
Noname manuscript No.
(will be inserted by the editor)

Finding Lasting Dense Subgraphs

Konstantinos Semertzidis 1 · Evaggelia

Pitoura 1 · Evimaria Terzi 2 · Panayiotis

Tsaparas 1

Received: date / Accepted: date

Abstract Graphs form a natural model for relationships and interactions between
entities, for example, between people in social and cooperation networks, servers
in computer networks, or tags and words in documents and tweets. But, which
of these relationships or interactions are the most lasting ones? In this paper, we
study the following problem: given a set of graph snapshots, which may correspond
to the state of an evolving graph at different time instances, identify the set of
nodes that are the most densely connected in all snapshots. We call this problem
the Best Friends Forever (BFF) problem. We provide definitions for density over
multiple graph snapshots, that capture different semantics of connectedness over
time, and we study the corresponding variants of the BFF problem. We then look
at the On-Off BFF (O2BFF) problem that relaxes the requirement of nodes being
connected in all snapshots, and asks for the densest set of nodes in at least k of
a given set of graph snapshots. We show that this problem is NP-complete for
all definitions of density, and we propose a set of efficient algorithms. Finally, we
present experiments with synthetic and real datasets that show both the efficiency
of our algorithms and the usefulness of the BFF and the O2BFF problems.

Keywords Dense Subgraphs · Graph History · Social Networks

1 Introduction

Graphs offer a natural model for capturing the interactions and relationships
among entities. Oftentimes, multiple snapshots of a graph are available; for exam-
ple, these snapshots may correspond to the states of a dynamic graph at different
time instances, or the states of a complex system at different conditions. We call
such sets of graph snapshots, a graph history. Analysis of the graph history finds

1Dept. of Computer Science and Engineering, University of Ioannina, Greece
E-mail: {ksemer,pitoura,tsap}@cs.uoi.gr

2Dept. of Computer Science, Boston University, USA
E-mail: evimaria@cs.bu.edu

2 Konstantinos Semertzidis 1 et al.

a large spectrum of applications, ranging from social-network marketing, to virus
propagation and digital forensics. A central question in this context is: which in-

teractions, or relationships in a graph history are the most lasting ones? In this paper,
we formalize this question and we design algorithms that effectively identify such
relationships.

In particular, given a graph history, we introduce the problem of efficiently
finding the set of nodes, that remains the most tightly connected through history.
We call this problem the Best Friends Forever (BFF) problem. We formulate the
BFF problem as the problem of locating the set of nodes that have the maxi-
mum aggregate density in the graph history. We provide different definitions for
the aggregate density that capture different notions of connectedness over time,
and result in four variants of the BFF problem.

We then extend the BFF problem to capture the cases where subsets of nodes
are densely connected for only a subset of the snapshots. Consider for example,
a set of collaborators that work intensely together for some years and then they
drift apart, or, a set of friends in a social network that stop interacting for a few
snapshots and then, they reconnect with each other. To identify such subsets of
nodes, we define the On-Off BFF problem, or O2BFF for short. In the O2BFF

problem, we ask for a set of nodes and a set of k snapshots such that the aggregate
density of the nodes over these snapshots is maximized.

The BFF and the O2BFF problems find many applications. For example, in
collaboration and social networks, the nodes that belong to lasting dense sub-
graphs correspond to well-acquainted individuals. Such individuals can be chosen
to form teams, or organize professional or social events, since usually the success
of such events depends on whether the participants are well-acquainted with each
other. Identifying groups of collaborators or friends may also help in improving
our understanding of such networks. For example, using the DBLP co-authorship
graph, we were able to identify lasting collaborations among authors in database
and data mining conferences. In particular, for a specific definition of aggregate
density, we identified a group of authors that although there was no paper in
which they are all co-authors, they have co-authored papers with each other in
many snapshots.

Furthermore, in a network where nodes are words or tags and edges correspond
to their co-occurrences in documents or microposts published during a specific
period of time, identifying BFF nodes may serve as a first step in topic identi-
fication, tag recommendation and other types of analysis. For example, using a
Twitter dataset of tweets published in a period of two weeks, we were able, by
locating O2BFFs, to identify both trending topics and the dates within these two
weeks when these topics were popular. The topics we discovered correspond to real
events that attracted attention world-wide. Yet another application of BFFs is in
computer networks. For instance, locating servers that communicate heavily over
time may be useful in identifying potential attacks, or bottlenecks. Finally, there
are many applications in biological networks. For example, in a protein-interaction
network, one could apply the BFF problem to locate protein complexes that are
densely interacting at different states, thus indicating a possible underlying regu-
latory mechanism.

The problem of identifying a dense subgraph in a static (i.e., single-snapshot)
graph has received a lot of attention (e.g., Charikar (2000); Goldberg (1984);
Khuller and Saha (2009)). There has been also work on finding dense subgraphs

Finding Lasting Dense Subgraphs 3

in dynamic graphs (e.g., Epasto et al. (2015)). However, in this line of work, the
goal is to efficiently locate the densest subgraph in the current graph snapshot,
whereas we are interested in locating subgraphs that remain dense in the whole
graph history. To the best of our knowledge, we are the first to systematically
introduce and study density in a graph history, and define the BFF and O2BFF

problems. The most related work to ours is by Jethava and Beerenwinkel (2015)
where they study just one of the four variants of the BFF problem in the context
of graph databases. We compare the performance of our algorithms for this variant
with the algorithm proposed by Jethava and Beerenwinkel (2015) experimentally.

We study the complexity of the different variants of the BFF and O2BFF

problems. Two of the BFF variants can be solved optimally, while the O2BFF is
NP-hard. We propose a generic algorithmic framework for solving our problems,
that works in linear time. Experimental results with real and synthetic datasets
show the efficiency and effectiveness of our algorithms in discovering lasting dense
subgraphs. Two case studies on bibliographic collaboration networks, and hashtag
co-occurrence networks in Twitter validate our approach.

To summarize, the main contributions of this work are the following:

• We introduce the novel BFF and O2BFF problems of identifying a subset of
nodes that define dense subgraphs in a graph history. To this end, we extend
the notion of density for graph histories, and provide definitions that capture
different semantics of density over time leading to four variants of our problems.

• We study the complexity of the variants of the BFF and O2BFF problems and
propose appropriate algorithms. We prove the optimality, or the approximation
factor of our algorithms whenever possible.

• We perform experiments with both real and synthetic datasets and demon-
strate that our problem definitions are meaningful, and that our algorithms
work well in identifying dense subgraphs in practice.

Roadmap: In Section 2, we provide definitions of aggregate density. We introduce
the BFF problem and its algorithms in Section 3, and the O2BFF problem and
its algorithms in Section 4. Our experimental evaluation is presented in Section 5
and comparison with related work in Section 6. Section 7 concludes the paper.

