Information-Theoretic Tools for Mining Database Structur

e

from Large Data Sets

Renée J.
University of

Periklis Andritsos
University of Toronto
periklis@cs.toronto.edu

ABSTRACT

Data design has been characterized as a process of arriardea
sign that maximizes the information content of each piecdath

(or equivalently, one that minimizes redundancy). Infatioracon-

tent (or redundancy) is measured with respect to a prestnitoelel

for the data, a model that is often expressed as a set of aortstr

In this work, we consider the problem of doing data redesign i
an environment where the prescribed model is unknown omnirco
plete. Specifically, we consider the problem of finding stnce
clues in an instance of data, an instance which may contain er
rors, missing values, and duplicate records. We propos¢ of se
information-theoretic tools for finding structural sumimearthat are
useful in characterizing the information content of theagand ul-
timately useful in data design. We provide algorithms faating
these summaries over large, categorical data sets. We #tedy
use of these summaries in one specific physical design tetiot
ranking functional dependencies based on their data reshayd
We show how our ranking can be used by a physical data-design
tool to find good vertical decompositions of a relation (dapo-
sitions that improve the information content of the desighlye
present an evaluation of the approach on real data sets.

1. INTRODUCTION

The growth of networked databases has led to larger and more

complex databases whose structure and semantics gets ifiore d
ficult to understand. In heterogeneous applications, datp ine
exchanged or integrated. This integration may introducaren

lies such as duplicate records, missing values, or erraneglues.

In addition, the lack of documentation or the unavailapitf the
original designers can make the task of understanding thetste
and semantics of databases a very difficult one.

No matter how carefully a database was designed in the past,
there is no guarantee that the data semantics are presesvied a
evolves over time. It is usually assumed that the schemaamd ¢
straints are trustworthy, which means that they providecanrate
model of the time-invariant properties of the data. Howgwer
both legacy databases and integrated data this may not Hela va
assumption. Hence, we may need to redesign a database to find
model (a schema and constraints) that better fit the curegat d

In this work, we consider the problem of mining a data instanc

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD 2004 June 13-18, 2004, Paris, France.

Copyright 2004 ACM 1-58113-859-8/04/06 .$5.00.

miller@cs.toronto.edu

Miller

Toronto

Panayiotis Tsaparas
Univ. of Rome, "La Sapienza"
tsap@dis.uniromal.it

for structural clues that can help in identifying a bettetaddesign.
Our work is in the spirit of several recent approaches thappse
tools to help an analyst in the process of understandingleadiog

a database [21, 10]. However, while these approaches fatus o
providing summaries that help in the process of integrafi

or querying [10], we focus on summaries that reveal inforomat
about the data design and its information content.

To approach this problem, it is important to understand what
makes a data design good. Data design has been charactasized
a process of arriving at a design that maximizes the infammat
content of each piece of data (or equivalently, one thatnmizes
redundancy). Information content (and redundancy) is oreas
with respect to a prescribed model for the data, a model shait i
ten expressed as a set of constraints or dependenciesirlretrent
work, Arenas and Libkin presented information-theoreteasures
for comparing data designs [6]. Given a schema and a set of con
straints, the information content of a design is precisalgracter-
ized. Their approach has the benefit that it permits two desigr
the same database to be compared directly.

However, to characterize the information content, it wasese
sary to have a prescribed model. Consider the following @@m

Ename | City | Zip
t1 Pat Boston| 02139
to Pat Boston| 02138
ts Sal Boston| 02139

Figure 1: Examples of Duplication and Redundancy

Clearly, there is duplication of values in this instance. wHo
ever, what we consider to be redundant will depend on the con-
straints expressed on the schema. If the functional depegde
Ename — City holds, then the valuBost on in tuplet. is re-
dundant given the presence of tuple That is, if we remove this
value, it could be inferred from the information in the firapte.
However, the valuBost on in the third tuple is not redundant. If
we lose this value, we will not know the city &l . So while the
value Bost on is duplicated ints, it is not redundant. But if we
change the constraints and insteadtbfame — Clity, we have

éhe dependencyip — Clity, then the situation is reversed. Given

t1, the valueBost on is redundant iri3, but not intz.
Understanding redundancy is at the heart of database dé&ign
dundancy occurs naturally because it reflects the intuliirking
process of humans. Humans are naturally associative tisirakel
naturally tend to aggregate and bring all the informatiaythave
together in their minds since this facilitates the progegsf infor-
mation. However, this is not a good way to store informatiom i
computer. Normalization is the systematic process, dutaigbase
design, that is used to separate information about diffe¥sfities
or objects of interest into different tables. This allowstasvoid

some of the data redundancy that would occur naturally wisen a
sociating different types of information together.

However, it is not obvious how to apply normalization or how
to define the information content of a database in an enviesnm
where the given schema and constraints may be incorrect-or in
complete. In this work, we consider this problem. At theireg@ur
techniques find duplicate values. However, unlike techesduased
on counting (for example, frequent item-set mining [2]), use
information-theoretic clustering techniques to idengéifid summa-
rize the information content of duplicate values.

In our approach, rather than viewing the data as being ingons
tent or incomplete with respect to a given schema, we contfige
schema to be potentially inconsistent or incomplete wigipeet to
a given data instance. Our contributions are the following.

e We propose a set of information-theoretic tools that usstetu
ing to discover duplicate records, sets of correlatedmaitei values,
and groups of attributes that share such values.

e We provide a set of efficient algorithms that can be used to-ide
tify duplication in large, categorical data sets. Our ailipons gen-
erate compact summaries that can be used by an analyst tifyiden
errors or to understand the information content of a data set

on having a clean instance that conforms to a fixed (givendfset
constraints. Our techniques are based on an efficient irfioorm
theoretic clustering approach. Because we are using unsspe
learning, we are able to create informative summaries evirout

an accurate model (set of constraints) for the data. We stoow h
our techniques can be used to identify good (or more acdyrate
better) designs.

Constraint or dependency mining is a related field of studgneh
the goal is to find all dependencies that hold on a given icstan
the data (that is, all dependencies that are not invalidayete in-
stance). Such approaches include the discovery of furaiti@d,

15, 28] and multi-valued [25] dependencies. Our work comple
ments this work by providing a means of characterizing tlieine
dancy captured by a dependency. We have found that cortstrain
miners reveal hundreds or thousands of potential (appabepte-
pendencies when they are run on large, real data sets. Our wor
helps a data analyst understand and quickly identify istare de-
pendencies within these large sets.

The importance of automated data design and redesign tasls h
been recognized in reports on the state of database reseéth
the advances that have been made in this area are largetgdimi
to physical design tools that help tailor a design to besttrifee

e \We present several applications of our summaries to the dataperformance characteristics of a workload [20, 3]. Clustealysis

quality problems of duplicate elimination and the idenéfion of
anomalous values. We also present applications to the éatgrd
problems of horizontally partitioning an integrated or doaded
relation and to ranking functional dependencies based @in it
formation content. For the latter application, we show haw o
techniques can be used in combination with a dependencyr toine
help understand and use discovered dependencies.

The rest of the paper is organized as follows. In Section 2, we
present related work and in Section 3, we introduce some bask
cepts from information theory. In Section 4, we draw thetieta
ship between the existence of duplicate information ansteting.
In Section 5, we describe LIMBO [5], the scalable informatio
theoretic clustering algorithm that we use, and in Sectithre@ools
that use this algorithm to derive structural clues. In Seci, we
introduce a novel algorithm that ranks functional depengenthat
hold in an instance. Section 8 presents the experimenthlagiean
of all our methods and Section 9 concludes our work and dé&sus
additional applications.

2. RELATED WORK

Our work finds inspiration in two independent lines of workeT
first on data quality browsers, such as Potter's Wheel [2d |-
man [10]. The second on the information-theoretic fourtaatf
data design [6, 8].

Data browsers aim to help an analyst understand, quenarus-tr
form data. In addition to sophisticated visualization t@ghes
(and adaptive query or transformation processing teclesif@d]),
they employ a host of statistical summaries to permit rimadt
browsing. In our work, we consider the generation of sumesari
that could be used in a data browser for data (re)design. eThes

has been used for vertical partitioning [14, 17, 18], howekiese
techniques partition the attributes of a relation basecein isage
in workload queries and not the data. On the other hand uiredt
mirrors [20] store different versions of the same databesgech
are combined during query optimization. This techniquels® a
based on the usage of the attributes in queries.

Finally, our work complements work on duplicate eliminat[d,
13, 23, 22]. We propose a technique to identify duplicategt@n
the information content of tuples. Our approach does nosiden
how to identify or use distance functions for measuring therde-
tween values (which is the main focus of related work in tihéag
An interesting area for future work would be on how to combine
these techniques.

