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ABSTRACT
Link recommendations are critical for both improving the
utility and expediting the growth of social networks. Most
previous approaches focus on suggesting links that are highly
likely to be adopted. In this paper, we add a different per-
spective to the problem by aiming at recommending links
that also improve specific properties of the network. In
particular, our goal is to recommend to users links that if
adopted would improve the user centrality in the network.
Specifically, we introduce the centrality-aware link recom-
mendation problem as the problem of recommending to a
user u, k links from a pool of recommended links so as to
maximize the expected decrease of the sum of the shortest
path distances of u to all other nodes in the network. We
show that the problem is NP-hard, but our optimization
function is monotone and sub-modular which guarantees a
constant approximation ratio for the greedy algorithm. We
present a fast algorithm for computing the expected decrease
caused by a set of recommendations which we use as a build-
ing block in our algorithms. We provide experimental results
that evaluate the performance of our algorithms with respect
to both the accuracy of the prediction and the improvement
in the centrality of the nodes, and we study the tradeoff
between the two.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data mining; E.1 [Data
Structures]: Graphs and networks

Keywords
Probabilistic Networks, Link Recommendations, Node Cen-
trality, Social Networks

1. INTRODUCTION
Link recommendations constitute an important task in so-

cial networks. Recommending to network users connections
of potential interest helps them grow their social circle and
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increases the added value of the social experience. At the
same time, link recommendations are beneficial to the net-
work as a whole, since they expedite the network growth,
and they increase the overall user engagement. Therefore,
substantial research effort has been devoted to producing
recommendations of high accuracy [14]. Most previous re-
search on link recommendation focuses on predicting or es-
timating the likelihood of the connections being adopted by
the user. Various approaches have been proposed to this
end, based on exploring structural properties of the network,
attributes of the users, previous user interactions, or other
factors [14, 2, 25].

In this paper, we add a new perspective to the problem by
aiming at recommending links that if adopted by the users
would lead to networks with the small world property, i.e.,
short paths between users. This is an important property,
since it improves connectivity among the nodes of the net-
work and facilitates and amplifies dynamic processes. For
instance, users of professional networks want to be close to
other nodes in the network as an indicator of their indi-
vidual importance. Moreover, the small world phenomenon
helps social network users spread their content faster on the
network. At the same time, network owners can benefit
from small average shortest paths, since this is one of the
key properties that helps viral marketing and information
diffusion. Therefore, it is in the interest of both the net-
work as a whole, and of the individual users to maintain
and strengthen the smaller world phenomenon.

In particular, we assume that we are given as set C of link
recommendations for user u along with an estimation of the
probability pe of each link e in C being adopted by u and
added to the network. We assume that these recommenda-
tions are produced by some existing link recommendation
algorithm. Given a number k of links to recommend to u,
we want to select k of the links in C so as to increase the
“centrality” of u, that is, minimize its shortest path distance
to the other nodes in the network. Since depending on pe,
the user may or may not accept a particular link, the ad-
dition of the links to the network results in a probabilistic
graph, and the decrease in the shortest path lengths is a
random variable. Thus, our objective becomes to maximize
the expected reduction in the shortest path lengths.

There is a natural tradeoff between the accuracy (likeli-
hood to be adopted) and the utility (improvement in cen-
trality) of the link recommendations. Links that connect to
“close-by” users are likely to be adopted but do not improve
the centrality of the node. Links that link to “far-away”
nodes are less likely to be adopted but they result in sig-



nificant decrease in the distances with the remaining graph.
The expected reduction is an objective function that com-
bines naturally the utility and the accuracy of the recom-
mendations. We should note that our goal is not to propose
yet another link recommendation algorithm. Instead, we are
interested in selecting from the results of an existing link rec-
ommendation algorithm a set of links that result in a large
reduction in the shortest path distances of a node in expec-
tation. In this way, we combine the likelihood of the link to
appear with its effect on the centrality of the node.

Although there has been some previous work on selecting
edges to add to a graph so that specific criteria are met, such
as minimizing the average all-pair shortest path distances
(e.g., [18, 19]), or improving the average closeness centrality
of a specific node ([4, 8]), our work is the first to consider
the addition of probabilistic edges. We make the following
contributions:

• We define the novel problem of Centrality-Aware Link
Recommendations, where given a set of link recom-
mendations and their likelihood, we aim to select k
recommendations that maximize the reduction of the
expected distances of the node to the rest of the graph.

• We show that our problem is NP-hard, but our objec-
tive function is monotone and submodular, and as a
result the greedy algorithm gives a solution with con-
stant approximation factor. We also propose an effi-
cient algorithm for computing the expected reduction
by exploiting the properties of our problem.

• We evaluate our approach experimentally using real
datasets and link recommendations produced by two
commonly used recommendation algorithms. We com-
pare the efficiency and effectiveness of our algorithms
under different settings, and we demonstrate that we
can achieve a sizeable reduction in distances with an
acceptable sacrifice in prediction accuracy. We also
report experimental results that quantify the trade-off
between link-prediction accuracy and centrality utility.

The remainder of this paper is structured as follows. In
Section 2, we present related work, in Section 3, we provide
the formal definition of our problem. Section 4 includes
complexity results and Section 5 our algorithms. In Section
6, we present the results of our experimental evaluation.
Section 7 concludes the paper.

2. RELATED WORK
The problem of minimizing the average all-pairs short-

est path distance via edge addition was previously studied
in [18, 19, 17]. Papagelis et al. [18, 17] study the problem of
adding k edges, from the set of missing edges of the graph,
in order to minimize the average shortest paths in the graph.
In [19], we consider a variation of the problem where the set
of candidate edges is given as an input, and the goal is to
select a subset of k of them. These works do not focus on
link recommendations, and they do not consider probabilis-
tic edges.

