
Information-Theoretic Tools for Mining Database Structur e
from Large Data Sets

Periklis Andritsos
University of Toronto

periklis@cs.toronto.edu

Renée J. Miller
University of Toronto

miller@cs.toronto.edu

Panayiotis Tsaparas
Univ. of Rome, "La Sapienza"

tsap@dis.uniroma1.it

ABSTRACT
Data design has been characterized as a process of arriving at a de-
sign that maximizes the information content of each piece ofdata
(or equivalently, one that minimizes redundancy). Information con-
tent (or redundancy) is measured with respect to a prescribed model
for the data, a model that is often expressed as a set of constraints.
In this work, we consider the problem of doing data redesign in
an environment where the prescribed model is unknown or incom-
plete. Specifically, we consider the problem of finding structural
clues in an instance of data, an instance which may contain er-
rors, missing values, and duplicate records. We propose a set of
information-theoretic tools for finding structural summaries that are
useful in characterizing the information content of the data, and ul-
timately useful in data design. We provide algorithms for creating
these summaries over large, categorical data sets. We studythe
use of these summaries in one specific physical design task, that of
ranking functional dependencies based on their data redundancy.
We show how our ranking can be used by a physical data-design
tool to find good vertical decompositions of a relation (decompo-
sitions that improve the information content of the design). We
present an evaluation of the approach on real data sets.

1. INTRODUCTION
The growth of networked databases has led to larger and more

complex databases whose structure and semantics gets more dif-
ficult to understand. In heterogeneous applications, data may be
exchanged or integrated. This integration may introduce anoma-
lies such as duplicate records, missing values, or erroneous values.
In addition, the lack of documentation or the unavailability of the
original designers can make the task of understanding the structure
and semantics of databases a very difficult one.

No matter how carefully a database was designed in the past,
there is no guarantee that the data semantics are preserved as it
evolves over time. It is usually assumed that the schema and con-
straints are trustworthy, which means that they provide an accurate
model of the time-invariant properties of the data. However, in
both legacy databases and integrated data this may not be a valid
assumption. Hence, we may need to redesign a database to find a
model (a schema and constraints) that better fit the current data.

In this work, we consider the problem of mining a data instance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

for structural clues that can help in identifying a better data design.
Our work is in the spirit of several recent approaches that propose
tools to help an analyst in the process of understanding and cleaning
a database [21, 10]. However, while these approaches focus on
providing summaries that help in the process of integration[21]
or querying [10], we focus on summaries that reveal information
about the data design and its information content.

To approach this problem, it is important to understand what
makes a data design good. Data design has been characterizedas
a process of arriving at a design that maximizes the information
content of each piece of data (or equivalently, one that minimizes
redundancy). Information content (and redundancy) is measured
with respect to a prescribed model for the data, a model that is of-
ten expressed as a set of constraints or dependencies. In their recent
work, Arenas and Libkin presented information-theoretic measures
for comparing data designs [6]. Given a schema and a set of con-
straints, the information content of a design is precisely character-
ized. Their approach has the benefit that it permits two designs for
the same database to be compared directly.

However, to characterize the information content, it was neces-
sary to have a prescribed model. Consider the following example.

Ename City Zip
t1 Pat Boston 02139
t2 Pat Boston 02138
t3 Sal Boston 02139

Figure 1: Examples of Duplication and Redundancy
Clearly, there is duplication of values in this instance. How-

ever, what we consider to be redundant will depend on the con-
straints expressed on the schema. If the functional dependency
Ename → City holds, then the valueBoston in tuple t2 is re-
dundant given the presence of tuplet1. That is, if we remove this
value, it could be inferred from the information in the first tuple.
However, the valueBoston in the third tuple is not redundant. If
we lose this value, we will not know the city ofSal. So while the
valueBoston is duplicated int3, it is not redundant. But if we
change the constraints and instead ofEname → City, we have
the dependencyZip→ City, then the situation is reversed. Given
t1, the valueBoston is redundant int3, but not int2.

Understanding redundancy is at the heart of database design. Re-
dundancy occurs naturally because it reflects the intuitivethinking
process of humans. Humans are naturally associative thinkers and
naturally tend to aggregate and bring all the information they have
together in their minds since this facilitates the processing of infor-
mation. However, this is not a good way to store information in a
computer. Normalization is the systematic process, duringdatabase
design, that is used to separate information about different entities
or objects of interest into different tables. This allows usto avoid

some of the data redundancy that would occur naturally when as-
sociating different types of information together.

However, it is not obvious how to apply normalization or how
to define the information content of a database in an environment
where the given schema and constraints may be incorrect or in-
complete. In this work, we consider this problem. At their core, our
techniques find duplicate values. However, unlike techniques based
on counting (for example, frequent item-set mining [2]), weuse
information-theoretic clustering techniques to identifyand summa-
rize the information content of duplicate values.

In our approach, rather than viewing the data as being inconsis-
tent or incomplete with respect to a given schema, we consider the
schema to be potentially inconsistent or incomplete with respect to
a given data instance. Our contributions are the following.

• We propose a set of information-theoretic tools that use cluster-
ing to discover duplicate records, sets of correlated attribute values,
and groups of attributes that share such values.
• We provide a set of efficient algorithms that can be used to iden-
tify duplication in large, categorical data sets. Our algorithms gen-
erate compact summaries that can be used by an analyst to identify
errors or to understand the information content of a data set.
• We present several applications of our summaries to the data
quality problems of duplicate elimination and the identification of
anomalous values. We also present applications to the data design
problems of horizontally partitioning an integrated or overloaded
relation and to ranking functional dependencies based on their in-
formation content. For the latter application, we show how our
techniques can be used in combination with a dependency miner to
help understand and use discovered dependencies.

The rest of the paper is organized as follows. In Section 2, we
present related work and in Section 3, we introduce some basic con-
cepts from information theory. In Section 4, we draw the relation-
ship between the existence of duplicate information and clustering.
In Section 5, we describe LIMBO [5], the scalable information-
theoretic clustering algorithm that we use, and in Section 6the tools
that use this algorithm to derive structural clues. In Section 7, we
introduce a novel algorithm that ranks functional dependencies that
hold in an instance. Section 8 presents the experimental evaluation
of all our methods and Section 9 concludes our work and discusses
additional applications.

2. RELATED WORK
Our work finds inspiration in two independent lines of work. The

first on data quality browsers, such as Potter’s Wheel [21] and Bell-
man [10]. The second on the information-theoretic foundation of
data design [6, 8].

Data browsers aim to help an analyst understand, query, or trans-
form data. In addition to sophisticated visualization techniques
(and adaptive query or transformation processing techniques [21]),
they employ a host of statistical summaries to permit real-time
browsing. In our work, we consider the generation of summaries
that could be used in a data browser for data (re)design. These
summaries complement the summaries used in Bellman, where
the focus is on identifying co-occurrence of values across differ-
ent relations (to identify join paths and correspondences between
attributes of different relations). Instead, we present a robust set of
techniques for identifying and summarizing various forms of du-
plication within a relation.

Arenas and Libkin provide information-theoretic measuresfor
comparing data designs [6]. Given a schema and a set of con-
straints, the information content of a design is precisely character-
ized. The measures used are computational infeasible and they rely

on having a clean instance that conforms to a fixed (given) setof
constraints. Our techniques are based on an efficient information-
theoretic clustering approach. Because we are using unsupervised
learning, we are able to create informative summaries even without
an accurate model (set of constraints) for the data. We show how
our techniques can be used to identify good (or more accurately,
better) designs.

Constraint or dependency mining is a related field of study where
the goal is to find all dependencies that hold on a given instance of
the data (that is, all dependencies that are not invalidatedby the in-
stance). Such approaches include the discovery of functional [24,
15, 28] and multi-valued [25] dependencies. Our work comple-
ments this work by providing a means of characterizing the redun-
dancy captured by a dependency. We have found that constraint
miners reveal hundreds or thousands of potential (approximate) de-
pendencies when they are run on large, real data sets. Our work
helps a data analyst understand and quickly identify interesting de-
pendencies within these large sets.

The importance of automated data design and redesign tools has
been recognized in reports on the state of database research. Yet,
the advances that have been made in this area are largely limited
to physical design tools that help tailor a design to best meet the
performance characteristics of a workload [20, 3]. ClusterAnalysis
has been used for vertical partitioning [14, 17, 18], however these
techniques partition the attributes of a relation based on their usage
in workload queries and not the data. On the other hand, fractured
mirrors [20] store different versions of the same database,which
are combined during query optimization. This technique is also
based on the usage of the attributes in queries.