2 Aggregate density

We assume that we are given as input multiple graph snapshots over the same set
of nodes. Snapshots may be ordered, for example, when the snapshots correspond
to the states of a dynamic graph. We may also have an unordered collection of
graphs, for example, when the snapshots correspond to graphs collected as a result
of some scientific experiments. We refer to such a graph collection as a graph history.

Definition 1 (Graph History) A graph history G = {G1, G2, . . . , Gτ} is a collec-
tion of τ graph snapshots, where each snapshot Gt = (V,Et), t ∈ [1, τ], is defined
over the same set of nodes V .

An example of a graph history with four snapshots is shown in Figure 1. Note
that our definition is applicable to graph snapshots with different set of nodes by
considering V as their union.

4 Konstantinos Semertzidis 1 et al.

(a) G1 (b) G2 (c) G3 (d) G4

Fig. 1: A graph history G = {G1, . . . , G4} consisting of four snapshots.

We will now define the notion of density of a set of nodes in a graph history.
We start by reviewing two basic definitions of graph density of a set of nodes in
a single graph snapshot (Charikar (2000)). Given an undirected graph G = (V,E)
and a node u in V , let degree(u,G) denote the degree of u in G. Let S ⊆ V be
a subset of nodes in the graph G = (V,E), and let G[S] = (S,E(S)) in G be the
induced subgraph for the set S, where E(S) = {(u, v) ∈ E : u ∈ S, v ∈ S}. We
define the average density, da(S,G), of the set S to be the average degree of the
nodes in S, in the induced subgraph G[S]:

da(S,G) =
1

|S|
∑
u∈S

degree(u,G[S]) =
2|E(S)|
|S|

We define the minimum density, dm(S,G), of the set S to be the minimum degree
of any node in S, in the induced subgraph G[S]:

dm(S,G) = min
u∈S

degree(u,G[S]).

Intuitively, for a given set of nodes S and the connections between them in
E(S), dm is defined by a single node, the one that is least connected in the induced
subgraph, while da looks at the average connectivity of the nodes in S. For example,
for snapshot G1 in Figure 1, for Sx = {x1, x2, x3, x4}, dm(Sx, G1) = da(Sx, G1) = 3,
while for Sy = {y1, y2, y3, y4, y5}, dm(Sy, G1) = 2 and da(Sy, G1) = 16/5. Between
Sx and Sy, Sx has the highest minimum density, whereas Sy the highest average
density. Clearly, dm is a lower bound for da. From now on, when the subscript of d
is ignored, density can be either da or dm. Abusing the notation, we will sometimes
use d(G[S]) to denote the density d(S,G) of S in G.

To define the density of a set of nodes S on a graph history, we need a way to
aggregate the density of a set of nodes over multiple graph snapshots.

Aggregating density sequences: Given a graph history G = {G1, . . . , Gτ}, we
will use d(S,G) = {d(S,G1), . . . , d(S,Gτ)} to denote the sequence of density values
for the graphs induced by the set S in the graph snapshots. We consider two
definitions for an aggregation function g(d(S,G)) that aggregates the densities over
snapshots: The first, gm, computes the minimum density over all snapshots:

gm(d(S,G)) = min
Gt∈G

d(S,Gt).

The second, ga, computes the average density over all snapshots:

ga(d(S,G)) =
1

|G|
∑
Gt∈G

d(S,Gt).

Finding Lasting Dense Subgraphs 5

Intuitively, the minimum aggregation function requires high density in each and
every snapshot, while the average aggregation function looks at the snapshots as
a whole. Again, we use g to collectively refer to gm or ga. We can now define the
aggregate density f .

Definition 2 (Aggregate Density) Given a graph history G = {G1, . . . , Gτ} de-
fined over a set of nodes V and S ⊆ V , we define the aggregate density f(S,G) to
be f(S,G) = g(d(S,G)). Depending on the choice of the density function d and the
aggregation function g, we have the following four versions of f : (a) fmm(S,G) =
gm(dm(S,G)), (b) fma(S,G) = gm(da(S,G)), (c) fam(S,G) = ga(dm(S,G)), and (d)
faa(S,G) = ga(da(S,G)).

Each density definition associates different semantics to density among nodes
in a graph history. Large values of fmm(S,G) correspond to groups of nodes S where
each member of the group is connected with a large number of other members of
the group at each snapshot. A group ceases to be considered dense if a single node
loses touch with the other members in the group, even for a single snapshot.

Large values of fma(S,G) are achieved for groups with high average density at
each snapshot G ∈ G. Contrary to fmm(S,G), where the requirement is placed at
each member of the group, large values of fma(S,G) are indicative that the group
S has persistently high density as a whole.

The fam(S,G) metric takes the average in time of the minimum degree of the
nodes in group S, thus is less sensitive to the density of S at a single snapshot.

Lastly, the faa(S,G) metric takes large values when the group S has many
connections on average; thus, faa is more “loose” both in terms of consistency
over time and in terms of requirements at the individual group member level.

For example, take Sx and Sy in the graph history G in Figure 1. All aggre-
gate densities for Sx are equal to 3. However, for Sy, faa(Sy,G) = 31/10, while
fma(Sy,G) = 12/5. That is, while faa(Sy,G) > faa(Sx,G), fma(Sy,G) < fma(Sx,G)
due to the last instance. Note also, that fmm(Sy,G) = 1 due to just one node in
just one snapshot, i.e., node y4 in the last snapshot, while fam(Sy,G) = 2.

The average graph: Finally, let us define the average graph of a graph history
G which is an edge-weighted graph where the weight of an edge is equal to the
fraction of snapshots in G where the edge appears.

Definition 3 (Average Graph) Given a graph history G = {G1, . . . , Gτ} on a
set of nodes V , the average graph ĤG = (V, Ê, ŵ) is a weighted, undirected graph
on the set of nodes V , where Ê = ∪τi=1Ei, and for each (u, v) ∈ Ê, ŵ(u, v) =
|Gt=(V,Et)∈G|(u,v)∈Et|

|G| .

As usual, the degree of a node u in a weighted graph is defined as:
degree(u, ĤG) =

∑
(u,v)∈Ê ŵ(u, v). The average graph performs aggregation on a

per-node basis, in that, the degree of each node u in ĤG is the average degree of
u in time. With the average graph, we lose information regarding density at indi-
vidual snapshots. With some algebraic manipulation, we can prove the following
lemma that shows a connection between the average graph and the faa density
function:

Lemma 1 Let G = {G1, . . . , Gτ} be a graph history over a set of nodes V and S a

subset of nodes in V , it holds: faa(S,G) = da
(
S, ĤG

)
.