The idea of promoting graph properties via link recom-
mendations is explored by Li et al. [12], where they re-rank
link recommendations in order to promote information dif-
fusion in a social network. Also, Chaoji et al. [3] consider as
input a set of recommended links and compute k edges per

node that boost content spread in the network. Both these
works focus on maximizing diffusion spread. Maximizing
the reduction in average network distances poses a different
set of challenges.

The average shortest path length is related to the aver-
age closeness centrality of nodes in the graph. Ishakian et
al. [8] study the problem of finding the k edges whose addi-
tion to the graph maximizes the centrality of a specific tar-
get node. The same problem was considered by Crescenzi
et al. [4], where they show that the greedy algorithm pro-
vides a (1 − 1/e)-approximation factor, and that this ap-
proximation bound is tight. Sariyüce et al. [21] propose
an incremental algorithm to efficiently update the closeness
centrality values under changes in network topology. Mey-
erson and Tagiku [15] study the problem of finding the k
edges whose addition minimizes the shortest path distances
between all pairs of nodes. They prove that several vari-
ations of the problem, including the single source shortest
paths, are NP-hard and they provide a O(1) approximation
algorithm. Tong et al. [22] search for the k edges whose
addition will best enable the propagation of information in
the network under the SIS model [5]. Lazaridou et al. [10]
identify the set of top-k pairs of nodes whose distances are
reduced the most as the result of edge additions. None of
these works considers the case of probabilistic edges and ex-
pected centrality, or link recommendations.

The problem of finding shortest paths in a graph with in-
dependent randomly distributed edge lengths is known to
be #P-complete [23]. Frieze and Grimmett [7] present a
formula for computing the exact expected shortest path dis-
tance between two nodes, but it requires the knowledge of
all the different paths between the two nodes. The enumer-
ation of the paths between two nodes in a network is also
known to be #P-complete [23]. Frank [6] uses Monte Carlo
results to develop a method for computing shortest paths in
probabilistic graphs.

There is a significant amount of work on problems over
probabilistic graphs. For example, Potamias et al. [20] con-
sider the problem of computing the k nearest neighbors, and
Kollios et al. [9] study clustering on probabilistic graphs.
However, the problem we study in this paper is novel.

Finally, there is a large body of work on the problem of
link recommendations [14, 2, 25]. As mentioned earlier, our
goal in this paper is not to introduce a new recommendation
algorithm. Instead, we propose selecting from the recom-
mendations of an existing algorithm those links that could
improve network properties.

3. PROBLEM FORMULATION
We consider as input to our problem a graph G = (V,E)

and a set C of link recommendations for user u along with
their probability of being adopted by u. In particular, C =
{(e, pe) : e /∈ E, pe ∈ [0, 1]} consists of a set of candidate
edges incident to u not present in G, where each edge e ∈ C
is associated with the probability pe that e will appear in
the network. We assume that the probability pe of link e =
(u, v) is provided by some link recommendation algorithm
that estimates pe based on the structural properties of the
graph (e.g., the number of neighbors that u and v have in
common), on attribute values of the nodes (e.g., on how
similar u and v are, by exploiting homophily), or other fac-
tors. We will refer to the edges of the candidate set C as
probabilistic edges.



Under this setting, we study the problem of identifying
the set S ⊆ C of k edges such that the addition of the edges
in S to graph G minimizes the expected shortest path lengths
of node u to all other nodes in G.

Given a subset S ⊆ C of the candidate edges, we use G̃S

to denote the probabilistic graph that results by adding the
set of edges S to the graph G. Let DG̃S

(u, v) denote the
random variable whose value is the length of the shortest

path distance between u and v in the graph G̃S . To com-
pute the expectation E[DG̃S

(u, v)] we need to consider all

possible 2|S| graphs that may result by the materialization
of the edges in S. Each graph has a specific probability to
appear. Given a subset of edges F ⊆ S, the probability of
exactly these edges appearing in the graph is equal to:

P (F ) =
∏
e∈F

pe
∏

e∈S\F

(1− pe)

Now, let dG(u, v) be the shortest path distance between
nodes u and of v in the deterministic graph G, and let G∪F
denote the deterministic graph that results from the addi-
tion of the edges in F to G. Then, the expected shortest
path distance between u and v, after the addition of the
probabilistic set of edges S to the graph G is equal to:

E[DG̃S
(u, v)] =

∑
F∈2S

P (F )dG∪F (u, v) (1)

where, 2S denotes the powerset of the set S.
Let LG(u) =

∑
v∈V dG(u, v) denote the sum of shortest

path lengths of node u to all the nodes in a graph G. This
value is directly connected to the centrality of node u; a
node with short paths to other nodes is a central node in
the graph. We also define LG̃S

(u) =
∑

v∈V E[DG̃S
(u, v)] to

be the expected sum of shortest path lengths of node u in the

probabilistic graph G̃S . The addition of any edge in a graph
can only reduce the shortest path lengths of u. This allows
us to define Ru(S) = LG(u) − LG̃S

(u) to be the expected
reduction in the shortest path lengths of u caused by the
addition of the probabilistic edge set S to the graph G. We
are looking for the set S of size k that maximizes Ru(S), for
a given u. We formally define our problem as follows.

Problem 1. [Centrality-Aware Link Recommenda-
tions (CALR)]. Given a graph G = (V,E), a user u, a
positive integer k, and a candidate set C = {(e, pe) : e /∈ E,
pe ∈ [0, 1]} of probabilistic edges incident to u recommended
by a link-recommendation algorithm, select a set S ⊆ C of
size k to recommend to u, such that Ru(S) is maximized.

4. COMPLEXITY ANALYSIS
In this section we study theoretically the CALR problem.

First, we give a formula for the efficient computation of the
expected reduction in the shortest path length between two
nodes. We then show that the CALR problem is NP-hard
and we consider approximate solutions.

4.1 Expected single source shortest path length
computation

The computation of the expected shortest path length be-
tween two nodes in a general probabilistic graph is known
to be a #P-complete problem, since it requires the consid-
eration of all possible paths between the two nodes, which,
in the general case, may be exponentially many. However,

in our setting, where the probabilistic edges are all incident
on a single node u, and we are interested in the single source
paths from u, we can avoid this computation thanks to the
following property.

