be actual “tips” or sugges-
tions (“If you live in the neighborhood shop after 8:30PM for
minimal human traffic and shorter lines.”).

There are some characteristic differences between micro-
reviews and regular reviews found on sites such as Yelp.
Micro-reviews are concise, making a crisp point about a spe-
cific aspect, whereas reviews typically cover various aspects
comprehensively. Micro-reviews tend to be spontaneous,
giving a real-time reaction to the author’s current expe-
rience, whereas reviews tend to be contemplative and re-
flective. Micro-reviews are often accompanied by check-ins,
which lend them a degree of authenticity. Micro-reviews are
growing faster than regular reviews. For instance, Foursquare
content (micro-reviews) is growing 65% per year on a base
of 35 million users, while Yelp content (reviews) is growing
41% per year, on a larger base of 108 million users1.

Micro-reviews are thus an important source of information
for users seeking information for making decisions. However,
their increased popularity has led to an abundance of con-
tent. It is common for popular venues to have several hun-
dreds of micro-reviews. While the concise and telegraphic
nature of an individual micro-review makes it easy to convey
a specific point, the very same property makes it difficult to
go through a collection of micro-reviews to extract useful
information, especially on a mobile device. This is because

1http://www.fastcompany.com/3015168/
foursquares-tips-growing-faster-than-yelps-reviews

http://www.fastcompany.com/3015168/foursquares-tips-growing-faster-than-yelps-reviews
http://www.fastcompany.com/3015168/foursquares-tips-growing-faster-than-yelps-reviews

the collection consists of a large volume of fragmented opin-
ions, all by different authors, expressing views that in some
cases are highly repetitive. There exists useful information
in the collection, but it is scattered across multiple micro-
reviews, and as a result, diluted and obscure to the reader.
To make the collective wisdom of micro-reviews useful, we
need to piece it together into a single coherent piece of text.

We therefore consider the following problem. Given a col-
lection of tips about an entity, produce a text summary of
the information content of the tips. Ideally, this summary
should capture most, if not all, of the points made by the
tips in the collection, in a concise and coherent fashion that
is easy to consume on a mobile device. Inspired by the
highly complementary nature of micro-reviews and reviews,
we propose to use review content for this task. While micro-
reviews are good at identifying the salient points about an
entity, a review is often a coherent, well-written piece of
text, produced by an author who seeks to comprehensively
describe her experience with the entity. We propose to syn-
thesize a new “review”, by taking the “best” parts of some
reviews, and putting them together into a text summary.

Overview of our approach. We now give a high-level
overview of our methodology. Given a set of tips about an
entity (e.g., a restaurant), and a set of reviews about the
same entity, we seek to construct a readable, compact and
representative summary of the tips, using the review text.
We assume that each review can be split into multiple coher-
ent snippets, e.g., paragraphs. The summary we construct
will be a collection of snippets (possibly from multiple re-
views) that best capture the information content of the tips.

The representativeness and compactness objectives are
often conflicting. A highly representative summary con-
tains more and longer snippets, making it less compact. A
highly compact summary may under-represent the informa-
tion content of the tips. To model this trade-off holistically,
in Section 3.2, we formulate our problem within the Mini-
mum Description Length (MDL) framework, where we view
the tips as being encoded by the snippets, and we seek to
find a collection of snippets that produce the encoding with
the minimum number of bits. We show that finding the
optimal summary is NP-hard (Section 3.3). We establish
a connection between our problem and the Uncapacitated
Facility Location Problem, and show that there exists an
algorithm with (1 + logn)-approximation ratio for n tips.
We also consider different heuristic algorithms for optimiz-
ing the MDL cost (Section 4). In Section 5, to investigate
the efficacy of our algorithms, we compare them empirically
to several baselines on real data from Foursquare and Yelp,
in terms of representativeness, compactness, and readability.

Contributions. In this work, we make the following
contributions. First, we introduce the problem of micro-
review summarization, by synthesizing a summary from re-
view snippets. We formulate constructing a compact and
representative summary as a novel combinatorial optimiza-
tion problem within the MDL framework. Second, we prove
that finding the optimal summary is NP-hard. We show
that our problem can be formulated algorithmically as an
instance of Uncapacitated Facility Location Problem, for
which there exists a (1 + logn)-approximation greedy al-
gorithm. Third, in addition to the greedy algorithm, we
consider several heuristic algorithms. We demonstrate their
efficacy on real-life datasets with respect to existing reviews,
as well as summaries generated by existing techniques.

2. RELATED WORK
We now relate our work to the existing literature, broadly

categorized into works that focus on summarization, mining
reviews, and minimum description length.

Document Summarization. The objective of docu-
ment summarization is to reduce one or more text docu-
ments into a compressed text. Broadly speaking, there are
two categories of approaches. The first consists of extractive
methods, which select text snippets (e.g., sentences, para-
graphs) from the documents to be summarized. This selec-
tion may be based on clustering [20], or ranking [17]. The
second consists of abstractive methods, which build some
form of semantic representation, and then generate new or
edited pieces of text to express that representation [5, 4].

If we consider micro-reviews simply as text, our problem
can be seen as an instance of document summarization. Our
work is related to extractive summarization, but with a key
difference that we select text snippets, not from the corpus to
be summarized (i.e., tips), but from an independent corpus
of a different type (i.e., reviews). To validate our approach,
we will compare against exemplars of both extractive (i.e.,
Mead [20]) and abstractive (i.e., Opinosis [5]) methods in
our experiments (see Section 5).

There are also other forms of summaries. For instance,
reviews may be summarized in terms of the statistical dis-
tributions of sentiments for various features or aspects [9,
27], or by listing just the “key phrases” [6, 16]. These are
orthogonal directions to our goal of producing a flowing text
as a summary.

Review Mining. Our work is related to several lines
of work in mining reviews. While we synthesize a “review”
to create a summary of micro-reviews, there is a previous
effort to create a synthetic review [23] to simulate a fake
review. Review ranking seeks to rank reviews based on some
notion of “quality” [14]. Review selection [12] seeks to select
a specified number K of reviews based on some criteria, and
it is commonly formulated as a variation of the maximum
coverage problem [24, 11].

There exists previous work on review selection for covering
micro-review content [18]. The problem of review selection is
fundamentally different from micro-review summarization.
Review selection imposes the restriction of selecting multi-
ple full reviews from the existing corpus, while summariza-
tion aims at creating a single piece of text. Furthermore,
in review selection, any individual review is not necessarily
representative of all the points raised by tips, while the set
of reviews as a whole is not necessarily compact, since the
same points may be covered in multiple reviews. By syn-
thesizing a “review”, we do not run into the above issues, as
it is not necessary to select whole reviews, but instead only
the snippets that best represent the micro-reviews. To val-
idate this point, in the experiments (see Section 5), we will
compare to the review selected by [18], and more generally
to all existing reviews in the dataset as well.