6 Konstantinos Semertzidis 1 et al.

3 The BFF problem

In this section, we introduce the BFF problem, we study its hardness and propose
appropriate algorithms.

3.1 Problem definition

Given the snapshots of a graph history G, our goal is to identify a subset of nodes
S ⊆ V (the Best Friends Forever (BFF) set) that are densely connected in the
graph history G. Formally:

Problem 1 (The Best Friends Forever (BFF) Problem) Given a graph history
G and an aggregate density function f , find a subset of nodes S ⊆ V , such that
f(S,G) is maximized.

By considering the four choices for the aggregate density function f , we have
four variants of the BFF problem. Specifically, fmm, fma, fam and faa give rise to
problems BFF-MM, BFF-MA, BFF-AM, and BFF-AA respectively.

3.2 BFF algorithms

We now introduce a generic algorithm for the BFF problem. The algorithm (shown
in Algorithm 1) is a “greedy-like” algorithm inspired by a popular algorithm for
the densest subgraph problem on a static graph (Asahiro et al. (2000); Charikar
(2000)). We use G[S] = {G1[S], . . . , Gτ [S]} to denote the sequence of the induced
subgraphs of the set of nodes S. The algorithm starts with a set of nodes S0
consisting of all nodes V , and then it performs n − 1 steps, where at each step i

it produces a set Si by removing one of the nodes in the set Si−1. It then returns
the set Si with the maximum aggregate density f(Si,G).

Algorithm 1 The FindBFF algorithm.

Input: Graph history G = {G1, . . . , Gτ}; aggregate density function f
Output: A subset of nodes S

1: S0 = V
2: for i = 1, . . . , n− 1 do
3: vi = arg min

v∈Si−1

score (v,G [Si−1])

4: Si = Si−1 \ {vi}
5: return arg max

i=0...n−1
f(Si,G)

The FindBFF algorithm forms the basis for the algorithms we propose for the
four variants of the BFF problem. Interestingly, by defining appropriate scoring
functions, score (v,G [S]), (used in line 3 to select which node to remove), we can
get effective algorithms for each of the variants.

Finding Lasting Dense Subgraphs 7

3.2.1 Solving BFF-MM

For the BFF-MM problem, we define the score for a node v in S, scorem, as the
minimum degree of v in the sequence G [S]. That is,

scorem (v,G [S]) = min
Gt∈G

degree (v,Gt [S]) .

Algorithm 2 The scorem algorithm.

Input: Graph history G = {G1, . . . , Gτ}
Output: Node with the minimum scorem

1: Lt[d] ← list of nodes with degree d in Gt
2:
3: procedure ScoreAndUpdate()
4: for t = 1, . . . , τ do
5: dmint ← smallest d s.t. Lt[d] 6= ∅
6: scorem = min

t=1,...,τ
dmint

7: t′ = arg min
t=1,...,τ

dmint

8: u = Lt′ [scorem].get()
9: for each Gt ∈ G do

10: Lt[degree(u, Gt)].remove(u)
11: for each (u, v) ∈ Et do
12: Lt[degree(v, Gt)].remove(v)
13: Et = Et − (u, v) // update degreev∈V (v,Gt)
14: Lt[degree(v, Gt)].add(v)

15: V = V \ {u}
16: return u

Therefore, at the i-th iteration the FindBFF algorithm selects the node vi with
the minimum scorem value. We call this instantiation of the FindBFF algorithm
FindBFFM. Below we prove that FindBFFM provides the optimal solution to the
BFF-MM problem.

Proposition 1 The BFF-MM problem can be solved optimally in polynomial time

using the FindBFFM algorithm.

Proof Let i be the iteration of the FindBFFM algorithm, where for the first
time, a node that belongs to an optimal solution S∗ is selected to be removed.
Let vi be this node. Clearly, S∗ ⊆ Si−1, and therefore scorem (vi,G [Si−1]) ≥
scorem (vi,G [S∗]) . Since vi is the node we pick at iteration i, every node u ∈ Si−1

satisfies: minGt∈G degree(u,Gt[Si−1]) = scorem (u,G [Si−1]) ≥ scorem (vi,G [Si−1])
≥ scorem (vi,G [S∗]). Since this is true for every node u, this means that Si−1 is
indeed optimal and that our algorithm will find it.

The running time of FindBFFM is O(nτ + M), where n = |V |, τ the number
of snapshots in the history graph and M = m1 +m2 + . . .+mτ the total number
of edges that appear in all snapshots. The node with the minimum scorem value is
computed by the procedure ScoreAndUpdate shown in Algorithm 2, which also
removes the node and its edges from all snapshots. For each snapshot Gt, we keep
the list of nodes Lt[d] with degree d (line 1 in Algorithm 2); these lists can be

8 Konstantinos Semertzidis 1 et al.

constructed in time O(nτ +M). Furthermore, each position of the list Lt[d] points
to a hash-based data structure which stores nodes with degree d in order to handle
additions and deletions in constant time. Given these lists, the time required to
find the node with the minimum scorem is O(τ) (lines 4–8). Finding the minimum
degree dmint for each snapshot Gt at each step of the algorithm takes constant
time, as the minimum degree can only decrease by at most one in each Gt. Now
in all snapshots, the neighbors of the removed node need to be moved from their
position in the τ lists (lines 9–14); the degree of every neighbor of the removed
node is decreased by one. Throughout the execution of the algorithm at most
O(M) such moves can happen. Therefore, the total running time of FindBFFM

is O(nτ + M). Note that an algorithm that iteratively removes from a graph G

the node with the minimum degree was first studied by Asahiro et al. (2000) and
shown to compute a 2-approximation of the densest subgraph problem for the
da(G) density by Charikar (2000) and the optimal for the dm(G) density by Sozio
and Gionis (2010).

3.2.2 Solving BFF-AA

To solve the BFF-AA problem, we shall use the average graph ĤG of G. Lemma 1

shows that faa(S,G) = da
(
ĤG [S]

)
. Thus, based on the results of Charikar (2000)

and Goldberg (1984), we conclude that:

Proposition 2 The BFF-AA problem can be solved optimally in polynomial time.

Although there exists a polynomial-time optimal algorithms for BFF-AA, the
computational complexity of these algorithms (e.g., O(|V ||Ê|2) for the case of the
max-flow algorithm of Goldberg (1984)), makes them hard to use for large-scale
real graphs. Therefore, instead of these algorithm we use the FindBFF algorithm,
where we define the score of a node v in S, scorea, to be equal to its average degree
of v in graph history G[S]. That is,

scorea (v,G [S]) =
1

|G|
∑
Gt∈G

degree (v,Gt [S]) .

At the i-th iteration, we select the node vi with the minimum average degree in G[S].
We will refer to this instantiation of the FindBFF, as FindBFFA. Using Lemma 1
and the results of Charikar (2000) we have the following:

Proposition 3 FindBFFA is a 1
2 -approximation algorithm for the BFF-AA problem.