Property 4.1. Given a deterministic graph G, a target
node u, and a set of probabilistic edges S all incident on u,
any simple path from u to any other node in the probabilistic

graph G̃S uses at most one probabilistic edge e ∈ S.

Given Property 4.1, for a node u, and a target node v,
we only need to consider |S| shortest paths between nodes u
and v. However, using Equation (1) to compute the expected
shortest path length between u and v is still expensive, since
it considers all 2|S| possible materializations of the proba-
bilistic edges. We now consider a more efficient computation
of the shortest path length between node u and a node v.

For a random variable X that takes natural values be-
tween 1 and N , the expected value of X can be computed
as E[X] =

∑N
i=1 P [X ≥ i]. Therefore, we can compute the

expected shortest path length between source node u and a

node v in the probabilistic graph G̃S as follows.

E[DG̃S
(u, v)] =

dmax∑
i=1

P [DG̃S
(u, v) ≥ i] (2)

where dmax = dG(u, v) is the length of the shortest path
between u and v in the deterministic graph G.

To compute the probability P [DG̃S
(u, v) ≥ i] we need to

consider the effect of the addition of each edge to the graph
G. We define C` = {e ∈ C : dG∪e(u, v) = `} to be the set
of candidate edges such that when added individually to the
initial graph G the shortest path between u and v in the
deterministic graph G ∪ e has length `. Note that Cdmax

is the set of edges whose addition to G does not reduce
the shortest path between u and v. Also, for some i, 1 ≤
i ≤ dmax, we define Mi =

⋃
1≤`<i C` to be the set of edges

whose addition to the graphG results in shortest path length
strictly less than i.

Now, consider a set S ⊆ C of candidate edges, and the

resulting probabilistic graph G̃S . The probability that the

distance between u and v in the graph G̃S is at least i is
equal to the probability that none of the edges in S ∩Mi

appear in the graph. Therefore, we have:

P [DG̃S
(u, v) ≥ i] =

∏
e∈S∩Mi

1− pe (3)

Combining Equations (2) and (3) we can compute the
expected length of the shortest path between source node u

and a node v in the probabilistic graph G̃S in polynomial
time. We can then compute the expected sum of shortest
path lengths LG̃S

(u), and the expected reduction Ru(S) in
the sum of shortest paths.

We note that Property 4.1, and all the ensuing analysis
holds also for directed graphs, since any simple path from
the target vertex u to any other vertex uses at most one
outgoing probabilistic edge from u. Thus, the algorithms
described in Section 5 for undirected graphs can easily be
modified to work for the directed case.

4.2 Hardness and Approximation
Our problem contains as a special case the deterministic

case where all candidate edges have probability one. This



problem is known to be NP-hard [15]. Given that the prob-
lem is NP-hard we look for approximation algorithms with
provable approximation guarantees. To this end we will
show that our optimization function Ru(S) is monotone and
submodular.

Let Ω be a set, and let f : 2Ω → R denote a set func-
tion over Ω. The function f is (increasingly) monotone if
for every set S ⊂ Ω and every x ∈ Ω \ S it holds that
f(S) ≤ f(S ∪ x). The function f is submodular, if for
every X,Y ⊆ Ω with X ⊆ Y and every x ∈ Ω it holds
that f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x})− f(Y ). It is well
known [16] that when maximizing a monotone and submod-
ular set function under cardinality constraints, the simple
greedy algorithm that always adds to the set the element
with the largest marginal gain has approximation factor
1− 1/e where e is the base of the natural logarithm.

We will now show that our function is monotone and sub-
modular.

Lemma 4.2 (Monotonicity). The function Ru(S) is
increasingly monotone.

Proof. Given a set S ⊆ C and an edge eC \ S, we will
prove that P [DG̃S∪e

(u, v) ≥ i] ≤ P [DG̃S
(u, v) ≥ i], that

is, the probability of having a long path between u and v
decreases as we add edges to the set S. Then, from Equa-
tion (2) it follows that for every node v, E[DG̃S∪e

(u, v)] ≤
E[DG̃S

(u, v)], and thus LG̃S∪e
(u) ≤ LG̃S

(u). Since LG(u)

is constant, it follows that Ru(S ∪ e) ≥ Ru(S), that is, the
function is increasingly monotone.

Without loss of generality assume that e ∈ C` for some
`, 1 ≤ ` ≤ dmax. It follows that e ∈ Mi for all i > `.
From Equation (3) it follows that P [DG̃S∪e

(u, v) ≥ i] =

P [DG̃S
(u, v) ≥ i] for i ≤ `, and P [DG̃S∪e

(u, v) ≥ i] = (1 −
pe)P [DG̃S

(u, v) ≥ i] for i > `, which proves our claim.

Lemma 4.3 (Submodularity). The function Ru(S) is
submodular.

Proof. Similar to before, in order to show that the func-
tion Ru(S) is submodular, we will work with the probabili-
ties P [DG̃S

(u, v) ≥ i]. In the following, for a fixed pair (u, v),

we will use PS(i) to denote the probability P [DG̃S
(u, v) ≥ i].

Let S and S′ be two sets of probabilistic edges such that
S ⊆ S′, and let e be a candidate edge not in S′. It is not
hard to see that in order to prove that Ru(S ∪ e)−Ru(S) ≥
Ru(S′ ∪ e)−Ru(S′), it suffices to show that for every (u, v),
PS(i)− PS∪e(i) ≥ PS′(i)− PS′∪e(i), for 1 ≤ i ≤ d.