3. INFORMATION THEORY BASICS

In what follows, we introduce some basic concepts from for
mation Theory. We can find the following definitions in anyttex
book of information theory, e.g., [7]. We denote witha discrete
random variable and witlV the set from whichV" takes its val-
ues! If p(v) denotes the probability mass functionsf then the
entropy H(V) of Vis defined ad? (V) = — >_ .y, p(v) log p(v).
Intuitively, entropy is a measure of the “uncertainty” ofiadble V.
When its value is high, the certainty with which we can prethie
values of the random variable is low. If variabletakes om states,
then the maximum value of the entropyHS,.... (V) = log(n) and
is realized when each of the states is equiprobalgep(v) = 1/n
forallv € V.

If V andT are two discrete random variables that takes their
values from set¥ andT respectively, then theonditional entropy
of T' givenV is defined as follows.

summaries complement the summaries used in Bellman, where

the focus is on identifying co-occurrence of values acrdoferd
ent relations (to identify join paths and correspondencsts/éen
attributes of different relations). Instead, we presernthaist set of
techniques for identifying and summarizing various forniglo-
plication within a relation.

Arenas and Libkin provide information-theoretic measuias

comparing data designs [6]. Given a schema and a set of con-

straints, the information content of a design is precisélgracter-
ized. The measures used are computational infeasible apdety

H(T|V) =Y p(v) Y p(tlv) log p(t]v)

veEV teT

Conditional entropy is a measure of the uncertainty witholhive
can predict the values of random variafilevhen the values o
are given.

For the remainder of the paper, we use italic capital lefters.
V) to denote random variables, and boldface capital leteig (
V) to denote the set from which the random variable takes galue

Having defined entropy and conditional entropy, we may now

introducemutual information, I(V;T). This measure captures the
amount of information that the variables convey about eéloérolt
is symmetric, non-negative, and its relation to entropyiverm via
the equationl (V;T) = H(V) — H(V|T) = H(T) — H(T|V).
Finally, Relative Entropy, or the Kullback-Leibler (KL) diver-
gence, is an information-theoretic measure used to quattté
distance between two probability distributions. Given tistri-
butionsp andq over a seV, relative entropy is defined as follows.

Dicrlpllg) = ¥ p(o) tog 241

veEV ()

Intuitively, relative entropyD x 1. [p||¢] measures the error in an en-
coding that assumes distributignwhenp is the true distribution.

4. CLUSTERING AND DUPLICATION

In this section, we consider how information about tuples] a
values within tuples, can be used to build structural infation,
independent of the constraints that hold on a relation.

Our techniques are designed to find duplication in large sktta
However, because we are considering real data sets whickonay
tain errors or missing values, we will be looking for not oghpups
containing exact duplicates, but rather groups containigay du-
plicates or similar values. Hence, our techniques will bselbaon
clustering. In clustering, we identify groups of data okgebat are
similar and where objects within different groups are diskir.

Schemas, like structured query languages that use theat, tre

data values largely as uninterpreted objects. This prgbet been

calledgenericity, [1], and is closely tied to data independence, the

concept that schemas should provide an abstraction of asdata
that is independent of the internal representation of tha. dehat
is, the choice of a specific data value (perhaps “Pat” or f€iat)

has no inherent semantics and no influence on the schemaaised t

structure values. The semantics captured by a schema isende
dent of such choices. For query languages, genericity iallysu

formalized by saying that a query must commute with all possi

ble permutations of data values (where the permutations lmeay
restricted to preserve a distinguished set of constants) [1

This property becomes important when one considers claogter
algorithms. Clustering assumes that there is some welhefio-
tion of similarity between data objects. Many clusteringtinog-
ologies employ similarity functions that depend on the setina

To apply information-theoretic techniques, we will treglations
as distributions. For each tuptec T containing a value € V,
we will set the probability that appears in tuplé as1/m. If we
go back to the example of Figure 1, we consider a representati
of its tuples as given in Figure 2. Each row corresponds t@ketu
There is a non-zero value in the row for each attribute vafub®
tuple and the values in a row sum up to one.

Pat | Sal] Boston| 02139 02138
t1 173 0 173 173 0
to 1/3 0 1/3 0 1/3
t3 0 1/3 1/3 1/3 0

Figure2: Example of tuple representation

The representation we consider for the values of the sanae dat
set is given in Figure 3. Each row in the table of Figure 3 chara

t1 to t3
Pat 1721121 O
Sal 0 0 1
Boston | 1/3 | 1/3| 1/3
02139 | 1/2| 0| 1/2
02138 0 1 0

Figure 3: Example of value representation

terizes the occurrence of values in tuples and for each thkre
is a non-zero entry for the tuples in which it appears. Simdahe
tuple represenation, each row sums up to one. More formalidefi
tions about both representations are given in the followgmgfion.

Using such representations, we consider a number of nawg! cl
tering approaches for identifying duplication in tuplealues, and
attributes. All of our techniques are founded on the IB médtho
which we introduce next.

5. CLUSTERING METHODOLOGY

In this section, we describe tHaformation Bottleneck, (I1B),
method [27] and a scalable clustering algorithm based on IB.

5.1 Information Bottleneck

The intuitive idea of producing clusters that are inforwvati
about the objects they contain was formalized by TishbygeiPaer
and Bialek [27]. They recast clustering as the compressiame
random variable into a compact representation that presess

of the data values. For example, if the values are numbers, Eu much information as possible about another random varidtbieir

clidean distance may be used to define similarity. Howeverda
not want to impose any application-specific semantics tadtia
values within a database.

If we are seeking to identify duplication in a set of tupleg w
need a measure of similarity that reflects the duplicatioth@se
tuples. However, even with such a measure, it is not obvious h
to define the quality of the results. On the other hand, fordmsn
there is an intuitive notion of the quality of a clustering. gaod
clustering is one where the clusters améormative about the ob-
jects they contain. Given a cluster, we should be able toigrete
attribute values of the tuples in this cluster to the maxinpossi-
ble.

We assume a model where a &0f n tuples is defined om
attributes(A41, As, ..., Amn). The domain of attributel; is the set
Vi ={Vi1,Vie,..., Vi }. Anytuplet € T takes exactly one
value from the seV; for thei'” attribute. Moreover, a functional
dependency between attribute satsC A andY C A, denoted
by X — Y, holds if whenever the tuples i’ agree on theX
values, they also agree on their correspondingalues.

approach was named thaformation Bottleneck, (IB), method, and
it has been applied to a variety of different areas. More &lyn
given a set of objects in s&f expressed over s@t, we seek a clus-
tering, C, of V such that the mutual informatiah(C'; T') remains
as large as possible, or otherwise the loss of informatiseriteed
by I(V;T) — I(C;T) is minimum. ThelB method is generic,
imposing no semantics on specific data values.

Finding the optimal clustering is an NP-complete proble][1
Slonim and Tishby [26], propose a greedy agglomerativeagar,
the Agglomerative Information Bottleneck, (AIB), algorithm, for
finding an informative clustering. If S& containsg objects, the
algorithm starts with the clusterir@,, in which each objeat € V
is assigned to its own cluster. Due to the one-to-one mappiag
tweenC, andV, I(Cy;T) = I(V;T). The algorithm then pro-
ceeds iteratively, foy — k steps k is the number of desired clus-
ters), reducing the number of clusters in the current clirgeby
one in each iteration. At step— £+ 1, two clusters:; andc; in the
¢-clustering (the clustering of clusters) are merged in clustet,
to produce a new/(— 1)-clusteringC,_;. As the algorithm forms

clusters of smaller size, the information that the clusggtontains
aboutT decreases, which means tié€,_1;T) < I(C¢; T'). The

two clusters:; andc; to be merged are chosen such that the loss of
informationd(c;,c;) = I(Ce; T) — I(Cy—1;T), in moving to the

(¢ — 1)-clustering, is minimum. After merging clustetsandc;,

the new clustet” = ¢; U ¢; has [26]:

p(c”) = plei) +ple)) @
w _ plei) e+ P o
p(T|c") = p(c*)p(Tl i) + p(c*)p(Tl) 2
Tishby et al. [27] show that
61(ci,cj) = [p(ei) +p(es)] - Duslp(Tei), p(Tle;)] 3)

whereD ;s is theJensen-Shannon (JS) divergence, defined as fol-
lows. Letp; = p(T'|c:) andp; = p(T'|c;) and let

__ ple) ple)
P @) T pe)”
Then, theD ;5 distance is defined as follows.

p(cs) p(cj)
p(c) p(c*)
The D ;s distance defines a metric and it is bounded above by one.
We note that the information loss for merging clustergndc;,
depends only on the clustetsandc;, and not on other parts of the
clusteringCy.