Finally, our work complements work on duplicate elimination [4,
13, 23, 22]. We propose a technique to identify duplicates based on
the information content of tuples. Our approach does not consider
how to identify or use distance functions for measuring the error be-
tween values (which is the main focus of related work in this area).
An interesting area for future work would be on how to combine
these techniques.

3. INFORMATION THEORY BASICS
In what follows, we introduce some basic concepts from Infor-

mation Theory. We can find the following definitions in any text-
book of information theory, e.g., [7]. We denote withV a discrete
random variable and withV the set from whichV takes its val-
ues.1 If p(v) denotes the probability mass function ofV , then the
entropyH(V) of V is defined asH(V) = −

P
v∈V

p(v) log p(v).
Intuitively, entropy is a measure of the “uncertainty” of variableV .
When its value is high, the certainty with which we can predict the
values of the random variable is low. If variableV takes onn states,
then the maximum value of the entropy isHmax(V) = log(n) and
is realized when each of the states is equiprobable,i.e., p(v) = 1/n
for all v ∈ V.

If V andT are two discrete random variables that takes their
values from setsV andT respectively, then theconditional entropy
of T givenV is defined as follows.

H(T |V) =
X
v∈V

p(v)
X
t∈T

p(t|v) log p(t|v)

Conditional entropy is a measure of the uncertainty with which we
can predict the values of random variableT when the values ofV
are given.

1For the remainder of the paper, we use italic capital letters(e.g.
V) to denote random variables, and boldface capital letters (e.g.
V) to denote the set from which the random variable takes values.

Having defined entropy and conditional entropy, we may now
introducemutual information, I(V ; T). This measure captures the
amount of information that the variables convey about each other. It
is symmetric, non-negative, and its relation to entropy is given via
the equationI(V ; T) = H(V) −H(V |T) = H(T) −H(T |V).

Finally, Relative Entropy, or the Kullback-Leibler (KL) diver-
gence, is an information-theoretic measure used to quantify the
distance between two probability distributions. Given twodistri-
butionsp andq over a setV, relative entropy is defined as follows.

DKL[p‖q] =
X
v∈V

p(v) log
p(v)

q(v)

Intuitively, relative entropyDKL[p‖q] measures the error in an en-
coding that assumes distributionq, whenp is the true distribution.

4. CLUSTERING AND DUPLICATION
In this section, we consider how information about tuples, and

values within tuples, can be used to build structural information,
independent of the constraints that hold on a relation.

Our techniques are designed to find duplication in large datasets.
However, because we are considering real data sets which maycon-
tain errors or missing values, we will be looking for not onlygroups
containing exact duplicates, but rather groups containingnear du-
plicates or similar values. Hence, our techniques will be based on
clustering. In clustering, we identify groups of data objects that are
similar and where objects within different groups are dissimilar.

Schemas, like structured query languages that use them, treat
data values largely as uninterpreted objects. This property has been
calledgenericity, [1], and is closely tied to data independence, the
concept that schemas should provide an abstraction of a dataset
that is independent of the internal representation of the data. That
is, the choice of a specific data value (perhaps “Pat” or “Patricia”)
has no inherent semantics and no influence on the schema used to
structure values. The semantics captured by a schema is indepen-
dent of such choices. For query languages, genericity is usually
formalized by saying that a query must commute with all possi-
ble permutations of data values (where the permutations maybe
restricted to preserve a distinguished set of constants) [1].

This property becomes important when one considers clustering
algorithms. Clustering assumes that there is some well-defined no-
tion of similarity between data objects. Many clustering method-
ologies employ similarity functions that depend on the semantics
of the data values. For example, if the values are numbers, Eu-
clidean distance may be used to define similarity. However, we do
not want to impose any application-specific semantics to thedata
values within a database.

If we are seeking to identify duplication in a set of tuples, we
need a measure of similarity that reflects the duplication inthese
tuples. However, even with such a measure, it is not obvious how
to define the quality of the results. On the other hand, for humans
there is an intuitive notion of the quality of a clustering. Agood
clustering is one where the clusters areinformative about the ob-
jects they contain. Given a cluster, we should be able to predict the
attribute values of the tuples in this cluster to the maximumpossi-
ble.

We assume a model where a setT of n tuples is defined onm
attributes(A1, A2, . . . , Am). The domain of attributeAi is the set
Vi = {Vi,1, Vi,2, . . . , Vi,di

}. Any tuplet ∈ T takes exactly one
value from the setVi for the ith attribute. Moreover, a functional
dependency between attribute setsX ⊆ A andY ⊆ A, denoted
by X → Y , holds if whenever the tuples inT agree on theX
values, they also agree on their correspondingY values.

To apply information-theoretic techniques, we will treat relations
as distributions. For each tuplet ∈ T containing a valuev ∈ V,
we will set the probability thatv appears in tuplet as1/m. If we
go back to the example of Figure 1, we consider a representation
of its tuples as given in Figure 2. Each row corresponds to a tuple.
There is a non-zero value in the row for each attribute value of the
tuple and the values in a row sum up to one.

Pat Sal Boston 02139 02138
t1 1/3 0 1/3 1/3 0
t2 1/3 0 1/3 0 1/3
t3 0 1/3 1/3 1/3 0

Figure 2: Example of tuple representation

The representation we consider for the values of the same data
set is given in Figure 3. Each row in the table of Figure 3 charac-

t1 t2 t3
Pat 1/2 1/2 0
Sal 0 0 1

Boston 1/3 1/3 1/3
02139 1/2 0 1/2
02138 0 1 0

Figure 3: Example of value representation

terizes the occurrence of values in tuples and for each valuethere
is a non-zero entry for the tuples in which it appears. Similar to the
tuple represenation, each row sums up to one. More formal defini-
tions about both representations are given in the followingsection.

Using such representations, we consider a number of novel clus-
tering approaches for identifying duplication in tuples, values, and
attributes. All of our techniques are founded on the IB method,
which we introduce next.

5. CLUSTERING METHODOLOGY
In this section, we describe theInformation Bottleneck, (IB),

method [27] and a scalable clustering algorithm based on IB.

5.1 Information Bottleneck
The intuitive idea of producing clusters that are informative

about the objects they contain was formalized by Tishby, Pereira
and Bialek [27]. They recast clustering as the compression of one
random variable into a compact representation that preserves as
much information as possible about another random variable. Their
approach was named theInformation Bottleneck, (IB), method, and
it has been applied to a variety of different areas. More formally,
given a set of objects in setV expressed over setT, we seek a clus-
tering,C, of V such that the mutual informationI(C;T) remains
as large as possible, or otherwise the loss of information described
by I(V ;T) − I(C;T) is minimum. TheIB method is generic,
imposing no semantics on specific data values.

Finding the optimal clustering is an NP-complete problem [12].
Slonim and Tishby [26], propose a greedy agglomerative approach,
the Agglomerative Information Bottleneck, (AIB), algorithm, for
finding an informative clustering. If setV containsq objects, the
algorithm starts with the clusteringCq, in which each objectv ∈ V

is assigned to its own cluster. Due to the one-to-one mappingbe-
tweenCq andV, I(Cq;T) = I(V ;T). The algorithm then pro-
ceeds iteratively, forq − k steps (k is the number of desired clus-
ters), reducing the number of clusters in the current clustering by
one in each iteration. At stepq−ℓ+1, two clustersci andcj in the
ℓ-clustering (the clustering ofℓ clusters) are merged in clusterc∗,
to produce a new (ℓ− 1)-clusteringCℓ−1. As the algorithm forms

clusters of smaller size, the information that the clustering contains
aboutT decreases, which means thatI(Cℓ−1;T) ≤ I(Cℓ;T). The
two clustersci andcj to be merged are chosen such that the loss of
informationδI(ci, cj) = I(Cℓ;T)− I(Cℓ−1;T), in moving to the
(ℓ − 1)-clustering, is minimum. After merging clustersci andcj ,
the new clusterc∗ = ci ∪ cj has [26]:

p(c∗) = p(ci) + p(cj) (1)

p(T |c∗) =
p(ci)

p(c∗)
p(T |ci) +

p(cj)

p(c∗)
p(T |cj) (2)

Tishby et al. [27] show that

δI(ci, cj) = [p(ci) + p(cj)] ·DJS [p(T |ci), p(T |cj)] (3)

whereDJS is theJensen-Shannon (JS) divergence, defined as fol-
lows. Letpi = p(T |ci) andpj = p(T |cj) and let

p̄ =
p(ci)

p(c∗)
pi +

p(cj)

p(c∗)
pj

Then, theDJS distance is defined as follows.