Without loss of generality assume that e ∈ C` for some
`, 1 ≤ ` ≤ dmax. Similar to the previous proof, for i ≤ `,
we have that PS∪e(i) = PS(i), and PS′∪e(i) = PS′(i) and
thus our claim holds. For i > ` we have that PS∪e(i) =
(1−pe)PS(i), and therefore PS(i)−PS∪e(i) = pePS(i). Sim-
ilarly, PS′(i)− PS′∪e(i) = pePS′(i). From the monotonicity
property we have that PS(i) ≥ PS′(i), and thus our claim
holds.

Corollary 4.4. The greedy algorithm for the CALR prob-
lem achieves (1− 1/e) approximation ratio.

5. ALGORITHMS
In this section we present algorithms for the CALR prob-

lem. We consider the Greedy algorithm and other more
efficient heuristics.

Algorithm 1 The Greedy algorithm

Input: Graph G, node u, set of probabilistic edges C
Output: Set S of k recommendations to u

1: S = ∅
2: for 1 ≤ i ≤ k do
3: for e ∈ C do
4: Compute Ru(S ∪ e)
5: end for
6: e∗ = arg maxe∈C{Ru(S ∪ e)}
7: S = S ∪ e∗
8: C = C \ e∗
9: end for

10: return S

Algorithm 2 The ESSSP algorithm

Input: Graph G, node u, set of probabilistic edges S
Output: LG̃S

(u)

1: Compute dG(u, v), ∀v ∈ V
2: Initialize bv(`) = 1, ∀v ∈ V , 1 ≤ ` ≤ dG(u, v)
3: for e = (u, x) ∈ S do
4: Compute dG(x, v), ∀v ∈ V
5: for v ∈ V \ u do
6: if dG(x, v) + 1 < dG(u, v) then
7: ` = dG(x, v) + 1
8: bv(`) = bv(`) ∗ (1− pe)
9: end if

10: end for
11: end for
12: SUM = 0
13: for v ∈ V \ u do
14: prob = 1
15: for ` = 1...dG(u, v)− 1 do
16: prob = prob ∗ bv(`)
17: SUM = SUM + prob
18: end for
19: end for
20: return LG̃S

(u) = SUM

5.1 The Greedy algorithm
The Greedy algorithm builds the solution set S incremen-

tally, starting with the empty set. Given as input the node
u and the set of candidate edges C, in each iteration it se-
lects the edge e∗ ∈ C \ S whose addition causes the largest
reduction in the expected distances of node u. The outline
of the algorithm is shown in Algorithm 1.

An important step in the execution of the Greedy algo-
rithm is step 4, where we compute the expected reduction
caused by the addition of edge e. This entails the computa-
tion of the expected lengths of the shortest paths between u
and all nodes in the graph. In the general case this is hard,
since it would require considering an exponential number of
paths. However, as we have discussed in Section 4 we can
compute this quantity efficiently by exploiting the properties
of our problem.

We now describe the computation of LG̃S
(u), the expected

length of single-source shortest paths for a node u for a given
set S, in detail. For convenience in this computation we use
a slight variation of the Equation (3). Namely, given the
sets C`, 1 ≤ ` ≤ dmax, and a set of edges S, let S` = C` ∩S.



For some value 1 ≤ i ≤ dmax, we have:

P [DG̃S
(u, v) ≥ i] =

i−1∏
`=1

1− P (S`) (4)

where P (S`) = 1−
∏

e∈S`
(1− pe) is the probability that at

least one edge in S` appears in the graph, and 1− P (S`) is
the probability that no edge in S` appears in the graph.

The Expected Single Source Shortest Path (ESSP) Algo-
rithm (shown in Algorithm 2) proceeds as follows. We first
compute all single-source shortest paths from u. We refer to
the length of the shortest path between u and another node
v, in the initial deterministic graph G, as dG(u, v). For each
node v, we maintain a vector bv, of size dG(u, v), where bv(`)
contains the probability that there is no edge e ∈ S whose
addition to G results in a shortest path between u and v of
length ` in the deterministic graph G ∪ e. For a given v,
this value corresponds to the probability 1 − P (S`). Given
the bv(`) values, for all v ∈ V , 1 ≤ ` ≤ dG(u, v), we can ap-
ply in turn Equations (4) and (2) to compute the expected
shortest path length between u and v as E[DG̃S

(u, v)] =∑dG(u,v)
i=1

∏i−1
`=1 bv(`). Summing over all nodes v ∈ V gives

us LG̃S
.

We compute the bv(`) values incrementally. Initially, we
set bv(`) = 1, for all v ∈ V , 1 ≤ i ≤ dG(u, v). We then pro-
cess the edges in S one by one. For each edge e = (u, x) ∈ S,
with probability pe, we compute all single-source shortest
paths from x in the deterministic graph G, and we iden-
tify the nodes v for which dG(x, v) + 1 < dG(u, v), that is,
the addition of e created a new shortest path between u
and v through node x. In this case, the edge e creates a
shorter path between u and v of length ` = dG(x, v) + 1
with probability pe. We update the value bv(`) to repre-
sent the new correct probability of non existence of an edge
whose addition in G creates a shortest path of length `, i.e.,
bv(`) = (1− pe) · bv(`). After processing all edges in S, the
vector bv for node v has values bv(`) = 1− P (S`).

The ESSSP algorithm has complexity O(|S|(m+n)+nδ),
where m is the number of edges and δ is the diameter of
the deterministic graph G, and uses space O(nδ). The m
factor comes from the BFS traversal in step 4. The Greedy
algorithm performs k|C| calls of the ESSSP algorithm, where
|S| takes values 1, ..., k, resulting in complexity O(k2|C|(m+
n)+k|C|nδ). The space complexity of the Greedy algorithm
is also O(nδ).

5.2 Efficient Heuristics
The Greedy algorithm has known approximation guaran-

tees: it computes an (1− 1/e) approximate solution for the
CALR problem. However, since it needs to recompute the
expected reduction caused by an edge in each iteration, it
is slow, and does not scale well for large networks. We now
consider some efficient heuristics, with no provable guaran-
tees, in order to compare the trade-off between efficiency
and effectiveness of our methods.