While reviews have been studied extensively, relatively lit-
tle attention has been paid to micro-reviews. Most of the
previous work on Foursquare, for example, look at it as a
location-based social network, paying attention to the fac-
tors of locations and social links, rather than to the tex-
tual content of the micro-reviews. For instance, the aspects
that have been studied include geographic analysis [19] and
location-based recommendation [25].

Minimum Description Length. Minimum descrip-
tion length (MDL), introduced by Rissanen [21], is a well-
established principle for model selection [7]. MDL itself is
a general framework. The specification of the model space,
and the manner in which the model describes the data, vary
across applications. For instance, [1] employs MDL to model
the interaction between two types of objects (expressed as an
adjacency matrix) to find cross-associations. We also employ
MDL to model the “interaction” between review snippets
and micro-reviews, but our objective is different in selecting
review snippets that summarize micro-reviews.

The optimization problem we define within the MDL frame-
work is an instance of the Uncapacitated Facility Location
Problem (UFLP) (see Section 3.3). There are also works on
metric UFLP [22, 10, 13], but the metric assumption does
not apply to our case.

3. PROBLEM FORMULATION
In this section, we formulate the micro-review summa-

rization problem as a combinatorial optimization problem
within the Minimum Description Length framework.

3.1 Preliminaries
Given a specific entity of interest (e.g., a restaurant), we

are given as input a set of n micro-reviews (or tips) T for
that entity. Each tip t ∈ T is modeled as a bag of words
{w1, w2, . . . , w|t|}, where each word is drawn from a vocab-
ulary W . This vocabulary is the universe of all the terms
that appear in any tip or review.

In addition, we are given a set of m full-text reviews R
for the same entity. We view each review R ∈ R as a col-
lection of snippets {r1, r2, . . . , r|R|}. Each snippet r ∈ R
is a contiguous piece of text within R. In this work, we
treat each review paragraph as a snippet. Snippets of dif-
ferent granularity can also be defined, such as, sentences,
or text windows of a pre-specified length. We opt to work
with paragraphs because they correspond to thematic units
of variable length defined by the author herself, which are
usually self-contained and discuss a coherent atomic idea of
the author. Similar to tips, each snippet r is modeled as a
bag of words drawn from the vocabulary W . The union of
snippets from all reviews in R is denoted UR.

A summary S is a set of review snippets, i.e., S ⊆ UR.
Given T and R, our objective is to find the “best” summary
of T . Customarily, a summary is good if it can represent
the underlying content being summarized (representative-
ness), and it can do so with a significantly shorter length
than the full content (compactness). The two requirements,
representativeness and compactness, are inherently conflict-
ing. A longer summary may capture the underlying content
better than a shorter summary. However, a summary that
is too long is no longer a “summary”. The goal is to find a
“sweet spot” that balances the representativeness and com-
pactness in a holistic way so as to obtain the best possible
summary.

3.2 Problem Definition
To identify this “optimal” summary, we turn to Minimum

Description Length (MDL) [21], a parameter-free framework
for model selection. MDL deals with the issue of how to
choose a model that can describe the data as concisely as
possible [7]. A very complex model may be able to describe
the data concisely, but the model itself would be very ex-

pensive to describe. In contrast, a simple model is easy to
describe, but then describing the data becomes expensive.
Importantly, MDL is parameter-free. It automatically de-
termines the best model that balances both the cost of the
model and the cost of describing the data using that model.

In our case, the data to describe are the tips in T . A model
is a summary S, consisting of a collection of review snippets,
and an assignment of each tip to one of the selected snippets.
The snippet describes, or summarizes, the tips assigned to
it. Let S denote the set of snippets in the summary, and let
Tr denote the set of tips assigned to a snippet r ∈ S. The
summary S is defined as the pair S = (S, {Tr}r∈S).

The quality of a solution is evaluated by a cost function
cost(T ,S) which is the cost to describe the data in T using
the model S. This cost function is decomposed into two
parts: the model cost model(S) which is the cost to describe
the model S, and the data cost data(T |S) which is the cost
to describe the data in T given the model S. A solution
with low cost balances between having a complex descriptive
model (high model cost) which describes accurately the data
(low data cost), and a simple model (low model cost) which
yields a complex description of the data (high data cost).

MDL has a natural information-theoretic interpretation,
as a lossless encoding mechanism for the underlying data.
The MDL cost function can be interpreted as the cost of
communicating the data between two parties. In this case,
the sender sends the model to the receiver, and then the de-
scription of the data using the model. The cost is computed
as the number of bits needed to transmit the data.

For our problem, we are interested in encoding documents,
which are “bags of words”, that is, multisets of words. Any
single document, or any corpus (collection) of documents, D,
defines a language model MD = (D,PD), which consists of
the vocabulary D of the document, and a probability distri-
bution PD over the words of the vocabulary. The probability
PD(w) of word w ∈ D is (usually) defined as the fraction of
times that word w appears in D.

It is well known in information theory [2] that given a do-
main D and a distribution PD over this domain, the optimal
encoding of D assigns a codeword of length − logPD(w) to
every element w ∈ D. This optimal encoding can be asymp-
totically achieved using the Huffmann encoding. Therefore,
a language model MD = (D,PD) defines an encoding of the
words in the vocabulary D, and an encoding of words defines
a language model. We will use the two interchangeably. We
use bitsD(w) = − logPD(w) to denote the length of the en-
coding of word w in the language model MD. We also refer
to this as the cost of the encoding. For a bag of words s
from the vocabulary D, the cost of the encoding of s is

bitsD(s) = −
∑
w∈s

logPD(w) =
∑
w∈s

bitsD(w)

where, the sum over the set s, accounts for the multiple
occurrences of the words in s.

We can now describe the MDL formulation of our prob-
lem, which describes the process of encoding and transmit-
ting the set of tips T using the model defined by the sum-
mary S. First, we assume that both the sender and the re-
cipient already share the knowledge of the global vocabulary
W and the language model (code) MW for the vocabulary
W . This model may be derived from any known corpus of
the English language, but in our work we assume that it is

defined by the collection of reviews R. Using this common
information, we can define the model and data costs.

Model Cost. We begin by describing the summary S =
(S, {Tr}r∈S) to the recipient, as follows.

1. First, we communicate the number of tips n = |T |,
which is the same for any model, and does not affect
model selection.