DJS[pi, pj] =
p(ci)

p(c∗)
DKL[pi||p̄] +

p(cj)

p(c∗)
DKL[pj ||p̄]

TheDJS distance defines a metric and it is bounded above by one.
We note that the information loss for merging clustersci andcj ,
depends only on the clustersci andcj , and not on other parts of the
clusteringCℓ.

5.2 Scalable Clustering
The AIB algorithm suffers from high computational complex-

ity, namely it is quadratic in the number of objects to be clustered,
which does not make it appropriate for large sets. We therefore use
a scalable version of AIB, called LIMBO (scaLable InforMation
BOttleneck) [5]. LIMBO uses distributional summaries in order to
deal with large data sets. This algorithm is similar in spirit to the
BIRCH [29] clustering algorithm and is based on the idea thatwe
do not need to keep whole clusters in main memory, but instead,
just sufficient statistics to describe them.

The sufficient statistics are calledDistributional Cluster Fea-
tures, (DCF)s, and they will be used to compute the distance be-
tween two clusters or between a cluster and a tuple. LetV be the
set of objects to be clustered expressed on the setT, and letV
andT be the corresponding random variables. Also letC denote a
clustering ofV andC be the corresponding random variable.

For a clusterc ∈ C, theDCF of c is defined by the pair

DCF (c) =
�
p(c), p(T |c)

�
wherep(c) is the probability of clusterc ,(p(c) = |c|/|V|), and
p(T |c) is the conditional probability distribution of the values inT
given the clusterc. If c consists of a single objectv ∈ V, p(v) =
1/|V | andp(T |c) is computed as described in Section 5.1.

Let c∗ denote the cluster we obtain by merging two clustersc1
andc2. TheDCF of the clusterc∗ is equal to

DCF (c∗) =
�
p(c∗), p(T |c∗)

�
wherep(c∗) andp(T |c∗) are computed using Equations 1 and 2,
respectively. Finally, given two clustersc1 andc2, we define the
distance,d(c1, c2), betweenDCF (c1) andDCF (c2) as the in-
formation lossδI(c1, c2) incurred after merging the corresponding
clusters.d(c1, c2) is computed using Equation 3.

The importance ofDCFs lies in the fact that they can be stored
and updated incrementally. The probability vectors are stored as
sparse vectors, reducing the amount of space considerably.Each

DCF provides a summary of the corresponding cluster, which is
sufficient for computing the distance between two clusters.We use
a tree data structure, termedDCF -tree. Our scalable algorithm
proceeds in three phases. In the first phase, theDCF tree is con-
structed to summarize the data. In the second phase, theDCFs of
the tree leaves are merged to produce a chosen number of clusters.
In the third phase, we associate each object (tuple, attribute value
or attribute) with theDCF to which it is closest.

Phase 1: Insertion into the DCF tree. The objects to be clustered
are read from disk one at a time and at any point in the construc-
tion of the tree, theDCFs at the leaves define a clustering of the
tuples seen so far. Each non-leaf node storesDCFs that are pro-
duced by merging theDCFs of its children. After all objects are
inserted in the tree, theDCF -tree embodies a compact representa-
tion in which the data set is summarized by the information inthe
DCFs of the leaves. This summarization is based upon a parame-
ter φ which controls the accuracy of the model represented by the
tree. More precisely we use the quantityφ · I(V ;T)

|V |
as a threshold

and mergeDCFs at the leaf level of the tree that do not exceed
it. Smaller values ofφ result in more compact summarizations.
For instance usingφ = 0.0, we only merge identical objects and
LIMBO becomes equivalent to AIB.

Phase 2: Clustering. Upon the creation of the tree, we can apply
AIB in a much smaller number of objects represented by theDCFs
in the leaves.

Phase 3: Associating object with clusters. For a chosen value
of k, Phase 2 producesk DCFs that serve asrepresentatives of k
clusters. In the final phase, we perform a scan over the data set and
assign each objecto to the clusterc such thatd(o, c) is minimized.

In our approach, we shall use this more scalable clustering algo-
rithm to find duplicate groups of tuples, attribute values and groups
of attributes that can be considered similar because they contain
such groups.

6. DUPLICATION SUMMARIES
In this section, we present a suite of structure discovery tasks that

can be performed using our information-theoretic clustering. We
will see how from information about tuples, we can build structural
information about the attribute values and from this information
about the attributes of a relation.

The input to our problem here is the set of tuplesT and the set
V = V1∪ . . .∪Vm, which denotes the set of all possible values.2

Let d denote the size of setV. We shall denote withV andT the
random variables that range over setsV andT, respectively.

6.1 Tuple Clustering
In tuple clustering, we find clusters of tuples that preservethe

information about the values they contain as much as possible. We
represent our data as an × d matrix M , whereM [t, v] = 1 if
tuple t ∈ T contains attribute valuev ∈ V, and zero otherwise.
Note that the vector of a tuplet containsm 1’s. For a tuplet ∈ T,
defined over exactlym attribute values, we then define:

p(t) = 1/n (4)

p(v|t) =

�
1/m if v appears int
0 otherwise

(5)

Intuitively, we consider each tuplet to be equi-probable and nor-
malize matrixM so that thetth row holds the conditional proba-
bility distribution p(V |t). GivenM , we can define mutual infor-
2We will use the termsattribute values andvalues interchangeably.

mationI(T ;V) and cluster the tuples inT into clustersCT such
that the information lossI(CT ;V) − I(T ;V) is minimum.

6.1.1 Duplicate Tuples
Duplicate tuples can be introduced through data integration. Dif-

ferent sources may store information about the same entity.The
values stored may differ slightly so when integration is performed,
two entries may be created for the same entity. As an example,we
can imagine a situation where employee information is integrated
from different sources and employee numbers are represented dif-
ferently in the sources. After integration, it is natural toexpect
tuples referring to the same employee where they may differ only
in their employee number (or perhaps some other attributes if one
database is more up-to-date than another). To identify duplicate or
almost duplicate tuples we proceed as follows.

1. Set aφT value.
2. Apply Phase 1 to construct tuple summaries.
3. Using leafDCFs with p(c∗) > 1/n, apply Phase 3 to asso-
ciate tuples of the initial data set with their closest summary, where
proximity is measured by the information loss between the two.

Step 1 of the above procedure defines the accuracy of the rep-
resentation of groups of tuples in the summaries at the leaf level
of theDCF -tree. IfφT = 0.0 we merge identical tuples and the
representation is exact. As we increaseφT the summaries permit
more errors in the duplicate values. Step 2 applies Phase 1 topro-
duce summaries forφT , while Step 3 associates tuples with sum-
maries that representgroups of tuples (more than one tuple). It is
then natural to explore the sets of tuples associated with the same
summaries to find candidate (almost) duplicate ones.

6.1.2 Horizontal Partitioning
A second application of tuple clustering is the horizontal parti-

tioning of a table. Horizontal partitioning can be useful ontables
that have been overloaded with different types of data [9]. For ex-
ample, an order table originally designed to store product orders
may have been reused to store new service orders. In horizontal
partitioning, we are seeking to separate out different types of tuples
based on the similarities in their attribute values. Specifically, we
try to identify whether there is a natural clustering that separates
out tuples having different characteristics.

For horizontal partitioning, we do a full clustering. That is, we
apply Phase 1 to obtain a small set of summary DCFs. Here, we
do not need to set,a priori, a threshold on the information lossφ,
rather we can pick a number of leaves that is sufficiently large (for
example, 100 leaves) and apply Phase 1 to obtain 100 summaries.
We then apply AIB to these 100 leaves to obtain clusterings for
all k values between 1 and 100. We use the following heuristic
to identify goodk values that may correspond to natural horizon-
tal partitions. We do so by producing statistics that let us directly
compare clusterings. These statistics include the rate of change in
the mutual information of clusterings (δI(Ck;V)) and the rate of
change in the conditional entropy of clusterings (δH(Ck|V)) ask
varies from1 to the number of leaf entries. The conditional entropy
H(Ck|V) captures the dissimilarity across clusters in the cluster-
ing Ck. By examining these derivatives, we are able to identify
good clusterings among the differentk values. Finally, for each
such clustering, we may inspect the clustering to determineif the
clustering corresponds to a natural semantic distinction between
objects.

6.2 Attribute Value Clustering
As in tuple clustering, we can build clusters of attribute values

that maintain as much information about the tuples in which they

appear as possible. The parameterφ in this case will be denoted
by φV and small values of it allow for the identification of almost
perfectly co-occurring groups of attribute values.

A useful connection between tuple and attribute value cluster-
ing is drawn when the number of tuples is large. We can use a
φT 6= 0.0 value to cluster the tuples and then, attribute values can
be expressed over the (much smaller) set of tuple clusters instead of
individual tuples. Attribute value clustering can then be performed
as described above. This technique is referred to asDouble Clus-
tering [11].