Proof It is easy to see that FindBFFA removes the node with the minimum density
in ĤG [S]. Charikar (2000) has shown that an algorithm that iteratively removes
from a graph the node with minimum density provides a 1

2 -approximation for find-
ing the subset of nodes that maximizes the average density on a single (weighted)
graph snapshot. Given the equivalence we established in Lemma 1, FindBFFA is
also a 1

2 -approximation algorithm for BFF-AA.

Using list of nodes with average degree d similarly to Algorithm 2 but on the
average graph, we can efficiently find the minimum scorea value and achieve an
O(nτ +M) total running time for FindBFFA.

Finding Lasting Dense Subgraphs 9

3.2.3 Solving BFF-MA and BFF-AM

We prove the following theorem of the complexity of the BFF-AM problem.

Theorem 1 The BFF-AM problem is NP-hard.

Proof The reduction is from the k-Clique problem, which, given a graph G, asks
if the graph contains a clique of size at least k. The decision version of BFF-AM,
given a graph history G = {G1, . . . , Gτ}, asks if there exists a subset of nodes S
fam(S,G) ≥ θ for some value θ.

Given a graph G = (V,E) with |V | = n nodes that is input to the k-Clique

problem, we construct a graph history G with τ = n snapshots. All snapshots
are defined over the vertex set V . There is a snapshot Gi for each node i ∈ V ,
consisting of a star-graph with node i as the center, and edges to all the neighbors
of i in G. We will prove that there exists a clique of size at least k in graph G if and
only if there exists a set of nodes S with fam(S,G) ≥ k/n. The forward direction is
easy; if there exists a subset of nodes S in G, with |S| ≥ k, that form a clique, then
for this set of nodes S, dm(S,Gi) = 1 for all i ∈ S; therefore, fam(S,G) ≥ k/n. To
prove the other direction, we observe that all our snapshots consist of star graphs,
and a collection of disconnected nodes. Given a set S, dm(S,Gi) = 1, if i ∈ S and
all nodes in S are connected to the center node i, and zero otherwise. Therefore,
if fam(S, Ck) ≥ k/n, then this implies that dm(S,Gi) = 1 for k snapshots Gi ∈ G,
which means that the k centers of the star graphs in these snapshots belong to S
and they are connected to all nodes in S. Therefore, all nodes in S are connected
to the k star centers, and hence the k star centers for a clique of size k in the graph
G.

The complexity of BFF-MA is an open problem. Jethava and Beerenwinkel
(2015) conjecture that it is NP-hard, yet they do not provide a proof.

We consider the application of FindBFFM and FindBFFA algorithms for the
two problems. In the following propositions, we prove that the two algorithms
cannot guarantee a good approximation ratio for all inputs for any of the two
problems. Recall that all our problems are maximization problems, and, therefore,
the lower the approximation ratio, the worse the performance of the algorithm.
We construct instances of the problems for which the algorithms achieve approxi-
mation ratio that can be arbitrarily small as a function of the input size. Due to
space limitations, we only give a sketch of the proofs; the complete proofs can be
found in the full version of this paper (Semertzidis et al. (2016)).

Proposition 4 The approximation ratio of algorithm FindBFFM is at most O
(
1
n

)
,

for the BFF-AM problem, and at most O
(

1√
n

)
, for the BFF-MA problem, where n

is the number of nodes.

Proof (Sketch) The intuition behind the proof is to construct an input where there
is a dense set of nodes A in the graph history G = {G1, ..., Gτ} that maximizes the
density, but the nodes of the set have low degree in a single snapshot. FindBFFM

will remove the nodes from this set, and thus never return it as a candidate solu-
tion.

For the BFF-AM problem, we construct a counter-example graph sequence as
follows. The first τ − 1 snapshots consist of a set A with n − 1 nodes that form

10 Konstantinos Semertzidis 1 et al.

a full clique, plus an additional node v that is connected with a single node u

in A. The last snapshot consists of just the edge (v, u). FindBFFM iteratively
removes nodes from A, until left with edge (v, u) and thus always yields candidate
solutions Si that include v and have fam(Si) = 1, while the optimal solution is A
with fam(A) = O(n).

For the BFF-MA problem, we construct a counter-example graph sequence
with m snapshots. Each snapshot consists of two sets of nodes A and B of size
m and m2 respectively. The nodes in B form a cycle. The nodes in a A form a
clique with all nodes except one node, different in each snapshot. The FindBFFM

iteratively removes the nodes in A, and thus always yields candidate solutions Si
with fma(Si) = Θ(1), while the optimal solution is A with fma(A) = Θ(m) =
Θ(
√
n).

Proposition 5 The approximation ratio of algorithm FindBFFA is at most O
(
1
n

)
for the BFF-AM problem, and at most O

(
1√
n

)
, for the BFF-MA problem, where n

is the number of nodes.

Proof (Sketch) The counter-example for the BFF-AM problem is complex and hard
to explain in brief. The intuition is that we can construct an input where there
are two nodes that have very low degree in (different) half of the snapshots, yet
high average degree overall. As a result they are never removed by the FindBFFA

algorithm, resulting in constant fam value, while removing them gives fam(S) =
Θ(n).

The counter-example for the BFF-MA problem is a graph sequence of m graph
snapshots. Each snapshot consist of two set of nodes A and B of size m and m2

respectively. The nodes in A form a clique in all snapshots, while the nodes in B

form a clique in all but one snapshot, in which, they are disconnected. FindBFFA

iteratively removes the nodes in A, thus yielding candidate solutions Si with
fma(Si) = Θ(1), while the optimal solution is A with fma(A) = Θ(m) = Θ(

√
n).

Given that FindBFFA and FindBFFM have no theoretical guarantees, we also
investigate a greedy approach, which selects which node to remove based on the ob-
jective function of the problem at hand. This greedy approach is again an instance
of the iterative algorithm shown in Algorithm 1. More specifically, for a target func-
tion f (either fam or fma), given a set Si−1, we define the score scoreg(v,G[Si]) of
node v ∈ Si as follows:

scoreg(v,G[Si−1]) = f (Si−1,G)− f (Si−1 \ {v},G) .

At iteration i, the algorithm selects the node vi that causes the smallest decrease,
or the largest increase in the target function f . We refer to this algorithm as
FindBFFG. FindBFFG complexity is O(n2τ + nM) since it requires to check all
nodes when choosing which node to remove at each step.