5.2 Scalable Clustering

The AIB algorithm suffers from high computational complex-
ity, namely it is quadratic in the number of objects to be ted,
which does not make it appropriate for large sets. We thezafse
a scalable version of AIB, called LIMBGsg¢alLable InforMation
BOttleneck) [5]. LIMBO uses distributional summaries in order to
deal with large data sets. This algorithm is similar in spwithe
BIRCH [29] clustering algorithm and is based on the idea tinat
do not need to keep whole clusters in main memory, but instead
just sufficient statistics to describe them.

The sufficient statistics are callddistributional Cluster Fea-
tures, (DCF)s, and they will be used to compute the distance be-
tween two clusters or between a cluster and a tuple. MLée the
set of objects to be clustered expressed on thél'seand letV
andT be the corresponding random variables. AlsdJetenote a
clustering ofV andC' be the corresponding random variable.

For a cluster € C, the DC'F of cis defined by the pair

DCF(e) = (p(e),p(T1c))

wherep(c) is the probability of cluster ,(p(c) = |¢|/|V]), and
p(T|c) is the conditional probability distribution of the valuesT
given the clustee. If ¢ consists of a single objeete V, p(v) =
1/|V| andp(T'|c) is computed as described in Section 5.1.

Let ¢* denote the cluster we obtain by merging two clusters
andcz. The DC'F of the clusterc* is equal to

DOF(e") = (p(c"), p(TIe"))

wherep(c*) andp(T'|c*) are computed using Equations 1 and 2,
respectively. Finally, given two clusters andcz, we define the
distance,d(c1, c2), betweenDCF'(c1) and DC'F(cz2) as the in-
formation losy1(c1, c2) incurred after merging the corresponding
clusters.d(ci, c2) is computed using Equation 3.

The importance oD CF's lies in the fact that they can be stored
and updated incrementally. The probability vectors areest@s
sparse vectors, reducing the amount of space considerghlgh

Djslpi,pj] =

Dxkw[pil|p) + Drr[pjl|P]

DCF provides a summary of the corresponding cluster, which is
sufficient for computing the distance between two clustéfs.use

a tree data structure, termddC F'-tree. Our scalable algorithm
proceeds in three phases. In the first phaseib&" tree is con-
structed to summarize the data. In the second phasd)¢ttés of

the tree leaves are merged to produce a chosen number @frslust
In the third phase, we associate each object (tuple, atgrialue

or attribute) with theD C'F' to which it is closest.

Phase1: Insertion intothe DCF tree. The objects to be clustered
are read from disk one at a time and at any point in the construc
tion of the tree, theDC'F's at the leaves define a clustering of the
tuples seen so far. Each non-leaf node std@ésF's that are pro-
duced by merging th&C F's of its children. After all objects are
inserted in the tree, thBC F'-tree embodies a compact representa-
tion in which the data set is summarized by the informatiothin
DCF's of the leaves. This summarization is based upon a parame-
ter ¢ which controls the accuracy of the model represented by the
tree. More precisely we use the quantity ““(;‘T) as a threshold
and mergeDCF's at the leaf level of the tree that do not exceed
it. Smaller values ofp result in more compact summarizations.
For instance using = 0.0, we only merge identical objects and
LIMBO becomes equivalent to AIB.

Phase 2: Clustering. Upon the creation of the tree, we can apply
AIB in a much smaller number of objects represented by 2i&-'s
in the leaves.

Phase 3: Associating object with clusters. For a chosen value
of k, Phase 2 producds DCF's that serve asepresentatives of k
clusters. In the final phase, we perform a scan over the datande
assign each objeetto the cluster such thatl(o, ¢) is minimized.

In our approach, we shall use this more scalable clustetgwg a
rithm to find duplicate groups of tuples, attribute valued groups
of attributes that can be considered similar because thetaico
such groups.

6. DUPLICATION SUMMARIES

In this section, we present a suite of structure discoveskstéhat
can be performed using our information-theoretic cluatgriWe
will see how from information about tuples, we can build stanal
information about the attribute values and from this infation
about the attributes of a relation.

The input to our problem here is the set of tuplB&nd the set
V =V, U...UV,,, which denotes the set of all possible vallfes.
Let d denote the size of s&f. We shall denote with andT the
random variables that range over skt&ndT, respectively.

6.1 Tuple Clustering

In tuple clustering, we find clusters of tuples that presehee
information about the values they contain as much as pessitéé
represent our data asrax d matrix M, where M[t,v] = 1 if
tuplet € T contains attribute value € V, and zero otherwise.
Note that the vector of a tuplecontainsm 1's. For a tuplet € T,
defined over exactlyn attribute values, we then define:

p(t)=1/n 4
_J 1/m if vappears it
p(vlt) = { 0 otherwise ®)
Intuitively, we consider each tupteo be equi-probable and nor-
malize matrixM so that thet*” row holds the conditional proba-
bility distribution p(V'|t). Given M, we can define mutual infor-

2We will use the termattribute val ues andval ues interchangeably.

mationI(7; V) and cluster the tuples fi into clustersCr such
that the information los$(Cr; V') — I(T; V') is minimum.

6.1.1 Duplicate Tuples

Duplicate tuples can be introduced through data integrafif-
ferent sources may store information about the same enfite
values stored may differ slightly so when integration iSfpened,
two entries may be created for the same entity. As an examgle,
can imagine a situation where employee information is irztigl
from different sources and employee numbers are reprakeifte
ferently in the sources. After integration, it is naturalexpect
tuples referring to the same employee where they may difigr o
in their employee number (or perhaps some other attribitasei
database is more up-to-date than another). To identifyicatpl or
almost duplicate tuples we proceed as follows.

1. Set apr value.
2. Apply Phase 1 to construct tuple summaries.
3. Using leaf DCF's with p(cx) > 1/n, apply Phase 3 to asso-

ciate tuples of the initial data set with their closest sumynahere
proximity is measured by the information loss between the tw

Step 1 of the above procedure defines the accuracy of the rep-

resentation of groups of tuples in the summaries at the &eH |
of the DC' F-tree. If ¢ = 0.0 we merge identical tuples and the
representation is exact. As we incre@se the summaries permit
more errors in the duplicate values. Step 2 applies Phas@rbio
duce summaries fapr, while Step 3 associates tuples with sum-
maries that represegtoups of tuples (more than one tuple). Itis
then natural to explore the sets of tuples associated wélsdme
summaries to find candidate (almost) duplicate ones.

6.1.2 Horizontal Partitioning

A second application of tuple clustering is the horizontaitip
tioning of a table. Horizontal partitioning can be usefultables
that have been overloaded with different types of data [8}. €x-
ample, an order table originally designed to store produdérs
may have been reused to store new service orders. In halzont
partitioning, we are seeking to separate out differentsygfeuples
based on the similarities in their attribute values. Speziff, we
try to identify whether there is a natural clustering thataates
out tuples having different characteristics.

For horizontal partitioning, we do a full clustering. That we
apply Phase 1 to obtain a small set of summary DCFs. Here, we
do not need to seg priori, a threshold on the information logs
rather we can pick a number of leaves that is sufficientlyddfgr
example, 100 leaves) and apply Phase 1 to obtain 100 sunsmarie
We then apply AIB to these 100 leaves to obtain clusterings fo
all k£ values between 1 and 100. We use the following heuristic
to identify goodk values that may correspond to natural horizon-
tal partitions. We do so by producing statistics that let ueatly
compare clusterings. These statistics include the ratbarige in
the mutual information of clusteringg {(C; V")) and the rate of
change in the conditional entropy of clustering$f(Cx|V)) ask
varies froml to the number of leaf entries. The conditional entropy
H(Cy|V) captures the dissimilarity across clusters in the cluster-
ing Cx. By examining these derivatives, we are able to identify
good clusterings among the differehtvalues. Finally, for each
such clustering, we may inspect the clustering to deterrnfitie
clustering corresponds to a natural semantic distinctietwéen
objects.

6.2 Attribute Value Clustering

As in tuple clustering, we can build clusters of attributéues
that maintain as much information about the tuples in whiayt

appear as possible. The parameten this case will be denoted
by ¢v and small values of it allow for the identification of almost
perfectly co-occurring groups of attribute values.

A useful connection between tuple and attribute value etust
ing is drawn when the number of tuples is large. We can use a
¢ # 0.0 value to cluster the tuples and then, attribute values can
be expressed over the (much smaller) set of tuple cluststesdd of
individual tuples. Attribute value clustering can then legfprmed
as described above. This technique is referred adle Clus-
tering [11].