Contrary to tuple clustering, our goal here is to cluster thevalues
represented in random variableV so that they retain information
about the tuples inT in which they appear. We represent our data
as ad × n matrixN , whereN [v, t] = 1 if attribute valuev ∈ V

appears in tuplet ∈ T, and zero otherwise. Note that the vector of
a valuev containsdv ≤ di 1’s, 1 ≤ di ≤ n. For a valuev ∈ V,
we define:

p(v) = 1/d (6)

p(t|v) =

�
1/dv if v appears int
0 otherwise

(7)

Intuitively, we consider each valuev to be equi-probable and
normalize matrixN so that thevth row holds the conditional prob-
ability distributionp(T |v). Consider the example relation depicted
in Figure 4. Figure 6 (left) shows the normalized matrixN for
the relation in Figure 4. Together withN , we define a sec-

A B C
a 1 p
a 1 r
w 2 x
y 2 x
z 2 x

Figure 4: Duplication

A B C
a 1 p
a 1 x
w 2 x
y 2 x
z 2 x

Figure 5: No perfect correlation

N t1 t2 t3 t4 t5 p(a)
{a} 1/2 1/2 0 0 0 1/9
{w} 0 0 1 0 0 1/9
{z} 0 0 0 1 0 1/9
{y} 0 0 0 0 1 1/9
{1} 1/2 1/2 0 0 0 1/9
{2} 0 0 1/3 1/3 1/3 1/9
{p} 1 0 0 0 0 1/9
{r} 0 1 0 0 0 1/9
{x} 0 0 1/3 1/3 1/3 1/9

O A B C
{a} 2 0 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0
{1} 0 2 0
{2} 0 3 0
{p} 0 0 1
{r} 0 0 1
{x} 0 0 3

Figure 6: Matrix N (left) and O (right)
ond matrix,O, which keeps track of the frequency of the attribute
values in their corresponding attributes.O is defined as ad × m
matrix wereO[v, A] = dv if value v appearsdv times in attribute
V . Intuitively, each entry of matrixO[v, A] stores the support of a
valuev in attributeA of the relation. For our example, matrixO is
given on the right-hand-side of Figure 6. Note that for a value v:P

j
O[v, Aj] = dv and for an attributeA:

P
l
O[vl, A] = n.

Given matrixN , we can define mutual informationI(V ;T) and
cluster the attribute values inV into clustersCV such that the loss
of informationI(CV ; T) − I(V ;T) is minimum. Intuitively, we
seek groups of attribute values inCV that retain the information
about the tuples in which they appear. Such groups of values may
contain duplicate values. We show how we can characterize the
sets of attribute values in the clusters ofCV in the next subsection.

SetV may entail a large number of values and, thus, the AIB
algorithm is infeasible. Thus, we perform the clustering using

LIMBO where theDCFs are extended in order to include informa-
tion about matrixO. We define theAttribute Distributional Cluster
Features, (ADCF), of a cluster of valuesc∗ as a triplet:

ADCF (c∗) =
�
p(c∗), p(T |c∗), O(c∗)

�
wherep(c∗) andp(T |c∗) are defined as in Section 5.2 andO(c∗) =P

c∈c∗
O(c), i.e., O(c∗) is the sum of the corresponding rows of

sub-clustersc∗ represents.
In a similar fashion as in tuple clustering we use LIMBO to iden-

tify duplicate or almost duplicate values in the data set.

1. Set aφV value.
2. Apply Phase 1 to construct summaries of the attribute values.
3. Using leafADCFs with p(c∗) > 1/d, apply Phase 3 to asso-
ciate attribute values of the initial data set with their closest sum-
mary, where proximity is measured by the information loss be-
tween the two.

By augmentingDCFs in this way, we are able to perform value
clustering on the value matrixN together withO at the same time.
Hence, we are able to find sets of attribute values (of arbitrary
size) together with their counts (that is the number of tuples in
which they appear) using one application of our clustering algo-
rithm. Specifically, we require only three passes over the dataset.
One pass to construct the matricesN andO, one pass to perform
Phase 1 and a final pass to perform Phase 3.

In our example, performing clustering where we allow no loss
of information during merges (φV = 0.0), attribute valuesa and
1 are clustered as are valuesx and2. These values have perfect
co-occurrence in the tuples of the original relation. The clustering
of values forφV = 0.0 is depicted on the left-hand-side of Fig-
ure 7. The resulting matrixO of our example is depicted on the

N t1 t2 t3 t4 t5 p(a)
{a, 1} 1/2 1/2 0 0 0 2/9
{w} 0 0 1 0 0 1/9
{z} 0 0 0 1 0 1/9
{y} 0 0 0 0 1 1/9

{2, x} 0 0 1/3 1/3 1/3 2/9
{p} 1 0 0 0 0 1/9
{r} 0 1 0 0 0 1/9

O A B C
{a, 1} 2 2 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0

{2, x} 0 3 3
{p} 0 0 1
{r} 0 0 1

Figure 7: Clustered Matrix N (left) and O (right)

right-hand-side of Figure 7. For the cluster{a, 1} of values the
corresponding row ofO becomes(2, 2, 0), which means that the
values of this cluster appear two times in attributeA and two times
in attributeB. In general,O stores the cumulative counts of values
inside the attributes of a relation. BothN andO contain important
information and the next sub-section describes their use infinding
duplicate and non-duplicate groups of values.

Before moving to the next sub-section, it is critical to empha-
size the role of parameterφV . As already explained,φV is used to
control the accuracy of the model represented in the leaves of the
tree. Besides this, it plays a significant role in identifying “almost”
perfect co-occurrences of values. To illustrate this consider the re-
lation in Figure 5. This relation is the same as the one in Figure 4
except for valuex in the second tuple. Constructing matricesN
andO can be done as explained before. However, when trying to
cluster withφV = 0.0, our method does not place valuesx and2
together since they do not exhibit perfect co-occurrence any more.
This may be a result of an erroneous placement ofx in the second
tuple, or a difference in the representation among data sources that
were integrated in this table. Moreover, the functional dependency

C → B that holds in the relation of Figure 4 now becomesap-
proximate in that it does not hold in all the tuples. To capture such
anomalies, we perform clustering withφV > 0.0, which allows
for some small loss of information when mergingADCF leaves
in theADCF -tree. MatricesN andO for φV = 0.1 are depicted
in Figure 8. Our notion of approximation is value-based. This is in

N t1 t2 t3 t4 t5 p(a)
{a, 1} 1/2 1/2 0 0 0 2/8
{w} 0 0 1 0 0 1/8
{z} 0 0 0 1 0 1/8
{y} 0 0 0 0 1 1/8

{2, x} 0 1/8 7/24 7/24 7/24 2/8
{p} 1 0 0 0 0 1/8

O A B C
{a, 1} 2 2 0
{w} 1 0 0
{z} 1 0 0
{y} 1 0 0

{2, x} 0 3 4
{p} 0 0 1

Figure 8: Matrix N (left) and O (right), (φV = 0.1)

contrast to other methods that characterize approximationbased on
the number of tuples rather than values within tuples [15, 24]. For
the data in Figure 8, our method withφV = 0.1 determines that
valuex in the second tuple affects the perfect duplication of pair
{2, x} less than any other other value.

Tuple and Attribute Value clustering can be combined when the
size of the input is large. Specifically, we can define the mutual
informationI(T ;V) and cluster the tuples inT into clusters rep-
resented byCT . We defineφT so thatCT ≪ T and we then use
CT to defineI(V ;CT) and to scale-up the clustering of attribute
values.

6.3 Grouping Attributes
We have used information loss to define a notion of proximity

for values. Based on this, we can define proximity for attributes
based on the values they contain. We then cluster attributesusing
LIMBO. In this application of LIMBO, we control the information
loss through aφ value denoted byφA. Typically, the number of
attributesm is much less than the number of tuplesn, so we use
small values ofφA.

The rows of the compressed matrixN represent groups of values
as conditional probability distributions on the tuples they appear in
either exactly, forφV = 0.0, or approximately, forφV > 0.0.
From these rows and the corresponding rows of the compressed
matrixO, we can infer which groups of attribute values appear as
duplicates in the set of attributes. We are looking for clusters of
values that make their appearance in more than one tuple and more
than one attribute. More precisely, we define the following.

• CD
V denotes the set of duplicate groups of attribute values. A set

of valuescD belongs toCD
V if and only if there are at least two

tuplesti, tj for which bothp(ti|cD) 6= 0 andp(tj |cD) 6= 0, and at
the same time there are at least two attributesAx andAy such that
bothO[cD, Ax] 6= 0 andO[cD , Ay] 6= 0.