4 The O2BFF problem

In this section, we relax the requirement that density is computed over all snap-
shots of the graph history. Instead, we ask for a set of k snapshots and a set of
nodes such that the aggregate density over these snapshots is maximized. We call

Finding Lasting Dense Subgraphs 11

this problem On-Off BFF (O2BFF) problem. We formally define O2BFF, we show
that it is NP-hard, and develop two general types of algorithms for efficiently
solving it in practice.

4.1 Problem definition

In the O2BFF problem, we seek to find a collection Ck of k graph snapshots, and
a set of nodes S ⊆ V , such that the subgraphs induced by S in Ck have high
aggregate density. Formally, the O2BFF problem is defined as follows:

Problem 2 (The On-Off BFF (O2BFF) Problem) Given a graph history G =
{G1, G2, . . . , Gτ}, an aggregate density function f , and an integer k, find a subset
of nodes S ⊆ V , and a subset Ck of G of size k, such that f (S, Ck) is maximized.

As with the BFF problem, depending on the choice of the aggregate density
function f , we have four variants of the O2BFF problem, namely O2BFF-MM,
O2BFF-MA, O2BFF-AM and O2BFF-AA.

Note that the subcollection of graphs Ck ⊂ G does not need to consist of
contiguous graph snapshots. If this were the case, then the problem could be
solved easily by considering all possible contiguous subsets of [1, τ] and outputting
the one with the highest density. However, all four variants of the O2BFF become
NP-hard if we drop the constraint for consecutive graph snapshots.

Theorem 2 The O2BFF problem is NP-hard for any definition of the aggregate den-

sity function f .

Proof For all aggregate density functions, the reduction is from the k-Clique prob-
lem, which, given a graph G, asks if the graph contains a clique of size at least
k. The decision version of O2BFF, given a graph history G = {G1, . . . , Gτ}, asks
if there exists a subset of nodes S and a subset Ck of k snapshots, such that
f(S, Ck) ≥ θ for some value θ.

The reduction differs depending on the definition of f . In the case of fmm and
fam, the construction and proof is the same as that of Theorem 1. Given a graph
G = (V,E) with |V | = n nodes that is input to the k-Clique problem, we construct
a graph history G with τ = n snapshots, where snapshot Gi is a star-graph with
node i as the center, and edges to all the neighbors of i in G.

We will prove that there exists a clique of size at least k in graph G if and only if
there exists a set of nodes S and a subset Ck ⊆ G of k snapshots, with f(S, Ck) ≥ 1.
The forward direction is easy; if there exists a subset of nodes S in G, with |S| ≥ k,
that form a clique, then selecting this set of nodes S, and a subset Ck of k snapshots
that correspond to nodes in S will wield fmm(S, Ck) = fam(S, Ck) = 1. This follows
from the fact that every snapshot is a complete star where dm(S,Gi) = 1 for all
Gi ∈ Ck. To prove the other direction, we observe that all our snapshots consist of
a star graph, and a collection of disconnected nodes. Given a set S, dm(S,Gi) = 1,
if i ∈ S and all nodes in S are connected to the center node i, and zero otherwise.
Therefore, if fmm(S, Ck) = 1 or fam(S, Ck) = 1, then this implies that dm(S,Gi) = 1
for all Gi ∈ Ck, which means that the k centers of the graph snapshots in Ck are
connected to all nodes in S, and hence to each other. Therefore, they form a clique
of size k in the graph G.

12 Konstantinos Semertzidis 1 et al.

Algorithm 3 The Iterative (ITR) FindO2BFF algorithm.

Input: Graph history G = {G1, . . . Gτ}; an aggregate-density function f ; integer k
Output: A subset of nodes S and a subset of snapshots Ck ⊆ G.

1: converged = False
2: (C0k, S

0) = Initialize (G, f)

3: ds0 = f(S0, C0k)
4: while not converged do
5: Ck = BestSnapshots(S0, f)
6: S = FindBFF(Ck, f)
7: ds = f(S, Ck)
8: if ds ≤ ds0 then
9: (S, Ck) = (S0, C0k)

10: Converged = True
11: else
12: (ds0, S0, C0k) = (ds, S, Ck)

13: return S, Ck

In the case of faa and fma the construction proceeds as follows: given the graph
G = (V,E), with |E| = m edges, we construct a graph history G = {G1, . . . , Gτ}
with τ = m snapshots. All snapshots are defined over the vertex set V . There is a
snapshot Ge for each edge e ∈ E, consisting of the single edge e.

We will prove that there exists a clique of size at least k in graph G if and only
if there exists a set of nodes S and a subset CK ⊆ G of K = k(k − 1)/2 snapshots,
with f(S, CK) ≥ 1/k. The forward direction is easy. If there exists a subset of nodes
S in G, with |S| = k, that form a clique, then selecting this set of nodes S, and
the (k2) snapshots CK in G that correspond to the edges between the nodes in S

will yield faa(S, CK) = fma(S, CK) = 1/k.
To prove the other direction, assume that there is no clique of size greater or

equal to k in G. Let CK be any subset of K = k(k − 1)/2 snapshots, and let S
be the union of the endpoints of the edges in CK . Since S cannot be a clique, it
follows that |S| = ` > k. Therefore, faa(S, CK) = fma(S, CK) = 1/` < 1/k.

4.2 O2BFF algorithms

We consider two general types of algorithms: iterative and incremental ones. The
iterative algorithms start with an initial solution of the problem and improve it,
whereas the incremental algorithms build the solution incrementally, adding one
snapshot at a time. Next, we describe these two types of algorithms in detail.
Note that in each of the algorithms, depending on which of the O2BFF-MM,
O2BFF-MA, O2BFF-AM or O2BFF-AA problems we are solving, we use the ap-
propriate version of the FindBFF algorithm.

Iterative algorithm. The iterative (ITR) algorithm (shown in Algorithm 3) starts
with an initial collection of k snapshots C0k and set of nodes S0 (routine Initialize).
At each iteration, given a set S, ITR finds the best collection of k graph snap-
shots for S; this is done by BestSnapshots. BestSnapshots computes the density
d(S,Gi) of S in each snapshot Gi ∈ G and outputs the k snapshots Ck with the
largest density. Then, given the collection Ck, the algorithm finds the best set S

Finding Lasting Dense Subgraphs 13

Algorithm 4 The Incremental Density (INCD) FindO2BFF algorithm.

Input: Graph history G = {G1, . . . Gτ}; aggregate-density function f ; integer k
Output: A subset of nodes S and a subset of snapshots Ck ⊆ G.

1: Sij = FindBFF({Gi, Gj}, f), ∀Gi, Gj ∈ G
2: C2 = arg max

Gi,Gj∈G
f(Sij , {Gi, Gj})

3: for i = 3 ; i ≤ k do
4: for each Gt ∈ G \ Ci−1 do
5: St = FindBFF(Ci−1 ∪ {Gt}, f)

6: Gm = arg max
Gt

f(St, Ci−1 ∪ {Gt})

7: Ci = Ci−1 ∪ {Gm}
8: return S, Ck

for Ck, that is, the set S ⊆ V such that f (S, Ck) is maximized. This step essentially
solves Problem 1 on input Ck for aggregate density function f using the FindBFF

algorithm. ITR keeps iterating between collections Ck and dense sets of nodes S
until no further iterations can improve the score f (S, Ck).