Contrary to tuple clustering, our goal here is to clustendiees
represented in random variablé so that they retain information
about the tuples ifi" in which they appear. We represent our data
as ad x n matrix N, whereN|[v, t| = 1 if attribute valuev € V
appears in tuplé € T, and zero otherwise. Note that the vector of
a valuev containsd, < d; 1's,1 < d; < n. For avaluev € V,

we define:
p(v) =1/d (6)
plelo) = @

Intuitively, we consider each value to be equi-probable and
normalize matrixV so that the)'" row holds the conditional prob-
ability distributionp(T'|v). Consider the example relation depicted
in Figure 4. Figure 6 (left) shows the normalized matixfor
the relation in Figure 4. Together witN, we define a sec-

1/dy
0

if v appears in
otherwise

A B C A B C
alp alp
a1l r a 1 x
w 2 X w 2 X
y 2 X y 2 X
zZ 2 X z 2 X

Figure4: Duplication Figure5: No perfect correlation

N tl tz t3 t4 ts p(a) O A B C
{fa} [12 772 0 0 0| 1/9 {a} [[2 0 O
{fw}y[o 0 1 0 of19 {fw} |1 0 0
{z}lo 0o 0o 1 0|19 {z} |1 0 0
{y}/lo o o o 1|19 {y} |1 0 0
{1} |[1/2 172 0 0 o0f 1/9 {13 {0 2 o
{2y |0 0 1/3 1/3 1/3 1/9 {2y |lo 3 0
{pt]l1 0o 0o 0o of19 {p} [|0 0 1
{FYlo 1 0o o0 0|19 {r} |o 0 1
{z} | 0 0 1/3 1/3 1/3 1/9 {z} |0 0 3

Figure6: Matrix N (left) and O (right)
ond matrix,O, which keeps track of the frequency of the attribute
values in their corresponding attributeS. is defined as @ x m
matrix wereO|[v, A] = d, if value v appearsl, times in attribute
V. Intuitively, each entry of matriO[v, A] stores the support of a
valuew in attribute A of the relation. For our example, matiiXis
given on the right-hand-side of Figure 6. Note that for a ®alu
>-; O[v, A;] = d, and for an attributed: 3=, Ofv;, A] = n.

Given matrixV, we can define mutual informatiar{V'; T') and
cluster the attribute values M into clustersCy such that the loss
of informationI(Cv;T) — I(V;T) is minimum. Intuitively, we
seek groups of attribute values @ that retain the information
about the tuples in which they appear. Such groups of valigs m
contain duplicate values. We show how we can characterize th
sets of attribute values in the clusters@y- in the next subsection.

SetV may entail a large number of values and, thus, the AIB
algorithm is infeasible. Thus, we perform the clusteringngs

LIMBO where theDC F's are extended in order to include informa-
tion about matrixO. We define theéttribute Distributional Cluster
Features, (ADCF), of a cluster of values™ as a triplet:

ADCF(c*) = (p(c*),p(T|C*)7O(C*)>

wherep(c*) andp(T'|c*) are defined as in Section 5.2 afdc™) =
Y ccer O(0), 1.8, O(c") is the sum of the corresponding rows of
sub-clusterg* represents.

In a similar fashion as in tuple clustering we use LIMBO taride
tify duplicate or almost duplicate values in the data set.

1. Set apy value.
2. Apply Phase 1 to construct summaries of the attributeagalu

3. Using leafADCF's with p(¢*) > 1/d, apply Phase 3 to asso-
ciate attribute values of the initial data set with theirsglst sum-
mary, where proximity is measured by the information loss be
tween the two.

By augmentingDC'F's in this way, we are able to perform value
clustering on the value matriX together withO at the same time.
Hence, we are able to find sets of attribute values (of aritra
size) together with their counts (that is the number of tsipfe
which they appear) using one application of our clusterilgp-a
rithm. Specifically, we require only three passes over thasid.
One pass to construct the matric¥sand O, one pass to perform
Phase 1 and a final pass to perform Phase 3.

In our example, performing clustering where we allow no loss
of information during mergesy = 0.0), attribute values and
1 are clustered as are valuesand2. These values have perfect
co-occurrence in the tuples of the original relation. Thestgring
of values for¢y = 0.0 is depicted on the left-hand-side of Fig-
ure 7. The resulting matri©) of our example is depicted on the

N t1 t2 t3 t4 t5 p(a) O A B C
{a,1}|[1/2 172 0 0 0| 29 {a,11[2 2 0O
{fwylo o 1 0 o019 {fw}y |1 00
{zy o 0o 0o 1 0|19 {z} |1 00
{y} /0o o 0o o 1|19 {y} |[1 00
{2,z}|| 0 0 1/3 1/3 1/3 2/9 {2,z}|{|0 3 3
{py |1 0 0o 0 0|19 {p} |0 0 1
{rrlo 1 0 0 0|19 {r} lo 0 1

Figure7: Clustered Matrix N (left) and O (right)

right-hand-side of Figure 7. For the clustgr, 1} of values the
corresponding row o becomes2, 2, 0), which means that the
values of this cluster appear two times in attribdtand two times
in attributeB. In general O stores the cumulative counts of values
inside the attributes of a relation. Baifi andO contain important
information and the next sub-section describes their usading
duplicate and non-duplicate groups of values.

Before moving to the next sub-section, it is critical to emph
size the role of parameter,. As already explainedjy is used to
control the accuracy of the model represented in the leaivd®eo
tree. Besides this, it plays a significant role in identifyfalmost”
perfect co-occurrences of values. To illustrate this atersihe re-
lation in Figure 5. This relation is the same as the one inféigu
except for valuex in the second tuple. Constructing matric¥’s

C — B that holds in the relation of Figure 4 now beconzgs
proximate in that it does not hold in all the tuples. To capture such
anomalies, we perform clustering with, > 0.0, which allows
for some small loss of information when mergidgDC'F' leaves

in the ADC F'-tree. MatricesV andO for ¢ = 0.1 are depicted

in Figure 8. Our notion of approximation is value-based.sTigin

N t1 to 3 ta ts p(a) 0] A B C
[@ij[12 12 0 0 0]2B8| [{a,i}|2 2 0
{w} 0 O 1 0 0| 1/8 {w} 100
z}llo o o 1 olws|| {100
{y} 0 O 0 0 11| 1/8 {y} 100
(2.,2}| 0 18 724 7124 7124258 | |{2,a}||0 3 4
{p} 1 0 0 0 0| 1/8 {p} 0 0 1

Figure8: Matrix N (left) and O (right), (¢v = 0.1)

contrast to other methods that characterize approximatsed on
the number of tuples rather than values within tuples [15, Bdr

the data in Figure 8, our method withy = 0.1 determines that
valuex in the second tuple affects the perfect duplication of pair
{2, z} less than any other other value.

Tuple and Attribute Value clustering can be combined when th
size of the input is large. Specifically, we can define the mlutu
informationI(7"; V') and cluster the tuples i’ into clusters rep-
resented byCr. We definepr so thatCr < T and we then use
Cr to definel(V; Cr) and to scale-up the clustering of attribute
values.

6.3 Grouping Attributes

We have used information loss to define a notion of proximity
for values. Based on this, we can define proximity for attesu
based on the values they contain. We then cluster attrilusieg
LIMBO. In this application of LIMBO, we control the informian
loss through ap value denoted by 4. Typically, the number of
attributesm is much less than the number of tupkesso we use
small values ofp 4.

The rows of the compressed matfikrepresent groups of values
as conditional probability distributions on the tuplesytia@pear in
either exactly, forgpy, = 0.0, or approximately, forpy > 0.0.
From these rows and the corresponding rows of the compressed
matrix O, we can infer which groups of attribute values appear as
duplicates in the set of attributes. We are looking for @tstof
values that make their appearance in more than one tuple ared m
than one attribute. More precisely, we define the following.

e C denotes the set of duplicate groups of attribute values.tA se
of valuesc” belongs toCZ if and only if there are at least two
tuplest;, t; for which bothp(t;|c?) # 0 andp(t;|cP) # 0, and at
the same time there are at least two attributesand A, such that
bothO[c?, A,] # 0 andO[cP, A,] # 0.

e CYYP denotes the set of non-duplicate groups of attribute values
This set is comprised of all values i, — C2. These are sets that
appear just once in the tuples of the data set.