• CND
V denotes the set of non-duplicate groups of attribute values.

This set is comprised of all values inCV −CD
V . These are sets that

appear just once in the tuples of the data set.

In our example, it is easy to see from Figure 7 thatCD
V =n

{a, 1}, {2, x}
o

andCND
V =

n
{w}, {z}, {y}, {p}, {r}

o
. Now,

from these groups,CD
V contains “interesting” information in that it

may lead to a grouping of the attributes such that attributesin the
same group contain more duplicate values than attributes indiffer-
ent groups.

If A is the set of attributes andA the random variable that takes
its values from this set, we only express the members ofA over

CD
V through the information kept in matrixO. We denote these

members ofA with A
D and the random variable that takes values

from this set withAD. Then, we group the attributes inAD into
a clusteringCD

A , such that the informationI(CD
A ;CD

V) remains
maximum. Intuitively, we can cluster the attributes such that the
information about the duplicate groups of attribute valuesthat exist
in them, remains as high as possible. UsingCD

V instead of the
whole setCV , we focus on the set of attributes that will potentially
offer higher duplication while at the same time we reduce thesize
of the input for this task.

Since setA usually includes a manageable number of attributes,
we can use LIMBO withφA = 0.0 and produce a full clustering of
the attributes,i.e., produce all clusterings up tok = 1. By perform-
ing an agglomerative clustering (in Phase 2) over the attributes, at
each step we cluster together a pair that creates a group withthe
maximum possible duplication. For our example, Figure 9 depicts
the table of attributes expressed over the setCD

V as explained above
and using the information in matrixO (the rows that correspond to
the members ofCD

V). Note that we have the same matrix both for
φV = 0 andφV = 0.1 and that in this exampleA = A

D. We
name this matrixF . Normalizing rows ofF so that they sum up to
one, we can proceed with our algorithm and cluster the attributes.
All the merges performed are depicted in thedendrogram given
in Figure 10. A dendrogram is a tree structure that depicts the se-
quence of merges during clustering together with the corresponding
values of distance (or similarity). The horizontal axis of our exam-
ple shows the information loss incurred at each merging point. Ini-
tially, all attributes form singleton clusters. The first merge with the
least amount of information loss occurs between attributesB and
C and upon that, attributeA is merged with the previous cluster.

F {a, 1} {2, x}
{A} 2 0
{B} 2 3
{C} 0 4

Figure 9: Matrix F

B
C
A

0.0 0.1 0.2 0.3 0.4 0.5

Figure 10: Attr. Cluster Dendrogram

Looking back at our example of Figure 4, we can see that at-
tributesB andC contain more tuples with the duplicate group of
values{2, x} thanA andB do with respect to the group of values
{a, 1}.

In the next section, we show how to use our attribute clustering
to rank a set of functional dependencies holding on an instance.
Our ranking reveals which dependencies can best be used in a de-
composition algorithm to improve the information content of the
schema.

7. RANKING DEPENDENCIES
A desirable goal of structure discovery is to derive clues with

respect to a potential decomposition of an integrated data set. To
this end, we have presented tools for finding exact or approximate
relationships among tuples, attribute values and attributes of a data
set. However, as we pointed out, duplication is not the same as
redundancy. To understand the relationship, we turn to workon
mining for constraints (dependencies). There have been several ap-
proaches towards discovery of functional [24, 15, 28] and multival-
ued [25] dependencies. However, none of the approaches presents
a characeterizaton of the resulting dependencies. In this section,
we present a novel procedure that performs a ranking of the func-
tional dependencies found to hold on an instance, based on the re-
dundancy they represent in the initial relation. We motivate why

FD-RANK

Input : SetFD, merge sequenceQ, threshold0 ≤ ψ ≤ 1
Output : SetFDranked

1. For eachfd ∈ FD : X → A (A single attribute):
(1.a) rank(fd) = max(Q) (max inf. loss inQ);
(1.b) S = X ∪A;
(1.c) rank(fd) = IL(G), the inf. loss at mergeG

where all attributes inS participate and
IL(G) <= ψ ·max(Q);

2. If fd1 : X → A1 andfd2 : X → A2

with rank(fd1) = rank(fd2), setfd12 : X → A1A2

3. Order the setFD in ascending order of
rank to produceFDranked

Figure 11: The FD-RANK Algorithm

decompositions over dependencies with a high rank produce better
designs than other decompositions.

A good indication of the amount of duplication of the values
in CD

V in a cluster of attributesCA is the entropyH(CD
V |CA).

The entropy captures how skewed the distribution ofCD
V in CA is.

Skewed distributions are expected to have higher duplication. The
lower the entropy the more skewed the distribution. The follow-
ing proposition shows that each step in the clustering of attributes
minimizes the entropy.

PROPOSITION 1. Given sets of attributes CA1, CA2 and CA3,
if the information loss of merging CA1 and CA2 into C1 is smaller
than the information loss of merging CA1 and CA3 into C2, then
the duplication in C1 is larger than the duplication in C2.

PROOF. If the clustering before the merge isC, we have that
δI(CA1, CA2) < δI(CA1, CA3) and

I(C;CD
V) − I(C1;C

D
V) < I(C;CD

V) − I(C2;C
D
V)

I(C1;C
D
V) > I(C2;C

D
V)

H(CD
V) −H(CD

V |C1) > H(CD
V) −H(CD

V |C2)

H(CD
V |C1) < H(CD

V |C2)

The last inequality states that givenC1 the duplicate groups of val-
ues appear more times than inC2, which implies that duplication
is higher inC1 than inC2.
The above result justifies the observation that if we scan theden-
drogram of a full clustering of the attributes ofA

D, the sub-clusters
that get merged first are the ones with the higher duplication. Upon
the creation of the dendrogram, if we have a set of functionalde-
pendenciesFD, we can rank them according to how much of the
duplication in the initial relation is removed after their use in the
decomposition. Given a functional dependency that contains at-
tributes with high duplication, we may then say that the duplicate
values in these attributes are redundant. The more redundancy a
functional dependency removes from the initial relation the more
interesting it becomes for our purposes. Knowing all valuesof
information loss across all merges (in a sequenceQ) of attribute
sub-clusters, we can proceed with algorithm FD-RANK given in
Figure 11 to rank the functional dependencies inFD.

Intuitively, if we have the sequence of all mergesQ of the at-
tributes in matrixF (the setCD

A) with their corresponding infor-
mation losses, we first initialize the rank of each dependency to
be the maximum information loss realized during the full cluster-
ing procedure (Step 1.a). For the set of values that participate in a
functional dependency (Step 1.b), we update its rank with the high-
est information loss of a merge where all attributes are merged and

this information loss is below a percentage, specified byψ, of the
maximum information loss (Step 1.c). At this point we can break
ties among the functional dependencies that acquire the same rank-
ing based on the number of participating attributes; we rankthe
ones with more attributes higher than others. Step2 collapses two
functional dependencies with the same antecedent and ranks, into a
single functional dependency and, finally, Step3 orders setFD in
ascending order of their corresponding ranks.

In our example, the maximum information loss realized in the
attribute clustering is approximately0.52. This is the initial rank
the dependenciesA→ B andC → B acquire. With aψ = 0.5 we
only update the rank of functional dependencyC → B with a in-
formation loss of the merge of attributesB andC, since this is the
only merge lower than0.26 (ψ · 0.52). At this point,C → B is the
highest ranked functional dependency since it contains attributes
with the highest redundancy in it. Indeed, looking back at the initial
relation, if we use the dependencyC → B to decompose the rela-
tion into relations S1=(B,C) and S2=(A,C), the reduction of tuples,
and thus the redundancy reduction, is higher than usingA → B to
decompose into relations S1’=(A,B) and S2’=(A,C).

Finally, if f is the number of functional dependencies inFD,
finding the greatest common merge which is smaller thanψ times
the maximum information loss realized, can be done inO(f ·m ·
(m−1)) time, since we can have at mostm attributes participating
in a dependency and should traverse at most(m − 1) merges to
find the desired common merge of all of them. The final step of
ordering the dependencies according to their ranks has a worst-case
complexity ofO(f · log f). Thus, the total complexity isO(f ·m ·
(m − 1) + f · log f). If f ≫ m2, which is often the case in
practice, the previous complexity is dominated by the number of
dependencies (first term).

8. EXPERIMENTAL EVALUATION
We ran a set of experiments to determine the effectiveness ofthe

tools discussed in this paper in the structure discovery process. We
report on the results found in each data set we used and provide
evidence of the usefulness of our approach.

Data Sets. In our experiments we used the following data sets.