2. We then communicate the number of snippets k = |S|
in the summary. Since k ∈ [1, n], this can be done
using logn bits.

3. We then communicate which tips are assigned to each
snippet. For every snippet r, the tips in Tr will be
transmitted together in sequence; therefore, we only
need to communicate the transition points when we
switch from one snippet to the next. For k snippets,
there are (k− 1) transition points, and each transition
is a value between 1 to n. This can be done using
(k − 1)× logn bits.

4. Finally, we need to transmit the snippets r ∈ S. We
use the model MW to encode the snippets, resulting
in

∑
r∈S bitsW (r) number of bits.

Putting everything together, the cost for transmitting the
model is computed as follows.

model(S) = logn+ (k − 1) logn+
∑
r∈S

bitsW (r)

=
∑
r∈S

(logn+ bitsW (r)) (1)

Data Cost. Given our model S, we now encode the tips
in T with the corresponding snippets. Let r ∈ S denote one
of the snippets. The snippet r is a bag of words, and defines
a language model Mr = (W,Pr). We will use this model to
encode the set of tips in Tr associated to r by our model.

To compute the encoding cost for Tr, we need to address
the following issue. Since the snippet r contains a subset of
the words in W , for any word w 6∈ r we have Pr(w) = 0
and thus the encoding cost is infinite. Therefore, we need to
“smooth” the language model Mr, such that all terms in W
would have non-zero probabilities. There are a number of
smoothing methods [15]. We adopt the Laplace or additive
smoothing, which adds α|W | number of word occurrences to
r, and shares this count uniformly among all the words in the
vocabulary. This method belongs to the class of Bayesian
smoothing, specifically with uniform Dirichlet priors [26].
The smoothed generation probability of a word is as follows.

Pr(w) =
tfr,w + α

|r|+ α|W | (2)

In this equation, tfr,w is the number of occurrences of the
word w in the snippet r, while α is the smoothing coefficient.
Larger α tends towards a more even distribution over words.
In the extremes, for α = 0 we obtain the original probability,
while for α→∞ we obtain the uniform distribution.

Given the definition of Pr(w) we can now define the en-
coding cost of tip t by snippet r as follows.

bitsr(t) = −
∑
w∈t

logPr(w)

The encoding cost of the set of all tips is defined as follows.

data(T |S) =
∑
r∈S

∑
t∈Tr

bitsr(t) (3)

Given the definition for the model and data cost, the total
cost for the summary S of the set of tips T is Equation 4.

cost(T ,S) = model(S) + data(T |S)

=
∑
r∈S

[
(logn+ bitsW (r)) +

∑
t∈Tr

bitsr(t)

]
(4)

This equation clearly shows the trade-off between the model
cost and the encoding cost. A greater number of snippets,
or longer snippets, contribute to a more complex model S
with higher model cost. However, it has the potential to
decrease the encoding cost. Conversely, a very simple model
may have a low model cost, but high encoding cost.

We are now ready to formally state our problem.

Problem 1 (Micro-Review Summarization (MiRS)).
Given a set of tips or micro-reviews T , a set of reviews R,
find a summary S, such that cost(T ,S) is minimized.

3.3 Complexity and Approximability
We now study the MiRS problem theoretically. We show

that the problem is NP-hard. However, using a connec-
tion between MiRS and the Uncapacitated Facility Location
Problem we can show that there exists a greedy algorithm
with a (1 + logn)-approximation ratio.

Lemma 1. The MiRS problem is NP-hard.

Proof Sketch. The proof is based on a reduction from
vertex cover (known to be NP-hard). Vertex cover seeks the
minimum set of vertices in a graph, such that all edges in the
graph are incident on at least one of the vertices in this set.
In particular, we consider vertex cover on a regular graph
[3]. In a d-regular graph, all vertices have degree exactly d.

We show that vertex cover on a d-regular graph G(V,E)
is a special instance of the MiRS problem with α = 0. For
each edge e ∈ E, we create a tip te, containing a unique
word we for this edge (e.g., the edge ID). The size of the
vocabulary |W | is thus the same as the number of edges |E|.
For each vertex v ∈ V , we create a review with one snippet
rv, containing d words corresponding to the d edges of v.

Since every vertex v has exactly d edges, correspondingly
every snippet rv contains exactly d words. Therefore, in
the language model Mrv we have Prv (we) = 1/d for any
word we ∈ rv. This means that using any rv to encode
te, when e is incident on v, requires a constant number of
bitsrv (te) = log d bits. Since α = 0, it costs infinitely high
for rv to encode te, when e is not incident on v.

Since every edge is incident on exactly two vertices, corre-
spondingly every word occurs in exactly two snippets. There-
fore, all words in W have the same frequency, and there-
fore, in the model MW , we have that PW (we) = 1/n for all
we ∈ W . In turn, this means that bitsW (r) = d logn for
any r. Therefore, minimizing cost(TE ,S), where TE is the
set of tips corresponding to E, is equivalent to finding the
set VS with the minimum number of snippets (vertices) that
collectively contain all the words (cover all the edges).

Since the MiRS problem is NP-hard, we look for algo-
rithms with known approximation guarantees. We can prove
the following lemma.

Lemma 2. There exists a (1 + logn)-approximation algo-
rithm for the MiRS problem.

Proof. We will prove the lemma by showing that the
MiRS is an instance of the Uncapacitated Facility Lo-
cation Problem (UFLP) [8]. For UFLP, we are given a
set of facilities UR and a set of customers T . We also know
the cost fr for opening each facility r ∈ UR, as well as the
cost crt to serve customer t ∈ T from facility r. The goal is
to determine which subset of facilities to open (i.e., yr = 1 if
facility r is opened, and 0 otherwise), and which customers
to service from each opened facility (i.e., xrt = 1 if cus-
tomer t is serviced from facility r, and 0 otherwise), so as to
minimize the total cost

∑
r∈UR

[fr · yr +
∑

t∈T crt · xrt].
It is easy to see that in the case of MiRS, the snippets

are the facilities, and the tips are the customers. The cost
of opening a facility r is the cost of encoding the review
snippet r: fr = logn + bitsW (r). The cost of servicing a
customer t at facility r is the encoding cost of a tip t using
the snippet r: crt = bitsr(t). Here, yr = 1 if r ∈ S, and
yr = 0 if r /∈ S; xrt = 1 if t ∈ Tr, and xrt = 0 if t /∈ Tr.