Top Edges: This method assigns to each edge e ∈ C, a
score equal to the expected reduction in the shortest paths
of u achieved by the addition of edge e to G, i.e., Ru(e).
Since we consider every edge independently, we do not need
to run Algorithm 2 for computing the expected reduction
Ru(e). We can instead compute for each node v where
dG(u, v) < dG∪e(u, v) the difference dG(u, v) − dG∪e(u, v),
sum the differences over all such nodes, and multiply by pe.

Computing the values dG(u, v) and dG∪e(u, v) can be done
easily by performing two BFS traversals, one on the graph
G and one on the graph G ∪ e. Then, the edges are sorted
according to their score and the k edges with the greater
score are returned. The time complexity of this method is
O(|C|(m+ n)).

Deterministic Greedy Algorithm: This is a variation
of the greedy algorithm that ignores the probabilities of the
edges. This method also builds the solution set S incre-
mentally, starting with the empty set. In each iteration it
selects the edge (u, v) ∈ C \S that maximizes the reduction
LG∪S(u)−LG∪S∪e(u) on the shortest paths of u between the
deterministic graphs G∪S and G∪S∪e. The edge e with the
maximum reduction is added to the solution set S. Com-
puting the reduction caused by an edge can be done with
a BFS traversal. Each iteration takes time O(|C|(m + n)),
which implies a total running time O(k|C|(m+n)); the space
complexity is linear.

6. EXPERIMENTS
The goals of our experiments are three-fold. First, we ad-

dress the practical problem of estimating edge probabilities
from the scores of a link recommendation algorithm. Then,
we focus on the effectiveness of the algorithms and of the
CALR approach in general. In particular, we highlight how
the CALR approach achieves a balance between the accu-
racy of the recommendations, and the utility of the network
resulting from the successful recommendations. We study
and quantify this tradeoff. Finally, we evaluate the efficiency
of our algorithms for the CALR problem.

6.1 Baselines
In our experiments we consider all the algorithms that we

defined in Section 5. We use Greedy to denote the Greedy
algorithm, TopEdges to denote the algorithm that selects the
top-k edges according to their Ru(e) score, and D-Greedy to
denote the deterministic Greedy algorithm. We also consider
the following baselines that do not take into account the
effect of the edge addition on the node centrality.

Most probable: In this method we select the k edges
with the highest probability. The algorithm simply sorts the
edges in the candidate set C according to their probability;
ties are resolved arbitrarily. This method corresponds to
a traditional link recommendation algorithm. It serves the
purpose of understanding the trade-off between prediction
accuracy and the decrease in the shortest path distances.
We will refer to this method as MostProb.

Random: In this method we randomly select k edges from
the candidate set C. Note that this is not a completely ran-
dom selection (as it is used in [13], where the random predic-
tor selects randomly from all non-existent edges), since we
select randomly from the set C which already contains links
that are relevant to the user. We will refer to this method
as Random.

6.2 Datasets and Recommendation Algorithms
We use two different datasets in our experiments, each

corresponding to a different type of network. Both datasets
contain information about the time when each edge was cre-
ated.

• The Facebook dataset [24] consists of a social graph
from the Facebook New Orleans network. Nodes rep-
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Figure 1: Empirical probability function for the normalized scores (log-log scale).

Table 1: Dataset characteristics. r(AA) and r(RPR):
number of nodes for which AdamicAdar and Rooted-
PageRank produce sufficient number of recommen-
dations; F : the number of edges that appeared after
the initial instance.

dataset |V | |E| r(AA) r(RPR) F

Facebook 53,306 555,763 46,687 53,306 242,929

DBLP 96,516 364,907 47,121 96,515 175,238

resent users, and edges user friendships. The dataset
contains the activity of the network from September
2006 until February 2009.

• The DBLP dataset1 [11] consists of a collaboration
graph of authors of computer science papers, where
an edge between two authors represents a common
publication. We consider the DBLP graph contain-
ing authors and co-authorship relationships between
1990 and 2013.

Our algorithms take as input an initial set of link recom-
mendations where each link is associated with a score that
determines the confidence of the algorithm in the prediction.
We use two different link recommendation algorithms in our
experiments: The AdamicAdar (AA) [1] algorithm, and the
RootedPageRank (RPR) [13] algorithm2. For each node u
the link recommendation algorithms generate a candidate
set Cu, that contains the links with the highest scores. We
set |Cu| = 20, since in practice the number of recommended
links is small and therefore this way we can select diverse,
yet relevant, links.

For each dataset we create two graph instances: One con-
sisting of edges up to a specific time, and one consisting
of all edges. The first graph instance is given as input to
the link recommendation algorithm to produce the candi-
date link recommendations. We choose the initial instances
so as to meet three conditions: (i) the number of nodes is
sufficiently large; (ii) there is a significant number of links
that appear after the initial instance, and (iii) the link rec-
ommendation algorithms can produce a sufficient number of
recommendations for many of the nodes in the graph.

For the Facebook dataset, the initial instance is the largest
connected component of the graph until November 2007.
The characteristics of the graph are shown in Table 1. For
this instance the AdamicAdar method produces at least 20

1KONECT, http://konect.uni-koblenz.de/
2In our experiments, we used the implementa-
tions in the LPmade software package, available at
http://mloss.org/software/view/307/ .

recommendations for 87.5% of the nodes, while the Root-
edPageRank algorithm provides a sufficient number of rec-
ommendations for all nodes. For the DBLP dataset, the
initial instance is constructed by considering the edges that
appeared until the year 2000. To deal with the sparsity
of the data, which inhibits the link recommendation algo-
rithms, we iteratively delete the nodes with degree less that
3. The characteristics of the resulting graph are shown in
Table 1. For this dataset, the AdamicAdar method produces
a sufficient number of link recommendation for about half
of the nodes, while the RootedPageRank produces at least
20 recommendations for all nodes.