In our example, it is easy to see from Figure 7 tiff =

{{a. 1} 2,2} } andCPP = {{w}, {=}, (v}, {p}. {r}}. Now,

andO can be done as explained before. However, when trying to from these groups; contains “interesting” information in that it

cluster with¢y = 0.0, our method does not place valuesind2

together since they do not exhibit perfect co-occurrengenaore.
This may be a result of an erroneous placement iof the second
tuple, or a difference in the representation among datacesuhat
were integrated in this table. Moreover, the functionaledefency

may lead to a grouping of the attributes such that attribintése
same group contain more duplicate values than attributefer-
ent groups.

If A is the set of attributes and the random variable that takes
its values from this set, we only express the membera afver

C?T through the information kept in matri®@. We denote these
members ofA with A and the random variable that takes values
from this set withA”. Then, we group the attributes " into

a clusteringC?, such that the informatiod (C; C#) remains
maximum. Intuitively, we can cluster the attributes sucét ttihe
information about the duplicate groups of attribute valilnes exist

in them, remains as high as possible. Usi#if instead of the
whole setCy, we focus on the set of attributes that will potentially
offer higher duplication while at the same time we reducesike

of the input for this task.

Since sefA usually includes a manageable number of attributes,
we can use LIMBO withp 4 = 0.0 and produce a full clustering of
the attributesi.e., produce all clusterings up fo= 1. By perform-
ing an agglomerative clustering (in Phase 2) over the ated) at
each step we cluster together a pair that creates a groupthveth
maximum possible duplication. For our example, Figure 9aisp
the table of attributes expressed over theBtas explained above
and using the information in matri® (the rows that correspond to
the members of’?). Note that we have the same matrix both for
¢v = 0 and¢y = 0.1 and that in this exampld = AP. We
name this matrix'. Normalizing rows off" so that they sum up to
one, we can proceed with our algorithm and cluster the ateth
All the merges performed are depicted in ttandrogram given
in Figure 10. A dendrogram is a tree structure that depics#
guence of merges during clustering together with the cpaeding
values of distance (or similarity). The horizontal axis af exam-
ple shows the information loss incurred at each mergingtpbii
tially, all attributes form singleton clusters. The firstnge with the
least amount of information loss occurs between attribitesnd
C and upon that, attributd is merged with the previous cluster.

F [{aly 2a)] &]
{A}|| 2 0 A
Byl 2 3 S
{C}]| O 4 00 01 02 03 04 05

Figure9: Matrix F Figure 10: Attr. Cluster Dendrogram

Looking back at our example of Figure 4, we can see that at-
tributes B and C' contain more tuples with the duplicate group of
values{2, z} than A and B do with respect to the group of values
{a,1}.

In the next section, we show how to use our attribute clusgeri
to rank a set of functional dependencies holding on an iestan
Our ranking reveals which dependencies can best be useden a d
composition algorithm to improve the information contefttwe
schema.

7. RANKING DEPENDENCIES

A desirable goal of structure discovery is to derive cluethwi
respect to a potential decomposition of an integrated dettaT®
this end, we have presented tools for finding exact or apprate
relationships among tuples, attribute values and atebaf a data
set. However, as we pointed out, duplication is not the sasne a
redundancy. To understand the relationship, we turn to work
mining for constraints (dependencies). There have bearalep-
proaches towards discovery of functional [24, 15, 28] anttival-
ued [25] dependencies. However, none of the approachesrpses
a characeterizaton of the resulting dependencies. In #usos,
we present a novel procedure that performs a ranking of the- fu
tional dependencies found to hold on an instance, basedeareth
dundancy they represent in the initial relation. We moévahy

FD-RANK
Input : SetF'D, merge sequend®, threshold) < ¢ <1
Output : SetF'D,anked

1. For eachfd € FD : X — A (A single attribute):
(1.a) rank(fd) = max(Q) (Max inf. loss inQ);
(1.b) S = X U 4;

(1.¢) rank(fd) = IL(G), the inf. loss at mergé&
where all attributes iy participate and
IL(G) <=1 - maz(Q);
2.1f fdi: X — Ajandfds : X — Ag
with rank(fd1) = rank(fdz), setfdiz : X — A1 A
3. Order the sef'D in ascending order of
rank to produceF D, qnked

Figure11: The FD-RANK Algorithm

decompositions over dependencies with a high rank prodeiterb
designs than other decompositions.

A good indication of the amount of duplication of the values
in C¥ in a cluster of attribute€'s is the entropyH (C¥|Cla).
The entropy captures how skewed the distributio@tin Ca is.
Skewed distributions are expected to have higher duptinatThe
lower the entropy the more skewed the distribution. Theofwll
ing proposition shows that each step in the clustering oibates
minimizes the entropy.

ProOPOSITION 1. Given sets of attributes C' a1, C a2 and Cas,
if the information loss of merging C'a1 and C'a2 into C1 issmaller
than the information loss of merging C'4a1 and Cas into Ca, then
the duplication in C islarger than the duplication in Cs.

PrROOF If the clustering before the merge @8, we have that
0I(Ca1,Ca2) < 0I(Ca1,Cas) and

I(C;C9) = I(C; CF) < I(C;C7) — I(Ca; CF)
I(C1;0%) > I(Ca;CF)

H(CY)— H(CY|Ch) > H(CY)— H(CY|Cs)
H(CY|Ch) < H(CY|Cq)

The last inequality states that givéh the duplicate groups of val-
ues appear more times thandh, which implies that duplication
is higher inCy than inC>. [

The above result justifies the observation that if we scardére
drogram of a full clustering of the attributes Af”, the sub-clusters
that get merged first are the ones with the higher duplicatipon
the creation of the dendrogram, if we have a set of functideal
pendenciesd” D, we can rank them according to how much of the
duplication in the initial relation is removed after theseuin the
decomposition. Given a functional dependency that costain
tributes with high duplication, we may then say that the thape
values in these attributes are redundant. The more redapdan
functional dependency removes from the initial relatioa thore
interesting it becomes for our purposes. Knowing all valogs
information loss across all merges (in a sequef@ef attribute
sub-clusters, we can proceed with algorithm-RANK given in
Figure 11 to rank the functional dependencies'ib.

Intuitively, if we have the sequence of all merg@sof the at-
tributes in matrixF" (the setC'}) with their corresponding infor-
mation losses, we first initialize the rank of each depengléac
be the maximum information loss realized during the fullstdu-
ing procedure (Step 1.a). For the set of values that paatieim a
functional dependency (Step 1.b), we update its rank wethtgh-
est information loss of a merge where all attributes are eteamnd

this information loss is below a percentage, specified'bpf the
maximum information loss (Step 1.c). At this point we canabre
ties among the functional dependencies that acquire the samk-
ing based on the number of participating attributes; we riuek
ones with more attributes higher than others. Stepllapses two
functional dependencies with the same antecedent and, iatika
single functional dependency and, finally, Sgeprders sef’D in
ascending order of their corresponding ranks.

In our example, the maximum information loss realized in the
attribute clustering is approximately52. This is the initial rank
the dependencied — B andC — B acquire. Witha) = 0.5 we
only update the rank of functional dependernicy— B with a in-
formation loss of the merge of attributésandC, since this is the
only merge lower than.26 (v - 0.52). At this point,C — B is the
highest ranked functional dependency since it containgatés
with the highest redundancy iniit. Indeed, looking back aftfitial
relation, if we use the dependen€y— B to decompose the rela-
tion into relations S1,C) and S2=A,C), the reduction of tuples,
and thus the redundancy reduction, is higher than uding B to
decompose into relations S14B) and S2'=A,C).

Finally, if f is the number of functional dependenciesAD,
finding the greatest common merge which is smaller thames
the maximum information loss realized, can be don®frf - m -
(m—1)) time, since we can have at meatattributes participating
in a dependency and should traverse at nfest— 1) merges to
find the desired common merge of all of them. The final step of
ordering the dependencies according to their ranks hasst\wase
complexity ofO(f -log f). Thus, the total complexity i©(f - m -
(m —1) + f-log f). If £ > m? which is often the case in
practice, the previous complexity is dominated by the nundfe
dependencies (first term).

8. EXPERIMENTAL EVALUATION

We ran a set of experiments to determine the effectivenetbeof
tools discussed in this paper in the structure discoverggea We
report on the results found in each data set we used and provid
evidence of the usefulness of our approach.