There is a body of work on approximation algorithms for
the UFLP problem [22, 10], however most work is focused
on the case where the service cost, crt, between customers
and facilities defines a distance metric. This does not apply
to MiRS, where bitsr(t) is not metric (it is easy to see that
it is not even reflexive). One known approximation algo-
rithm for the non-metric UFLP is the greedy algorithm for
Minimum Weight Set Cover (MWSC) [8]. We describe
the algorithm in Section 4.1. This algorithm has a provable
approximation ratio of 1 + logn, where n is the number of
tips, or customers.

4. ALGORITHMS
We now propose algorithms for the MiRS problem. We

assume that the encoding cost of every snippet fr, ∀r ∈ UR,
and the encoding cost of any tip using any snippet crt, ∀r ∈
UR, t ∈ T have been pre-computed. The output of the algo-
rithms is a summary S = (S, {Tr}r∈S).

4.1 Greedy Synthesis
This is the approximation algorithm for the non-metric

UFLP, which finds a solution to an instance of the Minimum
Weight Set Cover (MWSC) problem. The MiRS can
be cast as an instance of MWSC, as follows. For every
pair (r, Tr), consisting of a snippet r ∈ UR and a subset of
tips Tr ⊆ T , we define a set that “covers” the elements in
Tr, with weight fr +

∑
t∈Tr

crt. Solving MWSC by finding
the sub-collection of all such sets that cover all the tips in
T with the smallest total weight also provides a solution
to the corresponding MiRS instance. While enumerating
all possible pairs of (r, Tr) explicitly may be intractable, [8]
shows that, for each r, it is sufficient to consider those pairs
(r, T k

r), for k = 1, . . . , |T |, where T k
r denotes the first k tips

in a linear order of non-decreasing crt.
The pseudocode of the Greedy Synthesis algorithm is

shown in Algorithm 1. In each step, we pick the pair (r, Tr)
that is most effective, i.e., having the lowest average cost
(line 3 in the algorithm). This can be done in O(|UR| ×
|T |) time. Once such a pair is identified, r is included in
the output S, and the tips in Tr are removed from further
consideration (line 4). This process is repeated until all the
tips in T have been covered. Finally, we assign each tip

Algorithm 1: Greedy Synthesis

1 Initialize S = ∅; T = T ; U = UR
2 while T 6= ∅ or U 6= ∅ do
3 Find the pair (r, Tr), where r ∈ U and Tr ⊆ T ,

which minimizes
fr+

∑
t∈Tr

crt

|Tr|
4 Update S = S ∪ r; U = U \ r; and T = T \ Tr

5 return S and ∀r ∈ S, Tr = {t ∈ T |r = arg minr′∈S cr′t}

Algorithm 2: Partitional Synthesis

1 S1 = {r}, where r = arg minr′∈UR fr′ +
∑

t∈T cr′t.

2 C1 = cost(S, T)
3 for k = 2, . . . , |T | do
4 Let Sk be k random snippets drawn from UR.
5 repeat
6 for r ∈ Sk do
7 Tr = {t ∈ T | r = arg minr′∈Sk

cr′t}.
8 for Tr do
9 r∗ = arg minr′∈R fr∗ +

∑
t∈Tr

cr∗t.

10 replace r with r∗ in Sk.

11 until Ck = cost(Sk, {Tr}r∈Sk) does not change
12 if Ck > Ck−1 then
13 break

14 return Sk−1 and {Tr}r∈Sk−1

to the “closest” snippet in S with the lowest encoding cost.
This step is needed since the greedy selection may not have
associated a tip with the lowest encoding cost snippet in S.

4.2 Partitional Synthesis
In Greedy Synthesis, the snippets already selected af-

fect the choice of the next snippet, but previous decisions are
never reconsidered or changed. We now consider a heuristic
that considers the solution that tries to identify a local min-
imum in the MDL cost function. The heuristic is motivated
by the observation that given a summary with k snippets,
the assignment of tips to the snippets defines a partition of
the tips into k clusters. The intuition is to search the space
of possible tip partitions and snippet selections to find one
with the lowest MDL cost.

This algorithm, which we name Partitional Synthesis,
is described by Algorithm 2. It considers different values
for k (the number of snippets), starting from k = 1 and
going potentially up to n. We try to find the best solution
with k snippets through an iterative process reminiscent of
k-means clustering. Starting with a random selection of k
snippets, we assign each tip to the snippet that best encodes
it (lines 6–7 of the algorithm). In turn, for each collection
of tips, we find the snippet that encodes this collection with
the lowest cost (lines 8–10 of the algorithm). This iterative
process is conducted until the total cost does not further
improve, thus reaching a local optimum. To ensure that
we do not select a poor solution due to bad choice of the
initial snippets, for a given k we repeat the process with
M random initializations, and we pick the best solution.
We keep increasing the value of k as long as we obtain a
solution with a lower MDL cost. If for some k there is no
further improvement, we terminate the algorithm and return

the current best solution. The complexity of this process is
linear with respect to its variables, i.e., O(k×M×|UR|×|T |).

4.3 Hierarchical Synthesis
Motivated by the parallels between our summarization

problem and clustering, we consider an algorithm that con-
structs a partition of the tips in a top-down hierarchical
fashion. This algorithm, which we call Hierarchical Syn-
thesis, is described in Algorithm 3. Starting from an ex-
isting number of partitions (initially 1), we split an existing
partition into two. To determine which partition to split,
we rank the existing partitions in decreasing order of aver-
age encoding cost. We then try to split the highest-ranked
partition Tr associated with snippet r (lines 5–6 of the al-
gorithm). The split is conducted using the Partitional
Synthesis as a subroutine with k = 2 (line 7). If the split is
sucessful, resulting in a lower cost, we replace r with the two
new snippets r1 and r2, and proceed to the next iteration
(lines 8–10). Otherwise, we try to split the next highest-
ranked snippet/partition that has not been tried. If none of
the existing partitions can be split to improve the cost, the
algorithm terminates and returns the current best solution.
The complexity of this algorithm is similar to Partitional
Synthesis, but in practice it is faster, since when going from
k − 1 to k, we only need to split one partition into two.

Algorithm 3: Hierarchical Synthesis

1 S1 = {r}, where r = arg minr′∈UR fr′ +
∑

t∈T cr′t.

2 C1 = cost(S, T)
3 for k = 2, . . . , |T | do
4 repeat
5 Let r be the next un-tried snippet in Sk−1 with

highest
fr+

∑
t∈Tr

crt

|Tr| .