An important step of the iterative FindO2BFF algorithm is the initialization
of C0k and S0. We consider three alternative initializations.

Random initialization (ITRR): In this initialization, we randomly pick k snapshots
C0k from G and use them to produce S0 = FindBFF(C0k , f).

Contiguous initialization (ITRC): The motivation behind contiguous initialization is
that in many real world datasets, such as in those modeling collaboration networks
that evolve with time, there is temporal locality. Thus, we expect that the dense
subgraphs will appear in nearby snapshots. Consequently, given G = {G1, . . . , Gτ},
we go over all the O(τ) contiguous sets of k snapshots from G, and find the set of
k snapshots C0k and corresponding set of nodes S0 that maximize f(S0, C0k).

At least-k initialization (ITRK): With this initialization, our aim is to include in the
initial set S0 the nodes that appear to be densely connected in many snapshots.
Thus, we solve the BFF problem independently in each snapshot Gi ∈ G. This
results in τ sets Si ⊆ V , one for each Gi. S

0 includes the nodes that appear in at
least k of the τ sets Si. We also experimented with other natural alternatives, such
as the union: S0 = ∪i=1...τSi and the intersection: S0 = ∩i=1...τSi; the at least-k
approach seems to strike a balance between the two.

The running time of the iterative FindO2BFF algorithm is O (I (nτ +M)),
where I is the number of iterations required until convergence, and (nτ + M)
comes from the running time of FindBFF, assuming that we use FindBFFM or
FindBFFA (which can be accordingly modified for FindBFFG). In practice, we
observed that the algorithm converges in at most 6 iterations.

Incremental algorithm. The incremental algorithm starts with a collection C2
with two snapshots and incrementally adds snapshots to it until a collection Ck
with k snapshots is formed. Then, the appropriate FindBFF algorithm is used to
compute the most dense subset of nodes S in Ck. We use two different policies for
selecting snapshots. The first one, termed incremental density (INCD) (shown in
Algorithm 4), adds snapshots so as to maximize density, whereas the second one,

14 Konstantinos Semertzidis 1 et al.

Algorithm 5 The Incremental Overlap (INCO) FindO2BFF algorithm.

Input: Graph history G = {G1, . . . Gτ}; aggregate-density function f ; integer k
Output: A subset of nodes S and a subset of snapshots Ck ⊆ G.

1: Si = FindBFF(Gi, f), ∀Gi ∈ G

2: C2 = arg max
Gi,Gj∈G

|Si ∩ Sj |
|Si ∪ Sj |

3: for i = 3 ; i ≤ k do
4: SC = FindBFF(Ci−1, f)

5: Gm = arg max
Gt

|St ∩ SC |
|St ∪ SC |

6: Ci = Ci−1 ∪ {Gm}
7: S = FindBFF(Ck, f)
8: return S, Ck

termed incremental overlap (INCO) (shown in Algorithm 5), adds snapshots so as
to maximize the similarity of their dense subgraphs.

Incremental density (INCD): To select the pair of snapshots to form the initial
collection C2, we solve the BFF problem independently for each pair of snapshots
Gi, Gj ∈ G. This gives us (τ2) dense sets Sij as solutions. We select the pair of
snapshots whose dense subgraph Sij has the largest density (lines 1–2). INCD then
builds the solution incrementally in k − 2 iterations by adding at each iteration
the snapshot whose addition maximizes density. Specifically, in the i-th iteration,
we construct Ci by adding to Ci−1 the graph snapshot Gm = arg max

Gt

f(St, Ci−1 ∪

{Gt}), over all Gt in G \ Ci−1. The running time is O
(
τ2(n+M) + kτ (nτ +M)

)
,

where the first term is due to the initialization step (again assuming that we use
FindBFFM or FindBFFA).
Incremental overlap (INCO): Our goal is to find snapshots whose dense subgraphs
have many nodes in common. To form the initial collection C2, we solve the BFF

problem independently in each snapshot Gi ∈ G. This gives us τ different sets Si ⊆
V , where Si is the most dense subgraph in Gi. The algorithm selects from these τ
sets the two most similar ones, Si and Sj , using Jaccard similarity, and initializes
C2 with the corresponding snapshots Gi and Gj (lines 1–2). To form Ci from
Ci−1, the algorithm first solves the BFF problem in Ci−1. Let SC be the solution.
Then, it selects from the remaining snapshots and adds to Ci−1 the snapshot Gm
whose dense set St is the most similar with SC (lines 3–6). The running time is
O(k (nτ +M)) (again assuming that we use FindBFFM or FindBFFA).

Note that the incremental algorithm can be easily modified so as, instead of
the number k of snapshots being an input to the algorithm, an appropriate value
of k is determined in the course of the algorithm. For example, snapshots could
be added to the solution until density drops below a given threshold value.

5 Experimental evaluation

The goal of our experimental evaluation is threefold. First, we want to evaluate
the performance of our algorithms for the BFF and the O2BFF problems in terms
of the quality of the solutions and running time. Second, we want to compare the
different variants of the aggregate density functions. Third, we want to show the

Finding Lasting Dense Subgraphs 15

usefulness of the problem, by presenting results of BFF’s and O2BFF’s in two real
datasets, namely research collaborators in DBLP and hashtags in Twitter.

Table 1: Real dataset characteristics

Dataset # Nodes # Edges (aver. per snapshot) # Snapshots
DBLP10 2,625 1,143 10
Oregon1 11,492 22,569 9
Oregon2 11,806 31,559 9
Caida 31,379 45,833 122
Twitter 849 100 15

AS 7,716 7,783 733

Datasets and setting. To evaluate our approach, we use both real and synthetic
datasets. We use six real graph histories where the graphs correspond to collabo-
ration, computer, and concept networks (summarized in Table 1). The DBLP10

1

dataset contains yearly snapshots of the co-authorship graph in the 2006-2015 in-
terval for 11 top database and data mining conferences. There is an edge between
two authors in a graph snapshot, if they co-authored a paper in the corresponding
year and more than two papers in total. The Oregon1

2 dataset consists of nine
graph snapshots of autonomous systems (AS) peering information inferred from
Oregon route-views (one snapshot per week), while the Oregon2

3 dataset includes
in addition to route-views looking glass data and routing registry, all combined.
The Caida4 dataset contains 122 AS graphs, derived from a set of route views
BGP-table instances. The Twitter dataset (Tsantarliotis and Pitoura (2015)) con-
tains 15 daily snapshots from October 27, 2013 to November 10, 2013, where the
nodes are hashtags and there is an edge between two nodes if the corresponding
hashtags co-appear in a tweet. The AS5 dataset consists of 733 daily snapshots rep-
resenting a communication network of who-talks-to-whom from the BGP (Border
Gateway Protocol) logs.