Data Sets. In our experiments we used the following data sets.

e DB2 Sample Database: This is a data set we constructed out of
the small database that is pre-installed with IBM DB®Ve built

a single relation after joining three of the tables in thisattase,
namely tablesEMPLOYEE, DEPARTMENT and PROJECT. The
schema of the tables together with their key (the attribetgsa-
rated by a line at the top of each box) and foreign key (arrows)
constraints are depicted in Figure 12. The relational alet-
pression we used to produce the single relation was (we @se th
initials of each relation):

R = ((E I><]W()T'k:DepNo:DepNo D) MDepNo:DepNo P)

RelationR contains90 tuples with19 attributes an®55 attribute
values. We used this instance to illustrate the types obtetrwe
are able to discover using our information-theoretic mésho

e DBLP Database: This data set was created from the XML doc-
ument found ahtt p: //dbl p. uni -trier.de/xm /. This
document stores information about different types of catepsci-
ence publications. In order to integrate the informatioraisin-
gle relation, we chose to use IBM’s schema mapping tool that p
mits the creation of queries to transform the informatimred in
XML format into relations [19]. We specified a target schertfne (

Shttp://ww3.ibm com sof t war e/ dat a/ db2/ udb/

EMPLOYEE DEPARTMENT DBLP
HD@T& Author
EmpNo Publisher
<:L DepName Year
FirstName MgrNo ¢
LastName AdminDepNo Editor
PhoneNo - Pages.
HireYear PROJECT BookTitle
Job ProiN Month
rojNo
EduLevel -) Volume
Sex ;g)s{ggm;m JournalTitle
BirthYear StartDate Number
—{__ WorkDepNo EndDate School
MajorProjNo Series
DeptNo — ISBN

Figure 12: DB2 Sample Figure13: DBLP

schema over which the tuples in the relation are defined)agont
ing the13 attributes depicted in Figure 13. We specified correspon-
dences between the source XML schema and the attributeg4in Fi
ure 13. The queries given by the mapping tool where used &dere
a relation that containes, 000 tuples and7187 attribute values.
Each tuple contains information about a single author ametet
fore, if a particular publication involved more than onelherf the
mapping created additional tuples for each one of them. Mane
the highly heterogeneous information in the source XML doent
(information regarding conference, journal publicatioet.) in-
troduced a large number dULL values in the tuples of the rela-
tion. We used this highly heterogeneous relation to dematesthe
strength of our approaches in suggesting a better strutttarethe
target relation we initially specified.

Parameters. We observed experimentally that the branching factor
of the DC F'-tree, B, does not significantly affect the quality of the
clustering [5]. We seB = 4, so that the Phase 1 insertion time
is manageable (smaller values Bflead to higher insertion cost
due to the increased height of the DCF tree). We exploredge lar
number of values fop [5]. Generally speaking larger values for
(around1.0) delay leaf-node splits and create a smaller tree with a
coarse representation of the data set. On the other handesma
values incur more splits but preserve a more detailed sugnofar
the initial data set. The valug = 0.0 makes our method equivalent
to the AIB, since only identical objects are merged together

Functional Dependency Discovery. Our goal is not to rediscover
functional dependencies, but rather provide a ranking pfexist-

ing set of them. For the purposes of our study we used FDER [24]
as the method to discover functional dependencies. Othtiratie
could also be used.

FDEP first computes all maximal invalid dependencies by-pair
wise comparison of all tuples and from this set it computes th
minimal valid dependencies. FDEP is the algorithm propdsed
Savnik and Flach [24] and performs the second step usingta-dep
first search approach during which the set of maximal invdéel
pendencies is used to test whether a functional dependeidg h
and prune the search space.

After computing the functional dependencies using FDEP, we
computed the minimum cover using Maier’s algorithm [16].

Duplication Measures. In order to evaluate the amount of redun-
dancy removed from the initial data set, we used two meagares
quantify the results of our approach. These measures aiRethe
ative Attribute Duplication (R.AD) and Relative Tuple Reduction
(RTR) defined below.

e Relative Attribute Duplication: Given a set ofn tuples, a set
Ca ={A1, Az,..., A;}, withj > 1, of attributes and the restric-

tion tc, of tuples on the attributes @4 (we assume bag seman-
tics here), we define
H(t
RAD(C) = (1 - [lcalCa)y
log(n)
Intuitively, RAD captures the number of bits we save in the rep-
resentation of”'4 due to repetition of values. However, the above
definition does not clearly distinguish between the dugiticaof
differently sized relations. For example, assume two i@iaton a
single attribute with the first one having the same valuesithtee

tuples and the second one the same value in its two tuples. The

above definition will suggest that both relations h&®eD equal
to one, missing the fact that the first relation contains nulongli-
cation than the second (since it contains more tuples). &cowme
this we introduce the next measure.

e Relative Tuple Reduction: Given a set ofz tuples, a seC'4 =
{A1, As, ..., A;}, with j > 1, of attributes andc, the set ofn’
tuples projected on the s€ts (we assume set semantics here), we

define)

RTR(Ca) = (1 — %)

Intuitively, R7 R quantifies the relative reduction in the number of

tuples that we get if we project the tuples of a relation avar
Overall RAD and RT R offer two different measures of the

extent to which values are repeated in the relation. A cltmwzt

at RAD reveals that this measure is mawvedth-sensitive. From

the definition of conditional entropy, the nominator of tiaction

table, the strength of our method in determining groups ples!
that do not differ a lot is evident. For a small number of "irt
tuples inserted, the table on the left indicates that ouhotkfails
to discover some approximate duplicates only when the nuofbe
attribute values on which they differ is more than half thenber
of attributes in the schema. The same table, shows that asithe
ber of these duplicates increases the performance of thieoshet
deteriorates gracefully. The table on the right, where timalver of
inserted tuples is 5, shows that as the accuracy of the cimosdal
in the summaries decreases (largervalues), the identification of
approximate duplicates becomes more difficult, since isdlmases
more tuples are associated with the constructed summaries.

In general, any duplicates found using tuple clusteringpsee
sented to the user and an inspection of the suggested tepkals
whether these are interesting onées,, duplicates corresponding
to the same physical entities represented by the tuples.hdidds
note again the effectiveness of Phase 3, which did not fadeo-
tify the correct correspondences of tuples with their sunsan
the leaf entries of the tree.

8.1.2 Application of Attribute Value Clustering

In this section, we present experiments on attribute valug- ¢
tering. First, we found perfect correlations and then, liyeasing
¢v approximate ones among the attribute values in the data set.

Value correlations. Using ¢ = 0.0 (no clustering of tuples is
performed), andbyv = 0.0 we first looked for perfect correlations

in RAD can be considered as the weighted entropy of the tuples among the values, that is, groups of attributes values ppsia ex-

in a particular set of attributes, where the weights arerntasethe
probability of this set of attributes. On the other hai7 R is
more size-sengitive in that it can quantify the duplication within
different set of tuples taken over the same set of attributes

8.1 Small scale experiments

In this phase of our experiments, we performed a collection o
structure discovery tasks in the DB2 sample data set to see ho
effective our tools are in finding exact or almost duplicatplés
and values in the data. This data set was used since it is @ncle
one and errors can be introduced to illustrate the poteatiaur
methods.

8.1.1 Application of Tuple Clustering

Exact TupleDuplicates. Our method can identify exact duplicates
introduced in the data set in any order. These duplicatefoarel
whengr = 0.0.

Typographic, Notational and Schema Discrepancies. Such er-
rors may be introduced when the same information is recadifed
ferently in several data sources and then integrated infiogies
source. For example, this might be the case where the engloye
numbers are stored following different schemes (typogcaptor
notational errors). On the other hand, this might also bectse
where unknown values during integration are filled viNKBL L val-
ues in order to satisfy the common integrated schema (schema
crepancies). To identify this type of errors, we introdutiggles in
the data set where some of the values in their attributesrditbm
the values in the corresponding attributes of their matghiples

in the data set. First, we fixed the valuegaf to 0.1 and performed

a study with various numbers of erroneous tuples and atérial-

clusively together in the tuples. Our clustering methodsssfully
discovered such groups of values that make up th€'§et

We should note here that although ¢ = 0.0 we do not ex-
pect to get anything more than the perfectly correlated afetal-
ues, we believe that this information is critical in thatligas our
method with that of Frequent Itemset counting [2]. Howewath
higher values oy, we are able to discover potential entry errors.

Value Errors. In this part of the experiments, we introduced er-
rors similar to the ones in tuple clustering, however ourl gese

is to locate the values that are "responsible” for the erhorthe
tuple proximity. For better results, we may combine the lissof
tuple and attribute value clustering. We performed expenits for
the same set of tuples that were artificially inserted wherpeare
formed tuple clustering, where we counted the number ofecorr
placements of "dirty” values in the clusters of attributéues that
appear almost exclusively together in the tuples. Thatésyanted
to see if a dirty value was correctly clustered with the valitee-
placed. Results of these experiments are given in TablergilgBi
to tuple clustering, our method performs well even if the benof
inserted tuples is quite large (relative to the size of thigaldata
set). The correct placement into the attribute value ctastakes
place when the number of altered values covers more tharmhalf
the attributes in this data set.