6 Let Tr be {t ∈ T |r = arg minr′∈Sk−1
cr′t}.

7 Find new snippets r1 and r2 using Partitional
Synthesis to split Tr into 2 partitions.

8 if successful split then
9 Sk = (Sk−1 \ r) ∪ {r1, r2}

10 break

11 until all snippets in Sk−1 have been tried
12 if no split then
13 break

14 return Sk−1 and {Tr}r∈Sk−1

5. EXPERIMENTS
Our objective is to investigate the effectiveness of our

methodology in producing summaries that are representa-
tive, compact, and readable. We note that computational
efficiency is not a major concern, as this is expected to be
an offline batch operation, and the proposed heuristics are
efficient. Greedy Synthesis completes in seconds on a ma-
chine with Intel Xeon CPU @ 2.90GHz. Partitional Syn-
thesis and Hierarchical Synthesis with a hundred ran-
dom initializations complete in a few minutes. If necessary,
these random trials are embarrassingly parallelizable.

5.1 Dataset
As input, we require paired sources of micro-reviews and

reviews concerning the same entities. For this, we turn to

Foursquare and Yelp. For reviews, we crawl Yelp to collect
all the reviews of the top 110 restaurants in New York City
with the most number of reviews as of March 2012. For
micro-reviews, we crawl Foursquare to collect all the tips
of the same 110 restaurants. Because some restaurants in
Foursquare have too few tips, we filter out 8 restaurants
with less than 50 tips each, and retain the remaining 102
restaurants for experiments. The statistics of this dataset
are shown in Table 1. On average, a restaurant has 145 tips.
Meanwhile, the average number of reviews per restaurant is
947. Since each review contains multiple snippets (i.e., para-
graphs), it results in an average of 3K snippets per restau-
rant. Each restaurant constitutes a distinct instance of the
micro-review summarization problem.

Min Max Average Median
#tips 51 498 145 133
#reviews 584 3,460 947 782
#snippets 1,263 12,298 3,117 2,612

Table 1: Statistics of 102 Restaurants in the Dataset

5.2 Comparison of Proposed Algorithms
We first compare the performance of the three proposed

algorithms in Section 4, both in terms of the MDL cost
optimization, as well as in terms of the nature of snippets
selected, for different values of the smoothing factor α.

Figure 1(a) shows the average MDL cost per restaurant
(in bits) achieved by each algorithm. Fewer bits are bet-
ter. Partitional Synthesis and Hierarchical Synthe-
sis achieve lower (better) MDL costs than Greedy Syn-
thesis. The first two approaches are heuristics that ex-
plore the solution space by adjusting the selected snippets
and tip assignments to lower the MDL cost. In contrast,
Greedy Synthesis selects the snippets one at a time, each
time selecting the best snippet in terms of the MDL cost.
Since every snippet selection is final, Greedy Synthesis
cannot lower its cost by changing a previously picked snip-
pet. Partitional Synthesis is also slightly better than
Hierarchical Synthesis, as the former has more flexibil-
ity in exploring the space of possible partitions for finding
the best one, while Hierarchical Synthesis is restricted
to always splitting one partition into two at any one time.

We then examine the selected snippets, and we observe
that there is a qualitative difference in the kinds of snippets
selected by the different algorithms. Figure 1(b) shows the
average number of snippets picked by each algorithm, while
Figure 1(c) shows the average length of those snippets in
terms of the number of words. Greedy Synthesis picks
many more snippets, but those snippets tend to be shorter.
At each step, Greedy Synthesis selects the snippet that
can encode a number of tips with the smallest average cost.
The model cost of a snippet is effectively amortized over the
number of tips covered (line 3). Therefore, the tendency
is to pick very short snippets, whose cost can be averaged
across a small number of tips. As a result, Greedy Syn-
thesis has to pick many of these short snippets to encode
all the tips. In contrast, Partitional Synthesis and Hi-
erarchical Synthesis consider the cost of the summary
as a whole, instead of looking at each snippet independently.
This results in a solution with fewer snippets that are more
substantial (longer), and can encode multiple tips.

44++�

,+.++�

,+2++�

,,,++�

,,0++�

,,4++�

+'+++,� +'++,� +'+,� +',� ,�

��
��
�

����������������&�

�����$�$��������
��� �����$��������
�������������$��������

+�

-+�

/+�

1+�

3+�

+'+++,� +'++,� +'+,� +',� ,�

(�
�
��
��
��
�
��
��
��
��

����������������&�

+�

,+�

-+�

.+�

/+�

+'+++,� +'++,� +'+,� +',� ,�

(�
�
��
��
��
��
�
��
��
��
�

����������������&�

�'�
�	������ �'��"������������������������ �'��#������	����������������

Figure 1: Comparison of Proposed Synthesis Algorithms

We observe that for all algorithms, as α increases, initially
the MDL cost decreases, and then increases again. On one
hand, with a smaller α, more bits are required to encode
a word in a tip that is “missing” from the corresponding
snippet. Therefore, the tendency is to pick more snippets, so
that at least one snippet would contain some rare words that
appear in a tip. With more snippets, each snippet only needs
to represent a small number of tips, favoring shorter snippets
that are more similar to tips. On the other hand, with a
larger α, fewer bits are required to encode a “missing” word.
The tendency is to pick fewer snippets that can represent
more tips, which lowers the model cost, but increases the
encoding cost. The trade-off between encoding and model
costs as α changes causes the U-shaped trend in Figure 1(a).

The best α seems to be 0.01, where Partitional Syn-
thesis and Hierarchical Synthesis reach the minimum,
and Greedy Synthesis is close to the minimum. Subse-
quently, we will use α = 0.01 as the default value.

5.3 Comparison with Existing Reviews
To validate the utility of synthesizing a “review”, instead

of just selecting one of the existing reviews, we now com-
pare the summaries produced by our algorithms against the
collection of existing reviews in the dataset.

Representativeness. To evaluate representativeness, we
map it to the notion of relevance in IR. Intuitively, a good
summary should be a highly relevant document to any of the
tips (when the latter are used as a queries). We thus propose
to evaluate representativeness within a retrieval framework.
We create a corpus consisting of the reviews and the sum-
mary we want to evaluate, and we use the tips as queries
against this corpus. We consider our summary to be good
if it is highly ranked for most of the tips. For the IR com-
ponent in our evaluation, we adopt the vector space model
[15]. Each document in our corpus (i.e., a review, or the
summary) is represented by a tf · idf vector, with dimen-
sionality equal to the vocabulary size. The tf value of a
word is the count of occurrences of the word in the docu-
ment. The idf is defined as log N

df
, where N is the total

number of reviews, and df is the number of reviews that
contain the word. Each query (i.e., a tip) is also represented
by a tf · idf vector, where idf is derived from reviews. If a
query term does not appear in any review, its idf is set to

logN , as if df = 1. The relevance of a document to a query
is the cosine similarity between their tf · idf vectors.