We also use synthetic datasets. In particular, we create graph snapshots using
the forest fire model (Leskovec et al. (2007)), a well-known model for creating
evolving networks, using the default forward and backward burning probabilities
of 0.35. Then, we plant dense subgraphs in these snapshots, by randomly selecting
a set X ⊂ V of the nodes and creating additional edges between them, different at
each snapshot. In all experiments, we create 100 such graph histories and report
average values.

We ran our experiments on a system with a quad-core Intel Core i7-3820 3.6
GHz processor, with 64 GB memory. We only used one core in all experiments.

Both the code and the datasets used in our experiments are publicly available6.

1 http://dblp.uni-trier.de/
2 https://snap.stanford.edu/data/oregon1.html
3 https://snap.stanford.edu/data/oregon2.html
4 http://www.caida.org/data/as-relationships/
5 https://snap.stanford.edu/data/as.html
6 https://github.com/ksemer/BestFriendsForever-BFF-

16 Konstantinos Semertzidis 1 et al.

5.1 BFF evaluation

In terms of algorithms, for the BFF-MM and BFF-AA problems, FindBFFM and
FindBFFA provide provably good solutions respectively (as shown in Section 3.2),
thus we only consider these algorithms for these problems. For the BFF-MA and
BFF-AM problems, we use all three algorithms, i.e., FindBFFM, FindBFFA, and
FindBFFG. In addition, for the BFF-MA problem, we use the DCS algorithm
proposed by Jethava and Beerenwinkel (2015) for a problem similar to BFF-MA.
The DCS algorithm is also an iterative algorithm that removes nodes, one at a
time. At each step, DCS finds the subgraphs with the largest average density for
each of the snapshots. Then, it identifies the subgraph with the smallest average
density among them and removes the node that has the smallest degree in this
subgraph.

Quality of the solution and comparison of the density function definitions:

We start with an evaluation of the accuracy of our algorithms along with a com-
parison of the different aggregate densities. Since we do not have any ground truth
information for the real data, we use first the synthetic datasets.

Synthetic datasets. We create 10 graph snapshots with 4, 000 nodes each using the
forest fire model (Leskovec et al. (2007)). Then, in each one of the 10 snapshots we
plant a dense random subgraph A with 100 nodes by inserting extra (different at
each snapshot) edges with probability pA. We consider subgraph A as our ground
truth. We vary the edge probabilities from pA = 0.1 to pA = 0.9. In Fig. 2(a), we
report the F measure for the four aggregate density definitions, when trying to
recover A. Recall that F takes values in [0, 1] and the larger the value the better
the recall and precision of the solution with respect to the ground truth (in this
case A). BFF-MM is the most sensitive measure, since it reports A as the densest
subgraph even for the smallest edge probability. BFF-MA and BFF-AM achieve
a perfect F value, for an edge probability larger than pA = 0.1 and BFF-AA

for an edge probability at least pA = 0.3. For smaller values, these three density
definitions locate supersets of A, due to averaging. All variations of the FindBFF

algorithms produce the same results.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

pA (edge probability for A)

F
-m

ea
su
re

BFF-MM BFF-MA BFF-AM BFF-AA

(a) (b)

Fig. 2: Accuracy and density definitions: (a) F -measure for planted graph A, (b)
reported dense subgraph (pA = 0.5, pB = 0.9).

Finding Lasting Dense Subgraphs 17

We now study how the various density definitions behave when there is a
second dense subgraph. In this case, we plant a subgraph A with edge probability
pA = 0.5 in all snapshots and a second dense subgraph B with the same number
of nodes as A and edge probability pB = 0.9 in a percentage ` of the snapshots,
for different values of `. Fig. 2(b) depicts which of two graphs, graph A (shown
in blue), or graph B (shown in yellow), is output by the FindBFF algorithms for
the different density definitions. BFF-MM and BFF-MA report A as the densest
subgraph, since these measures ask for high density at each and every snapshot.
However, BFF-AM and BFF-AA report B, when the denser subgraph B appears
in a sufficient number (more than half) of the snapshots. All density definitions
and algorithms, recover the exact set A, or B, at each case.

Table 2: Results of the algorithms for the BFF-MM and BFF-AA problems on the
real datasets.

Datasets

BFF-MM

FindBFFM Random

fmm size fmm SD

DBLP10 1.0 11 0.01 0.09

Oregon1 14.0 33 0.84 0.37

Oregon2 23.0 75 0.02 0.14

Caida 8.0 17 0.1 0.30

Twitter 0.0 - 0.0 0.0

AS 4.0 15 0.0 0.0

Datasets

BFF-AA

FindBFFA Random

faa size faa SD

DBLP10 2.75 8 0.92 0.27

Oregon1 25.73 59 4.43 0.72

Oregon2 47.89 147 7.59 1.06

Caida 33.21 96 5.33 0.36

Twitter 1.38 5 0.0 0.0

AS 16.38 38 2.01 0.49

Table 3: Results of the algorithms for the BFF-MA problem on the real datasets.

Datasets

BFF-MA

FindBFFM FindBFFA FindBFFG DCS Random

fma size fma size fma size fma size fma SD

DBLP10 1.33 3 1.75 8 1.7 61 1.29 14 0.12 0.15

Oregon1 23.7 80 23.86 70 24.05 80 24.05 77 4.75 0.80

Oregon2 44.33 140 45.24 131 45.95 132 44.91 116 6.71 1.24

Caida 13.76 33 12.76 29 15.43 6 15.05 57 0.60 0.53

Twitter 0.04 836 0.29 7 0.62 13 0.05 720 0.0 0.0

AS 8.53 19 6.67 18 9.0 20 8.75 16 0.19 0.11

Real datasets. We also run all algorithms using the real datasets and present the
results in Table 2, 3, and 4. We report the density and the size of the solution. In
addition, to evaluate the quality of the recovered dense subgraphs, we performed
the following randomization test. For each of the real datasets, we create a random
subgraph with the same number of nodes as the recovered subgraph, by initiating
a BFS traversal from a randomly selected node. In Tables 2, 3, and 4, we also
report the density of these subgraphs (average and standard deviation (SD) over
100 tests). For the BFF-MA and BFF-AM problems, we use the size of the solution
that has the highest density.

18 Konstantinos Semertzidis 1 et al.

Table 4: Results of the algorithms for the BFF-AM problem on the real datasets.