• DB2 Sample Database: This is a data set we constructed out of
the small database that is pre-installed with IBM DB2.3 We built
a single relation after joining three of the tables in this database,
namely tablesEMPLOYEE, DEPARTMENT and PROJECT. The
schema of the tables together with their key (the attributessepa-
rated by a line at the top of each box) and foreign key (arrows)
constraints are depicted in Figure 12. The relational algebra ex-
pression we used to produce the single relation was (we use the
initials of each relation):

R =
�
(E ⊲⊳WorkDepNo=DepNo D) ⊲⊳DepNo=DepNo P

�
RelationR contains90 tuples with19 attributes and255 attribute
values. We used this instance to illustrate the types of ”errors” we
are able to discover using our information-theoretic methods

• DBLP Database: This data set was created from the XML doc-
ument found athttp://dblp.uni-trier.de/xml/. This
document stores information about different types of computer sci-
ence publications. In order to integrate the information ina sin-
gle relation, we chose to use IBM’s schema mapping tool that per-
mits the creation of queries to transform the information stored in
XML format into relations [19]. We specified a target schema (the

3http://www-3.ibm.com/software/data/db2/udb/

EmpNo

ProjNo

DepNo

PROJECT

DEPARTMENT
EMPLOYEE

DeptNo

FirstName
LastName
PhoneNo
HireYear
Job
EduLevel
Sex
BirthYear
WorkDepNo

AdminDepNo
MgrNo
DepName

StartDate
RespEmpNo
ProjName

EndDate
MajorProjNo

Figure 12: DB2 Sample

DBLP

Editor
Pages
BookTitle
Month
Volume
JournalTitle
Number
School

Publisher
Author

Series
ISBN

Year

Figure 13: DBLP

schema over which the tuples in the relation are defined) contain-
ing the13 attributes depicted in Figure 13. We specified correspon-
dences between the source XML schema and the attributes in Fig-
ure 13. The queries given by the mapping tool where used to create
a relation that contained50, 000 tuples and57187 attribute values.
Each tuple contains information about a single author and, there-
fore, if a particular publication involved more than one author, the
mapping created additional tuples for each one of them. Moreover,
the highly heterogeneous information in the source XML document
(information regarding conference, journal publications, etc.) in-
troduced a large number ofNULL values in the tuples of the rela-
tion. We used this highly heterogeneous relation to demonstrate the
strength of our approaches in suggesting a better structurethan the
target relation we initially specified.
Parameters. We observed experimentally that the branching factor
of theDCF -tree,B, does not significantly affect the quality of the
clustering [5]. We setB = 4, so that the Phase 1 insertion time
is manageable (smaller values ofB lead to higher insertion cost
due to the increased height of the DCF tree). We explored a large
number of values forφ [5]. Generally speaking larger values forφ
(around1.0) delay leaf-node splits and create a smaller tree with a
coarse representation of the data set. On the other hand, smaller φ
values incur more splits but preserve a more detailed summary of
the initial data set. The valueφ = 0.0 makes our method equivalent
to the AIB, since only identical objects are merged together.
Functional Dependency Discovery. Our goal is not to rediscover
functional dependencies, but rather provide a ranking of any exist-
ing set of them. For the purposes of our study we used FDEP [24],
as the method to discover functional dependencies. Other methods
could also be used.

FDEP first computes all maximal invalid dependencies by pair-
wise comparison of all tuples and from this set it computes the
minimal valid dependencies. FDEP is the algorithm proposedby
Savnik and Flach [24] and performs the second step using a depth-
first search approach during which the set of maximal invalidde-
pendencies is used to test whether a functional dependency holds
and prune the search space.

After computing the functional dependencies using FDEP, we
computed the minimum cover using Maier’s algorithm [16].
Duplication Measures. In order to evaluate the amount of redun-
dancy removed from the initial data set, we used two measuresto
quantify the results of our approach. These measures are theRel-
ative Attribute Duplication (RAD) andRelative Tuple Reduction
(RT R) defined below.
• Relative Attribute Duplication: Given a set ofn tuples, a set
CA = {A1, A2, . . . , Aj}, with j ≥ 1, of attributes and the restric-

tion tCA
of tuples on the attributes ofCA (we assume bag seman-

tics here), we define

RAD(CA) =
�
1 −

H(tCA
|CA)

log(n)

�
Intuitively, RAD captures the number of bits we save in the rep-
resentation ofCA due to repetition of values. However, the above
definition does not clearly distinguish between the duplication of
differently sized relations. For example, assume two relations on a
single attribute with the first one having the same value in its three
tuples and the second one the same value in its two tuples. The
above definition will suggest that both relations haveRAD equal
to one, missing the fact that the first relation contains moredupli-
cation than the second (since it contains more tuples). To overcome
this we introduce the next measure.
• Relative Tuple Reduction: Given a set ofn tuples, a setCA =
{A1, A2, . . . , Aj}, with j ≥ 1, of attributes andtCA

the set ofn′

tuples projected on the setCA (we assume set semantics here), we
define

RT R(CA) =
�
1 −

n′

n

�
Intuitively, RT R quantifies the relative reduction in the number of
tuples that we get if we project the tuples of a relation overCA.

Overall RAD andRT R offer two different measures of the
extent to which values are repeated in the relation. A closerlook
at RAD reveals that this measure is morewidth-sensitive. From
the definition of conditional entropy, the nominator of the fraction
in RAD can be considered as the weighted entropy of the tuples
in a particular set of attributes, where the weights are taken as the
probability of this set of attributes. On the other hand,RT R is
more size-sensitive in that it can quantify the duplication within
different set of tuples taken over the same set of attributes.

8.1 Small scale experiments
In this phase of our experiments, we performed a collection of

structure discovery tasks in the DB2 sample data set to see how
effective our tools are in finding exact or almost duplicate tuples
and values in the data. This data set was used since it is a ”clean”
one and errors can be introduced to illustrate the potentialof our
methods.

8.1.1 Application of Tuple Clustering

Exact Tuple Duplicates. Our method can identify exact duplicates
introduced in the data set in any order. These duplicates arefound
whenφT = 0.0.
Typographic, Notational and Schema Discrepancies. Such er-
rors may be introduced when the same information is recordeddif-
ferently in several data sources and then integrated into a single
source. For example, this might be the case where the employee
numbers are stored following different schemes (typographical or
notational errors). On the other hand, this might also be thecase
where unknown values during integration are filled withNULL val-
ues in order to satisfy the common integrated schema (schemadis-
crepancies). To identify this type of errors, we introducedtuples in
the data set where some of the values in their attributes differ from
the values in the corresponding attributes of their matching tuples
in the data set. First, we fixed the value ofφT to 0.1 and performed
a study with various numbers of erroneous tuples and attribute val-
ues within them. Then, we fixed the number of erroneous tuples
that we inserted to 5 and performed a study where theφT and the
number of erroneous attribute values varied. We changed thesame
number of attribute values in each of the inserted tuples every time.
The results of both experiments are given in Table 1. From this

table, the strength of our method in determining groups of tuples
that do not differ a lot is evident. For a small number of ”dirty”
tuples inserted, the table on the left indicates that our method fails
to discover some approximate duplicates only when the number of
attribute values on which they differ is more than half the number
of attributes in the schema. The same table, shows that as thenum-
ber of these duplicates increases the performance of the method
deteriorates gracefully. The table on the right, where the number of
inserted tuples is 5, shows that as the accuracy of the chosenmodel
in the summaries decreases (largerφT values), the identification of
approximate duplicates becomes more difficult, since in these cases
more tuples are associated with the constructed summaries.

In general, any duplicates found using tuple clustering arepre-
sented to the user and an inspection of the suggested tuples reveals
whether these are interesting ones,i.e., duplicates corresponding
to the same physical entities represented by the tuples. We should
note again the effectiveness of Phase 3, which did not fail toiden-
tify the correct correspondences of tuples with their summaries in
the leaf entries of the tree.

8.1.2 Application of Attribute Value Clustering
In this section, we present experiments on attribute value clus-

tering. First, we found perfect correlations and then, by increasing
φV approximate ones among the attribute values in the data set.

Value correlations. UsingφT = 0.0 (no clustering of tuples is
performed), andφV = 0.0 we first looked for perfect correlations
among the values, that is, groups of attributes values that appear ex-
clusively together in the tuples. Our clustering method successfully
discovered such groups of values that make up the setCD

V .
We should note here that although forφV = 0.0 we do not ex-

pect to get anything more than the perfectly correlated setsof val-
ues, we believe that this information is critical in that it aligns our
method with that of Frequent Itemset counting [2]. However,with
higher values ofφV , we are able to discover potential entry errors.