For each restaurant, we issue every tip in turn as a query,
and assign a rank to every document. We order the doc-
uments according to their average rank, and then compute
the representativeness score, which is expressed as percentile
rank. The best document will have 100%, which implies that
it outperforms all the other reviews.

Table 2 shows the percentile rank of our summaries, as
compared to all existing reviews. In this experiment we con-
struct the corpus for each restaurant by adding the summary
to be evaluated together with the reviews for this restau-
rant. The percentile rank is averaged across all restaurants
in the dataset. Table 2 shows that our three algorithms
produce summaries with very high percentile ranks, around
99.9%. The last column of the table shows the percentage
of restaurants for which our summaries obtain the highest
rank. Both Greedy Synthesis and Partitional Synthe-
sis have higher representativeness scores than all existing
reviews for 97% of the restaurants, whereas Hierarchical
Synthesis obtains 93%. Since our summaries are at the
top most of the time, this explains why the above percentile
ranks are very close to 100% (top rank).

While our summaries outperform the existing reviews for
the vast majority of query tips, it is also instructive to see
how other methods of selecting a review perform on the same
task. The middle three rows of Table 2 are different ways to
identify the“best”review. In this case the representativeness
score is computed for a corpus consisting of only the reviews
for a restaurant, not including the summaries.

Lowest MDL Review selects the review with the lowest
MDL score. This review scores very high percentile rank of
almost 93%, which is still lower than our summaries, validat-
ing the need for synthesizing a “review”, instead of selecting
just one review. Its very high percentile rank also validates
our MDL formulation in identifying a good review.

EffMaxCover Review is the review selected by the algo-
rithm in [18], where the goal is to select the review that
covers as many tips as possible, subject to an efficiency con-
straint (we follow the same settings as used in [18]). While
it still attains a high percentile rank of 79%, it does not
perform as well as our summaries. This is expected as it
is designed for a different problem (review selection) with a
different concern (efficiency constraint).

Method Representativeness Highest Rank
(percentile rank (percentage of
among reviews) restaurants)

Greedy Synthesis 99.97% 97.06%
Partitional Synthesis 99.99% 97.06%
Hierarchical Synthesis 99.89% 93.14%

Lowest MDL Review 92.94% 5.88%
EffMaxCover Review 79.36% 0.98%
Most Useful Review 60.76% 0.00%

Shortest Review 8.97% 0.00%
Median Review 51.91% 0.00%
Longest Review 84.33% 5.88%

Table 2: Comparison with Reviews: Representativeness

Most Useful Review selects the review with the highest
usefulness votes given by Yelp users. It has relatively low
percentile rank of around 60%. There are many factors af-
fecting how users cast their usefulness votes, which are not
always correlated to the comprehensiveness of the review,
which could explain the low representativeness score.

For completeness, we also include several reviews selected
based on length (number of words) alone. The results are
quite expected. Shortest Review is not representative, with
low percentile rank of around 9%. Unsurprisingly, Median
Review with median length also has percentile rank close
to the median, around 52%. Helped by its length, Longest
Review has high representativeness score of 84%, but this
comes at the cost of the compactness.

Compactness. Another concern is compactness. This
can be measured in a more straightforward manner, by count-
ing the number of words. We assign each review a percentile
rank, which measures the percentage of reviews are at least
as long (no better) as the review at hand. The last three
rows of Table 3 show that, as expected, Shortest Review has
100% percentile rank (most compact), with only 1.6 words
on average. Some reviews contain only one or two words
(e.g., “Amazing!”). Longest Review has 833 words (least
compact), whereas Median Review has 106 words.

Our objective is not to create the shortest summary (which
is trivial), but rather a representative summary of short
length. A reasonable target is to create a summary of length
comparable to the median length. Table 3 shows that indeed
both Partitional Synthesis and Hierarchical Synthe-
sis produce summaries that are very close to the median
length. Partitional Synthesis is slightly shorter, with
104.8 words, whereas Hierarchical Synthesis is slightly
longer, with 114.9 words. As previously explained, Greedy
Synthesis generates many more snippets, resulting in a
longer summary of 337.5 words. EffMaxCover Review is
also around the median, whereas Lowest MDL Review is
more compact, and Most Useful review is longer.

5.4 Comparison with Baselines
We now compare our summaries with those generated by

existing text summarization methods, which summarize the
tips directly without relying on reviews.

As baselines, we compare against two popular methods,
for which a public implementation is available: Opinosis2

[5], which is an example of abstractive summarization, and
Mead3 [20], which is an example of extractive summariza-

2kavita-ganesan.com/opinosis-summarizer-library
3http://www.summarization.com/mead/

Method Compactness
(# words) (percentile rank

among reviews)

Greedy Synthesis 337.5 8.8%
Partitional Synthesis 104.8 52.9%
Hierarchical Synthesis 114.9 49.7%

Lowest MDL Review 66.3 51.0%
EffMaxCover Review 114.7 50.5%
Most Useful Review 327.0 19.5%

Shortest Review 1.6 100.0%
Median Review 106.3 50.3%
Longest Review 833.2 0.2%

Table 3: Comparison with Reviews: Compactness

tion. For both, we use their default settings. As in [5], for
Mead, we turn off the effect of sentence position in text,
which is not relevant to our case. Both Opinosis and Mead
require as input the expected length of the summary. For a
fair comparison, we use the length of the summary produced
by Partitional Synthesis, our best-performing technique,
as an input parameter to Opinosis and Mead. For Mead,
we specify the same number of words. Opinosis outputs a
ranked set of sentences that meet some criteria, so we create
a summary by selecting the top sentences until we reach the
word threshold, or until we exhaust all the sentences.

For completeness, we include two versions of our algorithm
based on partitional synthesis. The original Partitional
Synthesis uses review snippets to summarize tips. Another
variant, which we call Partitional Synthesis with Tips,
does not rely on reviews at all, and instead creates a sum-
mary using tips (as snippets) to represent tips.

Benchmarking against Reviews. First, we conduct
the same experiment as in Section 5.3. Table 4 shows their
representativeness scores. Evidently, the Partitional Syn-
thesis based on review snippets is the best. It is better than
the tip-based variant, which suggests that using review snip-
pets is more effective than using tips only.

Both our variants are better than the baselines. Opinosis
has percentile rank of around 86%, and achieves the top rank
only for 23% of the restaurants. Mead has slightly better
percentile rank, with 90%, but worst top rank, with 12%.