We evaluate the prediction accuracy of our methods by
considering the new edges that appear in the final instance
of the dataset among the nodes that are included in the
first instance. For both datasets, the number of edges that
appear in the final instance (the last column of the table) is
sufficiently large.

6.3 The edge probability function
The link recommendation algorithms provide scores that

correspond to the confidence of the algorithms in their rec-
ommendation. Intuitively, the higher the score, the more
likely the recommendation to be accepted. However, the
score itself does not give the probability that the recom-
mendation is successful. We thus need a way to transform
these scores into probabilities, as needed by the CALR prob-
lem. To this end, we follow the following process. We first
normalize the scores by dividing with the maximum score
over all predictions, so as to obtain values between 0 and
1. Given an edge with normalized score x, we then apply
a function f(x) to shape the edge probability function. We
consider four different functions in our experiments: (i) The
logarithmic function f1(x) = 0.4 log10(x) + 1; (ii) The linear
function f2(x) = x; (iii) The power-law function f3(x) = x3;

(iv) The exponential function f4(x) = 210(x−1). Each func-
tion yields probabilities with different properties.

We also compute the empirical probability function of an
edge to appear in the graph given its score. Given all the
(normalized) scores for all predictions of the recommenda-
tion algorithm, we create an equal-frequency histogram, where
each bucket contains 10, 000 scores. We then count the frac-
tion of edges in each bucket that appear in the final instance
of the network. This defines the probability of an edge with
a score that falls within the bucket range to appear in the
graph, yielding a probability function.

We computed the empirical probability function for all
network and link recommendation algorithm pairs that we
consider. The resulting probability functions (in log-log
scale) are shown in Figure 1. No clear and consistent pat-
tern emerges from these plots. The functions in Figure 1.a
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Figure 2: Relative performance of the algorithms for different probability functions on the Facebook dataset,
with RootedPageRank recommendations, for k = 5.

Table 2: Effectiveness of the methods in terms of the expected reduction R̄ and the expected accuracy Ā.
Facebook DBLP

AdamicAdar RootedPageRank AdamicAdar RootedPageRank

k = 2 k = 5 k = 2 k = 5 k = 2 k = 5 k = 2 k = 5

methods Ā R̄ Ā R̄ Ā R̄ Ā R̄ Ā R̄ Ā R̄ Ā R̄ Ā R̄
MostProb 5.485 0.050 4.813 0.107 3.821 0.369 2.904 0.604 11.888 0.102 10.044 0.223 16.265 0.761 13.134 1.223

Greedy 3.986 0.130 3.862 0.213 2.813 0.528 2.207 0.779 7.290 0.383 7.039 0.580 10.476 1.361 8.290 1.925

TopEdges 3.987 0.130 3.861 0.213 2.820 0.528 2.218 0.779 7.293 0.383 7.044 0.580 10.532 1.360 8.344 1.923

D-Greedy 3.639 0.124 3.644 0.209 1.407 0.256 1.437 0.512 6.492 0.369 6.671 0.573 6.160 0.856 6.415 1.562

Random 3.636 0.033 3.624 0.081 1.597 0.122 1.602 0.300 6.871 0.072 6.868 0.178 7.145 0.273 7.154 0.663

and 1.d seem logarithmic, while the function in Figure 1.b
looks like a power-law with a small exponent. Surprisingly,
in some cases (Figures 1.b and 1.c) the function is not in-
creasingly monotone, meaning that edges with higher scores
are assigned lower probabilities.

6.4 Expected Reduction vs Expected Accuracy
In this first set of experiments, we consider an idealized

scenario where we assume that the probability functions that
map scores to probabilities are perfectly accurate, and we
have exact estimates for the probabilities of the links. Our
goal is to understand, under this scenario, the relative per-
formance of the different algorithms, and how the different
probability functions affect their performance. Note that for
this experiment, we do not make use of the second graph in-
stance in order to assess the success of the recommendations.
Instead, we assume that edges will appear in the graph with
the probability they are assigned.

For a link recommendation algorithm L let r(L) be the
set of nodes for which L produces at least 20 recommenda-
tions. For a node u, let Su be the set of links selected by our
algorithm, where |Su| = k. We consider k = 2 and k = 5
link recommendations per user. Given the set Su, we com-
pute the expected reduction Ru(Su) for node u as described
in Sections 3 and 4. To make numbers comparable across
different nodes and datasets, we normalize the reduction by
LG(u), the sum of shortest paths of node u before the ad-
dition of the edges in Su. Finally, we compute the average
reduction R̄ = 1

|r(L)|
∑

u∈r(L)Ru(Su)/LG(u), over all nodes

in consideration.

Furthermore, for each selected set Su we compute the ex-
pected accuracy of the selection as Au(Su) = 1

k

∑
e∈Su

pe,
that is, the fraction of the predictions that will appear in
expectation. We then compute the average expected accu-
racy Ā = 1

|r(L)|
∑

u∈r(L)Au(Su) by taking the average over

all nodes in consideration.
In Figure 2 we see the performance of the different algo-

rithms for the different probability functions for the Facebook
dataset, when using the RootedPageRank recommendation
algorithm, for k = 5. In this figure, we normalize the accu-
racy and reduction values by the maximum, so as to study
the relative performance of the algorithms. As expected the
Greedy algorithm achieves the best performance in terms of
expected reduction, while the MostProb algorithm achieves
the top performance in terms of expected accuracy.

The first observation is that TopEdges, which is a sin-
gle iteration of the Greedy algorithm, performs essentially
the same as Greedy . Therefore, we can obtain a signifi-
cant speedup in the running time of the selection (see Sec-
tion 6.7), without sacrificing performance. The only case
where there is a noticeable difference is in the case of the
logarithmic probability function. The logarithmic function
is the flattest of the functions we consider, which means that
it gives non-negligible probability even to edges with low
scores. The Greedy algorithm is able to find such edges and
improve the expected reduction. However, this results in a
small loss in accuracy. Note that, in general, the TopEdges
method tends to select slightly more probable edges. This is
due to the fact that Greedy takes into account the interac-
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Figure 3: Performance of the algorithms for different probability functions on the Facebook dataset, with
RootedPageRank recommendations, for k = 5.