8.1.3 Attribute Grouping

Having information about duplicate valuesd{? we built ma-
trix F. The dendrogram that was produced for = 0.0 and
¢4 = 0.0 is depicted in Figure 14. We remind the reader that
the horizontal axis represents information loss. In thisdt,
the maximum information loss realized wa$22. As indicated

ues within them. Then, we fixed the number of erroneous tuples by the boxes, our attribute grouping has separated théwts

that we inserted to 5 and performed a study wherepthend the
number of erroneous attribute values varied. We changeskiine
number of attribute values in each of the inserted tuplesydirae.
The results of both experiments are given in Table 1. From thi

of the initial schemas to a large extent, with the only exioept
being attributesEduLevel and St artDate. From the den-
drogram, we could also identify that pairEnjpNo, Fi r st -

Nare), (Last Nanme, PhoneNo), (Proj No, Proj Name) and

#Err. Tuples=5 | #Err. Tuples=20 ¢ =02 ¢ =0.3
ValueErrors | Found || ValueErrors | Found ValueErrors | Found || ValueErrors [Found
1 5 1 20 1 5 1 4
2 5 2 20 2 5 2 3
4 5 4 19 4 4 4 3
6 4 6 17 6 3 6 2
10 4 10 15 10 3 10 2
Table 1: DB2 Sampleresults of erroneous tuples, for ¢ = 0.1 (Ieft) and #Err. Tuples=5 (right)
#Err. Tuples=5 #Err. Tuples=20 ¢ =02 ¢ =0.3
ValueErrors | Found || ValueErrors | Found ValueErrors | Found || ValueErrors [Found
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 1
4 4 4 4 4 2 4 2
6 5 6 5 6 4 6 2
10 9 10 7 10 7 10 6

Table 2: DB2 Sampleresults of erroneous values, for ¢ = 0.1 (left) and #Err. Tuples=10 (right)

FirstName

LastName
PhoneNo
BirthYear
HireYear J

: ProjNo '
! ProjName
{RespEmpNo }
MajorProjNo !

A 50% of Max Information Loss
I
I
I
I
T
I
I
I
I
I
I
;
I
I
I
i
i
I
I
i
I
I
I
L

0.4

0.6

0.8

Figure 14: DB2 Sample Attribute Clusters

(Dept No, Mgr No) exhibit the highest redundancy in the data set,
a result that agrees with the data instance as well as outiamu

In addition to the previous experiment, we increased thaeval
of ¢v t0 0.1 and0.2 respectively. The set of attributes @i re-
mained the same fapy = 0.1, while attributePr oj EndDat e
was included whery = 0.2. However, there was large informa-
tion loss when this attribute was merged with other attebutin
both experiments, the relative sequence of the merges memtie
same, indicating that our attribute grouping is stable éttesence
of errors (highekpy values).

8.1.4 Ranking of Functional Dependencies

Having the sequence of merged attributes, we useeRENK
to identify which functional dependencies, if used in a aepo-
sition, would help in the removal of high amounts of redurajan
in the initial data set. FDEP initially discovered 106 fuoogal de-
pendencies, and the minimum cover consisted of 14 depeiggenc
The highest ranked dependencies, witk= 0.5 are given, in order
of increasing rank, in the following list:

1. [DeptNo]—[DeptName,MgrNo]
2. [DeptName}-[MgrNo]
3. [EmpNo}—[BirthYear,FirstName,LastName,PhoneNo,HireYear]

4. [ProjNo]—[ProjName,RespEmpNo,StartDate,MajorProjNo]

FD | RAD | RTR
1. || 0.947 | 0.922
2.]| 0.965] 0.922
3. || 0.924] 0.878
4. 11 0.8727] 0.800

Table3: RAD and R7 R valuesfor DB2 Sample

Finally, Table 3 shows th& AD andR7 R values for the pre-
vious functional dependencies, if their attributes arelusgroject
the tuples in the the initial relation. Table 3 shows thatatego-
sitions of the initial relation according to the ordered ti§depen-
dencies would favor the removal of considerable amountsadim-
dancy. Our ranking identifies dependencies with high rednod
(high RAD andR7TR values). This is attributed to the fact that
correlations of the corresponding attributes are high, dvawthe
attribute value clusters i@ have lower support in the initial data
set. This fact is also visible in the dendrogram, where ttrébates
of Depar t ment have a lower information loss than thosetmft
pl oyee andPr oj ect and according to Proposition 1, they are
going to remove more redundancy.

8.2 Largescale experiments

For these experiments, we used the larger DBLP data set. We
performed a different series of experiments, which in large-
grated relations, could be part of a structure discovet. tas

The DBLP data set contains integrated information. The-rela
tion contains tuples of computer science publicationsdpatared
as part of conference proceedings, journals, theses, stevefal-
ready argued, this type of information added anomalies duleet
discrepancies between the source and the target. MordispHyi
most conference publications have thiirur nal attributes filled
with NULL values. Some conference publications, though, appear
as part of &8er i es publication, (like SIGMOD publications in the
SIGMOD Record journal), and thus a direct projection orifaites
that are known in conference (or journal) publications rhighad in
errors. A better approach would be to first horizontally itiart the
data set into a small number of groups with similar charsttes.

Before performing horizontal partitioning, we performett a
tribute grouping in order to identify which attributes wdude most
useful in such a partitioning. We uség = 0.5, which reduced the
number of tuples td361 and then performed the attribute group-
ing with ¢4 = 0.0. The result of this grouping is depicted in
Figure 15. From the dendrogram, we observe that a number of at
tributes demonstrate an almost perfect correlation. Thesdhe

Author
Pages }
BookTitle S
{ Publisher;,
‘ ISBN
Editor
Series

School

Volume
Journal
Number

0.0 0.2 0.4 0.6

Figure 15: DBLP Attribute Clusters

attributes (dashed box) with zero or almost zero infornmatass,
indicating an almost one-to-one correspondence among\aki
ues. This is true since the value that prevails in this settof a
tributes is theNULL value. A manual inspection of the data set
revealed that the set of attributéBubl i sher, | SBN, Edi t or,
Seri es, School , Mont h} contains oveB8% of NULL values,
an anomaly introduced during the transformation of XML data
the integrated schema.

Having a set of attributes with limited non-missing infottioa,
the horizontal partitioning produced unexpected resiisre pre-
cisely, we performed all three Phases of our algorithm teteluthe
tuples into 3 groups. The result contained a huge clusté9 ¢f98
tuples and two clusters of one tuple in each. However, thslte
was very informative. All the tuples in the relation are ashdu-
plicates on many attributes atULL values forced them into the
same summaries. Hence, our first observation here is thatxhe
attributes withNULL values can be set aside in the analsysis with-
out considerable loss of information about the tuples. Atdame
time, if our goal is the definition of a possible schema forrila-
tion, the existence of a huge percentagdNof. L values suggests
that these attributes contain very large amounts of dugpdicand
should be stored separately, before any horizontal pariitg.

After the previous observation, we projected the initidatien
onto the attribute sefAut hor, Pages, BookTitl e, Year,
Vol une, Jour nal , Nunber }. Then we performed a horizon-
tal partitioning of the tuples. Using our heuristic for ckom & as
described in Section 6.1.2, we determined that 3 was a natural
grouping for this data. The loss of initial information affthase 3
was9.45%, indicating that the clusters are highly informative. The
characteristics of the three clusters are given in Table é.ndv
consider each cluster separately and due to lack of spacelye o
report results of our attribute grouping and dependenclkingn

| Cluster]| Tuples | AttributeValues |

c1 35892 43478
c2 13979 21167
c3 129 326

Table4: Horizontal Partitions

Cluster 1. This horizontal partition contains all Conference pub-
lications where thdookTi t | e attribute was a noNULL value

in every tuple. Usingsgr = 0.5 and¢y = 1.0 (given the number
of attribute values), we performed the grouping of attrésuand
the result is given in Figure 16. This dendrogram of the [aites

in C% reveals that there is zero distance among \oé une,
Jour nal and Number attributes. Indeed, these are attributes

that exclusively containelULL values in this cluster. In addi-
tion, we found almost zero distance between attribéteshor
andPages, which happens due to an almost one-to-one mapping
between their values (author tuples had uni@ages values in
this cluster). Finally,BookTi t | e is closer to the previous at-
tributes as conference titles are correlated with the astitaving

the sequence of attribute merges, we used FDEP to find funattio
dependencies that hold in and Fo-RANK with ¢» = 0.5 to rank
them. There weré2 dependencies and the minimum cover con-
tained11. It should be noted that there was no functional depen-
dency amongAut hor , Pages andBookTi t| e. The top-two
dependencies along with tfeAD and R7 R values of their at-
tributes are given in Table 5. These numbers indicate thafsig
icant redundancy reduction we achieve when these depeerdenc
are used in a decomposition. Although the dependenciesvirat
ranked higher did not contain conference attributes, theyahly
informative in that theNULL values in the attributes they cover in-
dicate removal of more redundancy. On the other hamtdhor ,
Pages andBookTi t | e have large domains, which makes them
less significant for redundancy reduction here.

| FD || RAD | RTR |
[Volume]—[Journal] 1.0 1.0
[Number}—[Journal] 1.0 1.0

Table 5: Ranked Dependenciesfor c;.