Method Representativeness Highest Rank
(percentile rank (percentage of
among reviews) restaurants)

Partitional Synthesis 99.99% 97.06%
Partitional Synthesis
with Tips

98.86% 57.84%

Opinosis 86.01% 23.53%
Mead 90.78% 12.75%

Table 4: Comparison with Baselines: Representative-

ness (with respect to reviews)

Table 5 shows the comparison in terms of compactness.
As expected, Partitional Synthesis and Mead have very
similar lengths, both around 100 words. Partitional Syn-
thesis with Tips produces slightly shorter summary for
the same setting of α = 0.01. Opinosis is much shorter,
with around 42 words. This is because Opinosis tends to
generate very short sentences. Even after we use all the out-
put sentences, we may not attain the same length as the
others. To show that Opinosis is not disadvantaged, we

kavita-ganesan.com/opinosis-summarizer-library
http://www.summarization.com/mead/

also show the average number of sentences for various meth-
ods. Opinosis uses the most sentences, but because they
are shorter, it results in fewer words overall. The behav-
ior and the performance of Opinosis is reasonable, since its
main focus is on generating short blurbs from very similar
sentences, rather than a full-fledged summary.

Method Compactness #sentences
(# words) (percentile rank

among reviews)

Partitional Synthesis 104.8 52.9% 9.2
Partitional Synthesis
with Tips

82.8 61.6% 8.2

Opinosis 41.6 83.6% 10.8
Mead 104.5 53.3% 5.4

Table 5: Comparison with Baselines: Compactness

(with respect to reviews)

Head-to-head Comparison. The previous comparison
is indirect, since it compares each method against all re-
views, but not against each other. Here, we perform a
head-to-head comparison, by repeating the same retrieval
experiment for the different summarization techniques. In
this case the corpus consists of only the summaries gener-
ated by Partitional Synthesis, Partitional Synthesis
with Tips, Opinosis, and Mead, and for each query (tip),
we rank these four summaries. Table 6 shows the compari-
son in terms of representativeness.

Partitional Synthesis has the highest percentile rank
with 93%, as compared to 69% for Partitional Synthe-
sis with Tips, which in turn has higher percentile rank
than the baselines Opinosis with 47% and Mead with 41%.
Partitional Synthesis emerges at the top rank for 75%
of restaurants, significantly higher than the other methods.

Method Representativeness Highest Rank
(percentile rank (percentage of
among reviews) restaurants)

Partitional Synthesis 92.89% 75.49%
Partitional Synthesis
with Tips

69.36% 18.63%

Opinosis 47.30% 3.92%
Mead 40.69% 1.96%

Table 6: Comparison with Baselines: Representative-

ness (head-to-head)

Readability. A summary is ultimately meant for human
consumption. We thus want to evaluate the readability of
our summaries. Since there is no good way to assess read-
ability automatically, we rely on a user study. For this study,
we use the 20 restaurants with the highest number of tips.
We use five human judges, who are not related to this work,
and for each restaurant, we show each human judge the four
summaries by Partitional Synthesis, Partitional Syn-
thesis with Tips, Opinosis, and Mead respectively, in
random order, without identifying the methods. Each hu-
man judge is requested to give a rating from 1 to 5 to each
summary, where 1 (lowest) indicates a badly-written piece
of text that is not readable, and 5 (highest) indicates a very
well-written piece of text that is highly readable. We then
compute the average rating given by the judges.

Table 7 shows the readability scores of the four meth-
ods. The score of 4.23 (out of 5) for Partitional Syn-
thesis indicates that the human judges find the summaries

Method Readability Score
Partitional Synthesis 4.23
Partitional Synthesis with Tips 3.99
Opinosis 2.07
Mead 3.47

Table 7: Readability Scores

well-written and highly readable. This is also higher than
the score of 3.99 obtained by Partitional Synthesis with
Tips. Paired samples t-test shows that the difference is sta-
tistically significant at 5% level.

Both our variants score higher than the baselines. Mead,
which selects sentences from tips, has a lower readability
score of 3.47. Opinosis has a below-average score of 2.07.
This is expected since its summary consists of a collection
of blurbs. In addition, Opinosis relies on generating new
sentences, which is a hard task.

The overall ordering between methods is consistent among
all the judges. We also conduct a correlation analysis on how
the independent judges agree on the ratings of individual
summaries. For this, we measure the Pearson’s correlation
coefficient between any two judges, which ranges from -1
(anti-correlated) to 1 (perfectly correlated). Across the ten
pairs of judges, the correlation coefficient ranges from 0.4
to 0.7, with an average of 0.6. These correlation values are
high, indicating significant agreement between the judges.

Case Study. In Figure 2, we show example summaries
for the restaurant Eataly4. The summary by Partitional
Synthesis (Figure 2(a)) covers the various aspects of the
restaurant: the grocery store, the food (pasta, cheeses), the
wine, and the gelato. Overall it has consistency and con-
tinuity, and it successfully selects atomic snippets to cover
specific aspects (e.g., the part about the gelato comes from
a single snippet). The summary by Partitional Synthe-
sis with Tips (Figure 2(b)) is compact and dense, but is
not as descriptive and narrative. The summary of Opinosis
(Figure 2(c)) contains useful information and keywords, but
it is not presented in a flowing, articulate manner. In the
summary of Mead (Figure 2(d)) the individual sentences
(extracted from tips) are readable, but they tend to cap-
ture peculiarities (e.g., Jimmy Fallon, Sammy Hagar), rather
than things that are pertinent to the place. The gelato is
described in merely two words: Gelato Great!.

6. CONCLUSION
We introduce the problem of summarizing micro-reviews.

Our proposed approach is to synthesize a summary from
review snippets. The goal is a summary that is represen-
tative of the micro-reviews, yet compact and readable. To
balance the conflicting objectives of representativeness and
compactness holistically, we formulate the problem within
the Minimum Description Length (MDL) framework. Min-
imizing the MDL cost is NP-hard. Through a connection
to Uncapacitated Facility Location Problem (UFLP), we
establish an approximation guarantee of 1 + logn, where
n is the number of micro-reviews. We also propose three
heuristic algorithms to solve the problem. Experiments on
Foursquare and Yelp datasets show that our methodology
results in highly representative and compact summaries.