Table 3: Prediction accuracy Â and actual reduction R̂ achieved by all methods.
Facebook DBLP

AdamicAdar RootedPageRank AdamicAdar RootedPageRank

k = 2 k = 5 k = 2 k = 5 k = 2 k = 5 k = 2 k = 5

methods Â R̂ Â R̂ Â R̂ Â R̂ Â R̂ Â R̂ Â R̂ Â R̂
MostProb 21.338 0.172 18.142 0.323 16.490 0.264 14.408 0.469 2.309 0.021 1.892 0.044 2.887 0.078 2.191 0.132

Greedy 11.843 0.274 11.095 0.446 8.957 0.370 8.671 0.594 1.777 0.061 1.547 0.099 2.286 0.152 1.786 0.220

TopEdges 11.844 0.274 11.096 0.446 8.957 0.370 8.671 0.594 1.776 0.061 1.543 0.099 2.286 0.152 1.785 0.220

D-Greedy 6.332 0.202 7.418 0.388 4.344 0.215 5.497 0.450 1.325 0.064 1.331 0.100 1.404 0.121 1.381 0.200

Random 1.167 0.076 2.906 0.188 0.972 0.108 2.431 0.263 0.123 0.012 0.314 0.032 0.130 0.029 0.321 0.078

tions between the edges in the selected set, while TopEdges
considers only the individual effect of each edge.

The second observation is that the Greedy and TopEdges
algorithms achieve performance competitive to the Most-
Prob algorithm in terms of accuracy. At worse, they achieve
around 80% of the accuracy of the MostProb algorithm,
while at the same time they achieve 40% more in reduc-
tion. Therefore, they can achieve considerable reduction,
with a manageable loss in accuracy.

The third observation is that the probability function has
a significant effect in the performance of the algorithms. As
the function becomes more skewed, the algorithms Greedy ,
TopEdges, and MostProb become more similar in both met-
rics. This is due to the fact that the more “steep” functions
penalize heavily the small scores. Given that the score val-
ues tend to follow a power-law distribution, this results in
many edges with very low probabilities. Such edges must
cause a very large reduction in order to be selected. As a re-
sult all algorithms tend to select edges with high probability,
which explains the converging behavior. This is especially
pronounced in the cubic probability function, which is the
most skewed in our collection.

The above discussion explains also the poor performance
of D-Greedy . The D-Greedy algorithm does not take proba-
bilities into account, and decides based solely on the shortest
path reduction. As a result it performs the worst in terms
of accuracy (worse than random), indicating that reduction
is inversely correlated with prediction probability. Inter-
estingly, D-Greedy performs poorly even in terms of the ex-
pected reduction in the case of skewed probability functions.

This is due to the fact that high reduction edges have very
low probabilities, since, in general, the link recommendation
algorithms give high scores to links to near-by nodes.

Finally, for the empirical probability function the rela-
tive behavior of the algorithms in terms of the expected re-
duction is similar to that of the logarithmic function. This
agrees with our observation in Figure 1.b that the proba-
bility function is a power-law with a very small exponent.
With respect to the expected accuracy, the MostProb algo-
rithm is clearly the best, but all algorithms follow closely.
This may be a result of the fact that even for high scores, the
probability function never assigns large probabilities. It is
also possible that the irregularities of the empirical function
affect the results.

Our observations carry over for both datasets, for the dif-
ferent recommendation algorithms, and for different values
of k. Table 2 shows detailed results for the linear probability
function. The Greedy and TopEdges achieve considerable in-
crease in the expected reduction compared to the MostProb,
while sacrificing little in terms of accuracy.

6.5 Prediction accuracy vs actual reduction
In this set of experiments, we assess the recommendations

produced by our algorithms in terms of their accuracy in
predicting links that will appear in the graph, and the actual
reduction they achieve when added to the graph.

Given the initial graph instance G, let F denote the set
of edges added to the graph in the later instance. For a set
of recommendations Su selected by our algorithm for node
u, the set Fu = Su ∩ F is the subset of the recommenda-
tions that u actually accepted. We define the accuracy of



Table 4: Prediction accuracy Â and actual reduction R̂ achieved by the hybrid k-link recommendation.

Facebook DBLP

AdamicAdar RootedPageRank AdamicAdar RootedPageRank

MostProb(l) TopEdges(k-l) Â R̂ Â R̂ Â R̂ Â R̂ R̂A R̂R
0 5 8.634 0.427 6.695 0.592 1.420 0.102 1.595 0.228 0.000 1.000

1 4 10.637 0.424 8.141 0.580 1.580 0.098 1.810 0.222 0.275 0.938

2 3 12.467 0.416 9.701 0.566 1.697 0.094 1.975 0.214 0.504 0.853

3 2 14.286 0.406 11.201 0.545 1.790 0.087 2.078 0.199 0.693 0.716

4 1 16.110 0.389 12.730 0.513 1.862 0.077 2.142 0.174 0.856 0.502

5 0 18.142 0.323 14.408 0.469 1.892 0.044 2.191 0.132 1.000 0.000

the recommendation set Su as Au = |Fu|/|Su|, that is, the
fraction of the recommendations that were accepted by u.
We define the actual prediction accuracy of our algorithm

as Â = 1
|r(L)|

∑
u∈r(L)A(Su), that is, the average prediction

accuracy over all the set nodes r(L), for which the original
link prediction algorithm L generated sufficient number of
recommendations.