Cluster 2: The second horizontal partition contains Journal pub-
lications where thelour nal , Vol ume and Nurber attributes
had nonNULL values. Again, usinggr = 0.5 and¢y = 1.0
(given the size of the attribute values) the dendrogramuysred is
depicted in Figure 17. The first observation is that all bitieés

in C% are generally characteristics of journal publications.ot/p
that, we see that correlations appear amdogr nal , Vol une,
Nurrber andYear , which is something natural to assume in such
publications. For example, the SIGMOD Record journal appea
once every quarter and the values of terber attribute are 1
through 4. Finally, using the sequence of merges of thebates

in C} we ranked the functional dependencies holding in this parti
tion. FDEP discovered a set d® functional dependencies whose
minimum cover containedll dependencies. UsingdFRANK with

1 = 0.5, the top-two ranked dependencies are given in Table 6
together with theRAD and R7 R values of the attributes they
contain. Note that both dependencies had the same rank.udowe
the first dependency has more attributes and is ranked atphe t

| FD [RAD [RTR |
[Author,Volume,Journal,Numbe#}[Year] || 0.754 | 0.881
[Author, Year,Volume}-[Journal] 0.858 | 0.982

Table 6: Ranked Dependenciesfor cs.

Cluster 3: The last horizontal partition was very small in size,
compared to the previous two, and contained miscellaneobs p
lications, such as Technical Reports, Theses, etc. It alstamed
a very small number of Conference and Journal publicatibas t
were written by a single author. The dendrogram produceddas
on theC¥ set is given in Figure 18. Given the nature and the size
of the cluster, the attribute associations are rather mranaiod we
did not find any functional dependencies in the partitioraa $ug-
gesting that this relation does not have internal structure

Finally, we should point out that the initial horizontal paon-
ing we used adds an additional benefit to our approach; ajthou
the initial relation defined on all3 attributes contained hundreds

/:’uthor h Author } Author |
ages Pages

BookTle - Journal

vear- Number Year,

Volume Vol ™

Journal ’J olume BookTitle
Number Journal

Lo b v v b b b w0
0.0 01 02 03 04 0.0 0.1 02 03 00 02 04 0.6 08 10

Figure16: Cluster 1

of functional dependencies, mainly due to the attributegaining

NULL values, the clusters we produced had a small number of de-

pendencies (or none) defined on their attributes. This mties
understanding of their schema an easier task.

9. CONCLUSIONS

Figure 17: Cluster 2

Figure 18: Cluster 3

[13] M. A. Hernandez and S. J. Stolfo. The Merge/Purge bl
for Large Databases. I@GMOD, pages 127-138, San Jose,
California, 1995.

[14] J. A. Hoffer and D. G. Severance. The Use of Cluster Anal-
ysis in Physical Data Base Design. W.DB, pages 69-86,
Framingham, MA, USA, 1975.

We have presented a novel approach to discover structure. Ou [15] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen

approach defines schema discovery as a problem where thraache

of a relation is inconsistent with respect to the data, raten the
opposite. We presented a set of information-theoreticstbaked
on clustering that discover duplicate, or almost duplicatiples
and attribute values in a relational instance. From therinés
tion collected about the values, we then presented an agptbat
groups attributes based on the duplication of values. Thapy
of attributes with large duplication provide importantesufor the
redefinition of the schema of a relation. Using these cluesnivo-
duced a novel approach to rank the set of functional depeaneen
that are valid in an instance. Our case studies demonsttiaéed
effectiveness of our methods in discovering integratioonaalies
and alternative structural properties.

10. REFERENCES

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison Wesley, 1995.
[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining Asso-

ciation Rules between Sets of Items in Large Databases. In

S GMOD, pages 207-216, Washington, D.C., USA, 1993.

[3] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Material-

ized View and Index Selection Tool for Microsoft SQL Server
2000. InSGMOD, page 608, 2001.

[4] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Elimiingt
Fuzzy Duplicates in Data Warehouses MDB, pages 586—
597, Hong Kong, China, 2002.

[5] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik.

LIMBO: Scalable Clustering of Categorical Data. EHDBT,
pages 123-146, Heraklion, Greece, 2004.

[6] M. Arenas and L. Libkin. An Information-Theoretic Ap-
proach to Normal Forms for Relational and XML Data. In
PODS pages 15-26, San Diego, CA, USA, 2003.

[7] T. M. Cover and J. A. Thomagklements of Information The-
ory. Wiley & Sons, New York, NY, USA, 1991.

[8] M. M. Dalkilic and E. Robertson. Information Dependezgi
In PODS pages 245-253, Dallas, TX, USA, 2000.

[9] T. Dasu and T. JohnsorExploratory Data Mining and Data
Cleaning. John Wiley & Sons, Inc., 2003.

[10] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyu
Mining Database Structure; or, How to Build a Data Quality
Browser. In9dGMOD, pages 240-251, Madison, WI, USA,
2002.

[11] R. El-Yaniv and O. Souroujon. Iterative Double Clustgr
for Unsupervised and Semi-supervised LearningEGML,
pages 121-132, Freiburg, Germany, 2001.

[12] M. R. Garey and D. S. JohnsoBomputers and intractability;

a guide to the theory of NP-completeness. W.H. Freeman,
1979.

TANE: An efficient algorithm for discovering functional
and approximate dependenciesThe Computer Journal,
42(2):100-111, 1999.

[16] D. Maier. Minimum Covers in Relational Database Model.
Journal of the ACM, 27(4):664—674, Oct. 1980.

[17] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Ver-
tical Partitioning Algorithms for Database DesigimODS,
9(4):680-710, 1984.

[18] S. B. Navathe and M. Ra. Vertical Partitioning for Dedab
Design: A Graphical Algorithm. Ir8GMOD, pages 440—
450, Portland, OR, USA, 1989.

[19] L. Popa, Y. Velegrakis, M. Hernandez, R. J. Miller, and1a-
gin. Translating web data. MLDB, pages 598—-609, Hong
Kong, China, Aug. 2002.

[20] R. Ramamurthy and D. J. DeWitt. A case for fractured mir-
rors. InVLDB, pages 430-441, Hong Kong, China, Aug.
2002.

[21] V. Raman and J. M. Hellerstein. Potter’s Wheel: An later
tive Data Cleaning System. MLDB, pages 381-390, Roma,
Italy, 2001.

[22] S. Sarawagi and A. Bhamidipaty. Interactive Dedupiaa
using Active Learning. I'KDD, pages 269-278, Edmonton,
Canada, 2002.

[23] S. Sarawagi-(Editor)Special Issue on Data Cleaning. Bul-
letin of the Technical Committee on Data Engineering, Vol-
ume 23(4), December 2000.

[24] I. Savnik and P. A. Flach. Bottom-up induction of furoetal
dependencies from relations. AMAI-93 Workshop: Knowl-
edge Discovery in Databases, pages 174-185, Washington,
DC, USA, 1993.

[25] I. Savnik and P. A. Flach. Disocvery of Mutlivalued Depe
dencies from RelationslIntelligent Data Analysis Journal,
4(3):195-211, 2000.

[26] N. Slonim and N. Tishby. Agglomerative Information Bet
neck. INNIPS-12, pages 617-623, Breckenridge, CO, 1999.

[27] N. Tishby, F. C. Pereira, and W. Bialek. The Informat®ot-
tleneck Method. 1r87th Annual Allerton Conference on Com+
munication, Control and Computing, Urban-Champaign, IL,
1999.

[28] C. Wyss, C. Giannella, and E. Robertson. FastFDs: A
Heuristic-Driven, Depth-First Algorithm for Mining Func-
tional Dependencies from Relation Instances. Da\akK,
pages 101-110, Munich, Germany, 2001.

[29] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An ef-
ficient Data Clustering Method for Very Large Databases. In
S GMOD, pages 103-114, Montreal, QB, 1996.