4https://foursquare.com/v/eataly-nyc/
4c5ef77bfff99c74eda954d3

https://foursquare.com/v/eataly-nyc/4c5ef77bfff99c74eda954d3
https://foursquare.com/v/eataly-nyc/4c5ef77bfff99c74eda954d3

I love this place. i come here to get anything and everything
Italian. Like many others have noted, this place is confusing.
It’s part food court, part grocery store, part coffee shop, part
bookstore. Eataly tries to be a one-stop shop for all things
Italian. They’ve got everything you’d want for a good Italian
dinner - fresh meat, seafood, pasta, cheese, etc. Loved the
fresh pasta in the Pizza and Pasta section. Also great place
to shop for everything Italian even if a little pricey. We put
our names in at the pasta place and went to have wine while
we waited. Order a bottle of wine, nibble on the cheese,
bread, meats, and olives. The gelato is also really good. I
got the pistachio gelato, and it was some of the best I’ve had.
When I get gelato, I want it to really taste like the flavor
that it is, and this gelato did not disappoint. Amazing. The
food was great! it was very crowded, but worth it.

(a) Partitional Synthesis

Try the pizza, the pasta, the wine, everything’s great here
50,000 square feet of pure Italian with a rooftop beer garden,
a cooking school, bakery, coffee shop, fresh pasta counter, a
butcher, & any pantry item you’ll need to play chef at home.
disregard the duplicate venues, this is the right one! This
place is great! Some of the best gelato I’ve ever tasted! Find
one of the only American foods in this fine Italian markets.

(b) Partitional Synthesis with Tips

fresh pasta , butcher , any pantry item you ’ll need to play
chef at home. a better value.../: it ’s a fun place to browse if
your in the area. the bakery and with $ 2,80 you get the best
onions focaccia you ’ve ever had. the pizza and the fettuccine
con coda alla vaccinara are both superb. sunday april 3rd
, renee and the derelicts redux performed great live music.
cooking school , bakery , coffee shop , fresh pasta counter ,
butcher. they make the whole eataly experience even better
and much more fun. fresh pasta. they will be back on the
17th. good food. great italian. the food is great. prime
rib sandwich. artisanal italian food and wine marketplace.
gelato is amazing. cooking school , coffee. redux performed
great. great live music. new york. hard to move. authentic
italian. hot chocolate. amazing food. delicious food. many
people. fresh vegetables. amazing place. reasonable prices.

(c) Opinosis

send your photos of food to: posteat.ly check out beer gar-
den 50,000 square feet of pure Italian with a rooftop beer
garden, a cooking school, bakery, coffee shop, fresh pasta
counter, a butcher, & any pantry item you’ll need to play
chef at home. Go to the pasta restaurant and get the cracked
pepper pa Try the entrance on 23rd to avoid the line to get
in crazy place with amazing Italian food & products. Amaz-
ing place for a seafood, charcuterie, cheeses, caviar, wine &
champagne lunch Can be obez at this place I love every-
thing about this place...panini, piazza for the cheese board,
lavazza espresso bar, beer garden, the market...their home-
made mozzarella is amazing! too crowded in lunch time, but
it worth it. at least try the gelato for desert after having a
bite at one of the food tents of the mad square park.

(d) Mead

Figure 2: Summaries for Eataly

7. REFERENCES
[1] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and

C. Faloutsos. Fully automatic cross-associations. In KDD,
2004.

[2] T. M. Cover and J. A. Thomas. Elements of information
theory. John Wiley & Sons, 2012.

[3] U. Feige. Vertex cover is hardest to approximate on regular
graphs. Technical report, Citeseer, 2003.

[4] K. Filippova. Multi-sentence compression: Finding shortest
paths in word graphs. In COLING, 2010.

[5] K. Ganesan, C. Zhai, and J. Han. Opinosis: a graph-based
approach to abstractive summarization of highly redundant
opinions. In COLING, 2010.

[6] K. Ganesan, C. Zhai, and E. Viegas. Micropinion
generation: an unsupervised approach to generating
ultra-concise summaries of opinions. In WWW, 2012.

[7] P. D. Grünwald, I. J. Myung, and M. A. Pitt. Advances in
minimum description length: Theory and applications.
MIT Press, 2005.

[8] D. S. Hochbaum. Heuristics for the fixed cost median
problem. Mathematical Programming, 1982.

[9] M. Hu and B. Liu. Mining and summarizing customer
reviews. In KDD, 2004.

[10] K. Jain and V. V. Vazirani. Approximation algorithms for
metric facility location and k-median problems using the
primal-dual schema and lagrangian relaxation. JACM,
2001.

[11] T. Lappas, M. Crovella, and E. Terzi. Selecting a
characteristic set of reviews. In KDD, 2012.

[12] T. Lappas and D. Gunopulos. Efficient confident search in
large review corpora. In ECML/PKDD, 2010.

[13] N. Lazic, B. J. Frey, and P. Aarabi. Solving the
uncapacitated facility location problem using message
passing algorithms. In AISTATS, 2010.

[14] Y. Lu, P. Tsaparas, A. Ntoulas, and L. Polanyi. Exploiting
social context for review quality prediction. In WWW,
2010.

[15] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval, volume 1. Cambridge University
Press, 2008.

[16] X. Meng and H. Wang. Mining user reviews: from
specification to summarization. In ACL-IJCNLP, 2009.

[17] R. Mihalcea and P. Tarau. TextRank: Bringing order into
texts. In ACL, 2004.

[18] T.-S. Nguyen, H. W. Lauw, and P. Tsaparas. Using
micro-reviews to select an efficient set of reviews. In CIKM,
2013.

[19] A. Noulas, S. Scellato, C. Mascolo, and M. Pontil. An
empirical study of geographic user activity patterns in
foursquare. ICWSM, 2011.

[20] D. R. Radev, H. Jing, M. Styś, and D. Tam.
Centroid-based summarization of multiple documents.
Information Processing & Management, 2004.

[21] J. Rissanen. Modeling by shortest data description.
Automatica, 1978.

[22] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation
algorithms for facility location problems. In ACM
Symposium on Theory of Computing, 1997.

[23] H. Sun, A. Morales, and X. Yan. Synthetic review
spamming and defense. In KDD, 2013.

[24] P. Tsaparas, A. Ntoulas, and E. Terzi. Selecting a
comprehensive set of reviews. In KDD, 2011.

[25] M. Ye, P. Yin, and W.-C. Lee. Location recommendation
for location-based social networks. In SIGSPATIAL, 2010.

[26] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to information retrieval. TOIS,
2004.

[27] L. Zhuang, F. Jing, and X.-Y. Zhu. Movie review mining
and summarization. In CIKM, 2006.

	Introduction
	Related Work
	Problem Formulation
	Preliminaries
	Problem Definition
	Complexity and Approximability

	Algorithms
	Greedy Synthesis
	Partitional Synthesis
	Hierarchical Synthesis

	Experiments
	Dataset
	Comparison of Proposed Algorithms
	Comparison with Existing Reviews
	Comparison with Baselines

	Conclusion
	References