Value Errors. In this part of the experiments, we introduced er-
rors similar to the ones in tuple clustering, however our goal here
is to locate the values that are ”responsible” for the errorsin the
tuple proximity. For better results, we may combine the results of
tuple and attribute value clustering. We performed experiments for
the same set of tuples that were artificially inserted when weper-
formed tuple clustering, where we counted the number of correct
placements of ”dirty” values in the clusters of attribute values that
appear almost exclusively together in the tuples. That is, we wanted
to see if a dirty value was correctly clustered with the values it re-
placed. Results of these experiments are given in Table 2. Similar
to tuple clustering, our method performs well even if the number of
inserted tuples is quite large (relative to the size of the initial data
set). The correct placement into the attribute value clusters, takes
place when the number of altered values covers more than halfof
the attributes in this data set.

8.1.3 Attribute Grouping
Having information about duplicate values inCD

V we built ma-
trix F . The dendrogram that was produced forφV = 0.0 and
φA = 0.0 is depicted in Figure 14. We remind the reader that
the horizontal axis represents information loss. In this data set,
the maximum information loss realized was0.922. As indicated
by the boxes, our attribute grouping has separated the attributes
of the initial schemas to a large extent, with the only exception
being attributesEduLevel and StartDate. From the den-
drogram, we could also identify that pairs (EmpNo, First-
Name), (LastName, PhoneNo), (ProjNo, ProjName) and

#Err. Tuples=5 #Err. Tuples=20
Value Errors Found Value Errors Found

1 5 1 20
2 5 2 20
4 5 4 19
6 4 6 17
10 4 10 15

φ = 0.2 φ = 0.3
Value Errors Found Value Errors Found

1 5 1 4
2 5 2 3
4 4 4 3
6 3 6 2
10 3 10 2

Table 1: DB2 Sample results of erroneous tuples, for φT = 0.1 (left) and #Err. Tuples=5 (right)

#Err. Tuples=5 #Err. Tuples=20
Value Errors Found Value Errors Found

1 1 1 1
2 2 2 2
4 4 4 4
6 5 6 5
10 9 10 7

φ = 0.2 φ = 0.3
Value Errors Found Value Errors Found

1 1 1 1
2 2 2 1
4 2 4 2
6 4 6 2
10 7 10 6

Table 2: DB2 Sample results of erroneous values, for φT = 0.1 (left) and #Err. Tuples=10 (right)

EmpNo
FirstName
LastName
PhoneNo
BirthYear
HireYear
EduLevel
StrtDate

ProjNo
ProjName

RespEmpNo
MajorProjNo

DeptNo
MgrNo

DeptName

0.0 0.2 0.4 0.6 0.8

50% of Max Information Loss

Figure 14: DB2 Sample Attribute Clusters

(DeptNo, MgrNo) exhibit the highest redundancy in the data set,
a result that agrees with the data instance as well as our intuition.

In addition to the previous experiment, we increased the value
of φV to 0.1 and0.2 respectively. The set of attributes inCD

A re-
mained the same forφV = 0.1, while attributeProjEndDate
was included whenφV = 0.2. However, there was large informa-
tion loss when this attribute was merged with other attributes. In
both experiments, the relative sequence of the merges remained the
same, indicating that our attribute grouping is stable in the presence
of errors (higherφV values).

8.1.4 Ranking of Functional Dependencies
Having the sequence of merged attributes, we used FD-RANK

to identify which functional dependencies, if used in a decompo-
sition, would help in the removal of high amounts of redundancy
in the initial data set. FDEP initially discovered 106 functional de-
pendencies, and the minimum cover consisted of 14 dependencies.
The highest ranked dependencies, withψ = 0.5 are given, in order
of increasing rank, in the following list:

1. [DeptNo]→[DeptName,MgrNo]

2. [DeptName]→[MgrNo]

3. [EmpNo]→[BirthYear,FirstName,LastName,PhoneNo,HireYear]

4. [ProjNo]→[ProjName,RespEmpNo,StartDate,MajorProjNo]

FD RAD RT R
1. 0.947 0.922
2. 0.965 0.922
3. 0.924 0.878
4. 0.872 0.800

Table 3: RAD and RT R values for DB2 Sample

Finally, Table 3 shows theRAD andRT R values for the pre-
vious functional dependencies, if their attributes are used to project
the tuples in the the initial relation. Table 3 shows that decompo-
sitions of the initial relation according to the ordered list of depen-
dencies would favor the removal of considerable amounts of redun-
dancy. Our ranking identifies dependencies with high redundancy
(high RAD andRT R values). This is attributed to the fact that
correlations of the corresponding attributes are high, however the
attribute value clusters inCD

V have lower support in the initial data
set. This fact is also visible in the dendrogram, where the attributes
of Department have a lower information loss than those ofEm-
ployee andProject and according to Proposition 1, they are
going to remove more redundancy.

8.2 Large scale experiments
For these experiments, we used the larger DBLP data set. We

performed a different series of experiments, which in largeinte-
grated relations, could be part of a structure discovery task.

The DBLP data set contains integrated information. The rela-
tion contains tuples of computer science publications thatappeared
as part of conference proceedings, journals, theses, etc. As we al-
ready argued, this type of information added anomalies due to the
discrepancies between the source and the target. More specifically,
most conference publications have theirJournal attributes filled
with NULL values. Some conference publications, though, appear
as part of aSeries publication, (like SIGMOD publications in the
SIGMOD Record journal), and thus a direct projection on attributes
that are known in conference (or journal) publications might lead in
errors. A better approach would be to first horizontally partition the
data set into a small number of groups with similar characteristics.

Before performing horizontal partitioning, we performed at-
tribute grouping in order to identify which attributes would be most
useful in such a partitioning. We usedφT = 0.5, which reduced the
number of tuples to1361 and then performed the attribute group-
ing with φA = 0.0. The result of this grouping is depicted in
Figure 15. From the dendrogram, we observe that a number of at-
tributes demonstrate an almost perfect correlation. Theseare the

Author
Pages

BookTitle
Publisher

ISBN
Editor
Series
School
Month

Year
Volume
Journal
Number

0.0 0.2 0.4 0.6

Figure 15: DBLP Attribute Clusters

attributes (dashed box) with zero or almost zero information loss,
indicating an almost one-to-one correspondence among their val-
ues. This is true since the value that prevails in this set of at-
tributes is theNULL value. A manual inspection of the data set
revealed that the set of attributes{Publisher, ISBN, Editor,
Series , School, Month} contains over98% of NULL values,
an anomaly introduced during the transformation of XML datainto
the integrated schema.

Having a set of attributes with limited non-missing information,
the horizontal partitioning produced unexpected results.More pre-
cisely, we performed all three Phases of our algorithm to cluster the
tuples into 3 groups. The result contained a huge cluster of49, 998
tuples and two clusters of one tuple in each. However, this result
was very informative. All the tuples in the relation are almost du-
plicates on many attributes andNULL values forced them into the
same summaries. Hence, our first observation here is that thesix
attributes withNULL values can be set aside in the analsysis with-
out considerable loss of information about the tuples. At the same
time, if our goal is the definition of a possible schema for therela-
tion, the existence of a huge percentage ofNULL values suggests
that these attributes contain very large amounts of duplication and
should be stored separately, before any horizontal partitioning.

After the previous observation, we projected the initial relation
onto the attribute set{Author, Pages, BookTitle, Year,
Volume, Journal, Number}. Then we performed a horizon-
tal partitioning of the tuples. Using our heuristic for choosingk as
described in Section 6.1.2, we determined thatk = 3 was a natural
grouping for this data. The loss of initial information after Phase 3
was9.45%, indicating that the clusters are highly informative. The
characteristics of the three clusters are given in Table 4. We now
consider each cluster separately and due to lack of space we only
report results of our attribute grouping and dependency ranking.

Cluster Tuples AttributeV alues

c1 35892 43478
c2 13979 21167
c3 129 326

Table 4: Horizontal Partitions
Cluster 1: This horizontal partition contains all Conference pub-
lications where theBookTitle attribute was a non-NULL value
in every tuple. UsingφT = 0.5 andφV = 1.0 (given the number
of attribute values), we performed the grouping of attributes and
the result is given in Figure 16. This dendrogram of the attributes
in CD

A reveals that there is zero distance among theVolume,
Journal and Number attributes. Indeed, these are attributes

that exclusively containedNULL values in this cluster. In addi-
tion, we found almost zero distance between attributesAuthor
andPages, which happens due to an almost one-to-one mapping
between their values (author tuples had uniquePages values in
this cluster). Finally,BookTitle is closer to the previous at-
tributes as conference titles are correlated with the authors. Having
the sequence of attribute merges, we used FDEP to find functional
dependencies that hold inc1 and FD-RANK with ψ = 0.5 to rank
them. There were12 dependencies and the minimum cover con-
tained11. It should be noted that there was no functional depen-
dency amongAuthor, Pages andBookTitle. The top-two
dependencies along with theRAD andRT R values of their at-
tributes are given in Table 5. These numbers indicate the signif-
icant redundancy reduction we achieve when these dependencies
are used in a decomposition. Although the dependencies thatwere
ranked higher did not contain conference attributes, they are highly
informative in that theNULL values in the attributes they cover in-
dicate removal of more redundancy. On the other handAuthor,
Pages andBookTitle have large domains, which makes them
less significant for redundancy reduction here.