Given the set Fu, we define the normalized reduction
for node u, as Ru = (LG(u) − LG∪Fu(u))/LG(u), where
LG∪Fu(u) is the sum of shortest paths from u in the de-
terministic graph G ∪ Fu. Note that this definition mea-
sures the effect of the set Fu in isolation from other edges
in F . We define the actual reduction of our algorithm as

R̂ = 1
|r(L)|

∑
u∈r(L)Ru, that is, the average normalized re-

duction over all nodes in cosideration.
To evaluate our algorithms, we repeat the experiments

in Section 6.4, and we measure the actual prediction accu-

racy Â, and the actual reduction R̂. Figure 3 shows the
performance of the different algorithms for different proba-
bility functions on the Facebook dataset, with link recom-
mendations provided by the RootedPageRank algorithm, for
k = 5. The relative behavior of the algorithms remains con-
sistent with what we observed in Section 6.4. The MostProb
method achieves the highest accuracy rate (14.4%) and per-
forms better than all the other algorithms by a factor of at
least 2. The Greedy and TopEdges methods are again essen-
tially identical. They outperform the rest of the algorithms
in terms of actual reduction, while achieving around 50% of
the accuracy of MostProb. D-Greedy performs the worst in
terms of both metrics, but it is now consistently better than
random. This indicates that, in real data, edges that cause
high reduction have non-negligible probability to appear.

Among the different probability functions, all algorithms
achieve the highest reduction for the empirical probability
function. This is reasonable, but we should take into account
that the empirical function is computed using the data from
F . It is surprising that the prediction accuracy of Most-
Prob drops for the empirical function. This is due to the
non-monotonic behavior of the probability function for this
dataset, and to the fact that binning creates ties between
the probability values of scores that fall in the same bucket.

Among the remaining functions, the best performance in
terms of both prediction accuracy and actual reduction is
achieved for the cubic function. Note that the probability
function can be used as a “knob” to regulate how much em-
phasis we put on the score of the edge vs. the reduction it
causes in the graph. The experimental results suggest that
it is important to use distributions that bias the algorithms

towards high probability edges, since these edges also offer
high reduction, while retaining high accuracy.

Our observations hold for all datasets, for different rec-
ommendation algorithms, and different values of k. Table 3
shows detailed results for the cubic probability function. We
observe that Greedy obtains a considerable decrease in the
shortest paths with an acceptable loss in accuracy.

6.6 Hybrid link recommendations
In this set of experiments, we evaluate a hybrid recom-

mendation system that aims to combine high accuracy rec-
ommendations with high reduction edge additions. In this
hybrid link selection method, given a node u, a set Cu of
candidate edges, and a value k, we generate a recommen-
dation set S of size k, by taking the set SMostProb with the
`, ` < k, most probable edges in Cu, and a set STopEdges with
the top k−` edges recommended by the TopEdges algorithm
from the set Cu \ SMostProb.

We run experiments with the cubic function for all pairs
of datasets and recommendation algorithms, for k = 5. Ta-
ble 4 shows our results in detail, for all 0 ≤ ` ≤ k. There
is a clear tradeoff between prediction accuracy and actual
reduction. As we recommend more edges from the set of the

most probable edges, the prediction accuracy Â increases,

while the actual reduction value R̂ decreases.
To evaluate the performance of the hybrid recommen-

dations for different values of ` we also compute the frac-

tion R̂A(`) = (Â(`) − Â(0))/(Â(5) − Â(0)), where Â(`) is
the prediction accuracy for a given value of `. This quan-

tity indicates where the value Â(`) lies relatively to the

minimum and the maximum value of Â. Respectively, for

the actual reduction R̂, we compute the fraction R̂R(`) =

(R̂(`) − R̂(5))/(R̂(0) − R̂(5)). In the last two columns of

Table 4 we report the average values of R̂A(`) and R̂R(`).
For instance, the recommendation for ` = 3, on average,
the prediction accuracy increase is equal to the 69.3% of the
maximum increase, while the actual reduction is 71.6% of
the maximum reduction. We find that the value ` = 3 offers
the best tradeoff between accuracy and reduction.

6.7 Efficiency
In our final set of experiments we evaluate the efficiency

of our algorithms. All algorithms were implemented in C++

and compiled using the g++v.4.6.4 compiler. We report
the running times on a GNU/Linux machine, with Ubuntu
(SMP): a Intel(R) Xeon(R) CPU server 64-bit NUMA ma-
chine with four processors and 16GB of RAM memory. Each



Table 5: Running times (in milliseconds) on the
Facebook and DBLP datasets for |C| = 20 and k = 5.

Facebook DBLP

methods AA RPR AA RPR

Greedy 253 455 109 304

TopEdges 69 99 25 35

D-Greedy 195 313 87 137

processor has 4 cores sharing a 8MB L3 cache, and each core
has a 256KB private L2 cache and 2.40GHz speed.

We assess the efficiency of the Greedy , D-Greedy , and
TopEdges methods. We exclude the MostProb method since
it requires just sorting of 20 values. The running times of
the algorithms (in milliseconds) are shown in Table 5 for
k = 5. Clearly, the Greedy algorithm is the slowest, with
the D-Greedy method a close second. The TopEdges algo-
rithm performs significantly faster that both, and it always
runs in less than 0.1 seconds for all our test cases.

7. CONCLUSIONS
In this paper, we considered the problem of recommend-

ing links to network users that are of interest to them, and
also improve their centrality in the network. We proposed
an efficient greedy algorithm for this task that exploits a
fast algorithm for computing the expected reduction caused
by the addition of a probabilistic link in a network. Our ex-
periments show that our approach strikes a balance between
the prediction accuracy of the recommendations, and their
effect on the centrality of the user in the resulting network.

For future work, it would be interesting to extend our pro-
posed solution to consider recommendations that minimize
the expected all-pais shortest path lengths. This natural
extension considers the utility of the network as a whole
when recommending edges to a specific user. It would also
be interesting to consider recommendations that optimize
other criteria beyond shortest paths. Finally, in our work
we touched upon the problem of transforming link recom-
mendation scores into probabilities. This is an interesting
problem that merits further investigation.
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