FD RAD RT R

[Volume]→[Journal] 1.0 1.0
[Number]→[Journal] 1.0 1.0

Table 5: Ranked Dependencies for c1.

Cluster 2: The second horizontal partition contains Journal pub-
lications where theJournal, Volume andNumber attributes
had non-NULL values. Again, usingφT = 0.5 andφV = 1.0
(given the size of the attribute values) the dendrogram produced is
depicted in Figure 17. The first observation is that all attributes
in CD

A are generally characteristics of journal publications. Upon
that, we see that correlations appear amongJournal, Volume,
Number andYear, which is something natural to assume in such
publications. For example, the SIGMOD Record journal appears
once every quarter and the values of theNumber attribute are 1
through 4. Finally, using the sequence of merges of the attributes
in CD

A we ranked the functional dependencies holding in this parti-
tion. FDEP discovered a set of12 functional dependencies whose
minimum cover contained11 dependencies. Using FD-RANK with
ψ = 0.5, the top-two ranked dependencies are given in Table 6
together with theRAD andRT R values of the attributes they
contain. Note that both dependencies had the same rank. However,
the first dependency has more attributes and is ranked at the top.

FD RAD RT R

[Author,Volume,Journal,Number]→[Year] 0.754 0.881
[Author,Year,Volume]→[Journal] 0.858 0.982

Table 6: Ranked Dependencies for c2.

Cluster 3: The last horizontal partition was very small in size,
compared to the previous two, and contained miscellaneous pub-
lications, such as Technical Reports, Theses, etc. It also contained
a very small number of Conference and Journal publications that
were written by a single author. The dendrogram produced based
on theCD

A set is given in Figure 18. Given the nature and the size
of the cluster, the attribute associations are rather random and we
did not find any functional dependencies in the partition, a fact sug-
gesting that this relation does not have internal structure.

Finally, we should point out that the initial horizontal partition-
ing we used adds an additional benefit to our approach; although
the initial relation defined on all13 attributes contained hundreds

Author
Pages

BookTitle
Year

Volume
Journal
Number

0.0 0.1 0.2 0.3 0.4

Figure 16: Cluster 1

Author
Pages

Year
Number
Volume
Journal

0.0 0.1 0.2 0.3

Figure 17: Cluster 2

Author
Journal

Year
BookTitle

0.0 0.2 0.4 0.6 0.8 1.0

Figure 18: Cluster 3

of functional dependencies, mainly due to the attributes containing
NULL values, the clusters we produced had a small number of de-
pendencies (or none) defined on their attributes. This makesthe
understanding of their schema an easier task.

9. CONCLUSIONS
We have presented a novel approach to discover structure. Our

approach defines schema discovery as a problem where the schema
of a relation is inconsistent with respect to the data, rather than the
opposite. We presented a set of information-theoretic tools based
on clustering that discover duplicate, or almost duplicate, tuples
and attribute values in a relational instance. From the informa-
tion collected about the values, we then presented an approach that
groups attributes based on the duplication of values. The groups
of attributes with large duplication provide important clues for the
redefinition of the schema of a relation. Using these clues, we intro-
duced a novel approach to rank the set of functional dependencies
that are valid in an instance. Our case studies demonstratedthe
effectiveness of our methods in discovering integration anomalies
and alternative structural properties.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison Wesley, 1995.
[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Asso-

ciation Rules between Sets of Items in Large Databases. In
SIGMOD, pages 207–216, Washington, D.C., USA, 1993.

[3] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Material-
ized View and Index Selection Tool for Microsoft SQL Server
2000. InSIGMOD, page 608, 2001.

[4] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating
Fuzzy Duplicates in Data Warehouses. InVLDB, pages 586–
597, Hong Kong, China, 2002.

[5] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik.
LIMBO: Scalable Clustering of Categorical Data. InEDBT,
pages 123–146, Heraklion, Greece, 2004.

[6] M. Arenas and L. Libkin. An Information-Theoretic Ap-
proach to Normal Forms for Relational and XML Data. In
PODS, pages 15–26, San Diego, CA, USA, 2003.

[7] T. M. Cover and J. A. Thomas.Elements of Information The-
ory. Wiley & Sons, New York, NY, USA, 1991.

[8] M. M. Dalkilic and E. Robertson. Information Dependencies.
In PODS, pages 245–253, Dallas, TX, USA, 2000.

[9] T. Dasu and T. Johnson.Exploratory Data Mining and Data
Cleaning. John Wiley & Sons, Inc., 2003.

[10] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining Database Structure; or, How to Build a Data Quality
Browser. InSIGMOD, pages 240–251, Madison, WI, USA,
2002.

[11] R. El-Yaniv and O. Souroujon. Iterative Double Clustering
for Unsupervised and Semi-supervised Learning. InECML,
pages 121–132, Freiburg, Germany, 2001.

[12] M. R. Garey and D. S. Johnson.Computers and intractability;
a guide to the theory of NP-completeness. W.H. Freeman,
1979.

[13] M. A. Hernández and S. J. Stolfo. The Merge/Purge Problem
for Large Databases. InSIGMOD, pages 127–138, San Jose,
California, 1995.

[14] J. A. Hoffer and D. G. Severance. The Use of Cluster Anal-
ysis in Physical Data Base Design. InVLDB, pages 69–86,
Framingham, MA, USA, 1975.

[15] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen.
TANE: An efficient algorithm for discovering functional
and approximate dependencies.The Computer Journal,
42(2):100–111, 1999.

[16] D. Maier. Minimum Covers in Relational Database Model.
Journal of the ACM, 27(4):664–674, Oct. 1980.

[17] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Ver-
tical Partitioning Algorithms for Database Design.TODS,
9(4):680–710, 1984.

[18] S. B. Navathe and M. Ra. Vertical Partitioning for Database
Design: A Graphical Algorithm. InSIGMOD, pages 440–
450, Portland, OR, USA, 1989.

[19] L. Popa, Y. Velegrakis, M. Hernandez, R. J. Miller, and R. Fa-
gin. Translating web data. InVLDB, pages 598–609, Hong
Kong, China, Aug. 2002.

[20] R. Ramamurthy and D. J. DeWitt. A case for fractured mir-
rors. In VLDB, pages 430–441, Hong Kong, China, Aug.
2002.

[21] V. Raman and J. M. Hellerstein. Potter’s Wheel: An Interac-
tive Data Cleaning System. InVLDB, pages 381–390, Roma,
Italy, 2001.

[22] S. Sarawagi and A. Bhamidipaty. Interactive Deduplication
using Active Learning. InKDD, pages 269–278, Edmonton,
Canada, 2002.

[23] S. Sarawagi-(Editor).Special Issue on Data Cleaning. Bul-
letin of the Technical Committee on Data Engineering, Vol-
ume 23(4), December 2000.

[24] I. Savnik and P. A. Flach. Bottom-up induction of functional
dependencies from relations. InAAAI-93 Workshop: Knowl-
edge Discovery in Databases, pages 174–185, Washington,
DC, USA, 1993.

[25] I. Savnik and P. A. Flach. Disocvery of Mutlivalued Depen-
dencies from Relations.Intelligent Data Analysis Journal,
4(3):195–211, 2000.

[26] N. Slonim and N. Tishby. Agglomerative Information Bottle-
neck. InNIPS-12, pages 617–623, Breckenridge, CO, 1999.

[27] N. Tishby, F. C. Pereira, and W. Bialek. The InformationBot-
tleneck Method. In37th Annual Allerton Conference on Com-
munication, Control and Computing, Urban-Champaign, IL,
1999.

[28] C. Wyss, C. Giannella, and E. Robertson. FastFDs: A
Heuristic-Driven, Depth-First Algorithm for Mining Func-
tional Dependencies from Relation Instances. InDaWaK,
pages 101–110, Munich, Germany, 2001.

[29] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An ef-
ficient Data Clustering Method for Very Large Databases. In
SIGMOD, pages 103–114, Montreal, QB, 1996.