Datasets

BFF-AM

FindBFFM FindBFFA FindBFFG Random

fam size fam size fam size fam SD

DBLP10 1.0 11 1.7 4 1.0 4 0.23 0.29

Oregon1 14.22 33 15.0 35 2.0 20 0.53 0.33

Oregon2 24.44 63 23.22 44 3.22 461 0.0 0.0

Caida 12.72 20 18.11 36 3.43 311 0.0 0.0

Twitter 0.0 - 1.0 3 1.0 3 0.0 -

AS 7.44 12 9.05 14 3.14 14 0.0 0.0

Table 5: Execution time (sec) of the algorithms for the BFF-MM and BFF-MA

problem on the real datasets.

Datasets
BFF-MM

FindBFFM

DBLP10 0.08

Oregon1 0.27

Oregon2 0.36

Caida 2.24

Twitter 0.37

AS 3.49

Datasets
BFF-MA

FindBFFM FindBFFA FindBFFG DCS

DBLP10 0.05 0.03 2.04 0.34

Oregon1 0.24 0.21 48 0.83

Oregon2 0.29 0.47 51.58 1.03

Caida 2.51 2.30 2,519 11.22

Twitter 0.57 0.24 2.81 0.47

AS 2.82 2.16 738 17.37

Table 6: Execution time (sec) of the algorithms for the BFF-AM and BFF-AA

problems on the real datasets.

Datasets
BFF-AM

FindBFFM FindBFFA FindBFFG

DBLP10 0.05 0.08 1.58

Oregon1 0.48 0.57 131

Oregon2 0.58 0.65 117.58

Caida 6.31 5.97 1,652

Twitter 0.85 0.28 2.65

AS 9.29 10.43 470

Datasets
BFF-AA

FindBFFA

DBLP10 0.04

Oregon1 0.28

Oregon2 0.48

Caida 2.14

Twitter 0.52

AS 2.64

As expected, the density of the random “BFS” graph is orders of magnitude
smaller than the density of the graph recovered by our algorithms. Note also, that
the value of the aggregate density (independently of the problem variant) is larger
for the more dense datasets. For BFF-MM problem we observe that the solutions
usually have small cardinality compared to the solutions for the other problems,
since the fmm objective is rather strict (the solution for Twitter was empty). The
solutions for BFF-MM problem in the autonomous-system datasets appear to have
higher fmm scores. This may be due to the fact that there are larger groups of
nodes with lasting connections in these datasets, e.g., nodes that communicate
intensely between each other during the observation period.

Comparison of FindBFF alternatives for BFF-MA and BFF-AM: As shown
in Table 3, for the BFF-MA problem, FindBFFG and FindBFFA perform overall
the best in all datasets producing subgraphs with large fma values. FindBFFA

Finding Lasting Dense Subgraphs 19

performs slightly worse than FindBFFG only in the Caida dataset. In the Caida

dataset, due probably to the large number of snapshots, FindBFFA – which is
based on the average degree – returns a set with the smallest density. FindBFFM

and DCS have comparable performance, since they both remove nodes with small
degrees in individual snapshots. They are both outperformed by FindBFFA and
FindBFFG.

For the BFF-AM problem in Table 4, we observe that FindBFFA outperforms
both FindBFFM and FindBFFG. Our deeper analysis of the inferior performance
of FindBFFG for this problem revealed that FindBFFG often gets trapped in
local maxima after removing just a few nodes of the graph and it cannot find good
solutions.

In Table 5 and Table 6, we report execution times. As expected, the response
time of FindBFFG algorithm is the slowest in all datasets, due to its quadratic
complexity. For the BFF-MA problem, FindBFFA is in general faster than DCS.
The difference in execution times of FindBFFM algorithms for the various problems
are due to differences in the computation of the density functions.

Scalability: We also test the scalability of the algorithms in terms of both the
size of the graphs and the number of snapshots using the synthetic datasets. For
testing scalability with size, we create 10 graph snapshots with N nodes (for N
= 20,000 up to 100,000). Then, in each one of the 10 snapshots we plant a dense
random subgraph A with 100 nodes by inserting extra (different at each snapshot)
edges with probability pA = 0.5. We consider subgraph A as our ground truth.
In Fig. 3(a), we report the average execution time (and variance) of the different
algorithms for the BFF-MA problem. The corresponding algorithms have similar
performance for the other BFF problems as well. For testing scalability with the
number of graph snapshots, we create T snapshots of a graph with 50,000 nodes as
before, for T = 10 up to 50 snapshots. We report the average execution time (and
variance) in Fig. 3(b). All algorithms, except FindBFFG, scale well with both the
size of the graph and the number of snapshots. In terms of accuracy, all algorithms
in both cases achieve a perfect F measure.

Summary: In conclusion, our algorithms successfully discovered the planted dense
subgraphs even when their density is small, with BFF-MM being the most sensitive
measure. Minimum aggregation over densities (i.e., BFF-MM, BFF-MA) requires
a dense subgraph to be present at all snapshots, whereas average aggregation over
densities (i.e., BFF-AM, BFF-AA) asks that the nodes are sufficiently connected
with each other on average. For the BFF-MA and BFF-AM problems, FindBFFA

returns in general denser subgraphs than the alternatives (including DCS). Both
FindBFFA and FindBFFM scale well. They perform similarly for the different
density functions with the differences in running time attributed to the complexity
of calculating the respective functions.

5.2 O2BFF evaluation

In this set of experiments, we evaluate the performance of the iterative and incre-
mental FindO2BFF algorithms.

Comparison of the algorithms in terms of solution quality: We start with an
evaluation of the quality of the solution produced by the proposed FindO2BFF

algorithms.

20 Konstantinos Semertzidis 1 et al.

20 40 60 80 100

100

101

102

103

104

nodes in thousands

T
im

e
(s
ec
)

FindBFFM FindBFFA FindBFFG DCS

(a)

10 20 30 40 50

101

102

103

snapshots

T
im

e
(s
ec
)

FindBFFM FindBFFA FindBFFG DCS

(b)

Fig. 3: Synthetic dataset (pA = 0.5): execution time (log scale) of the different
algorithms for the BFF-MA problem for varying number of (a) nodes, and (b)
snapshots.

20 40 60 80

0

0.2

0.4

0.6

0.8

1

k (in % of snapshots)

F
-m

ea
su
re

fo
r
O

2
B
F
F
-M

M

(a)

20 40 60 80
0

0.2

0.4

0.6

0.8

1

k (in % of snapshots)

F
-m

ea
su
re

fo
r
O

2
B
F
F
-M

A

(b)

20 40 60 80

0.2

0.4

0.6

0.8

1

k (in % of snapshots)

F
-m

ea
su
re

fo
r
O

2
B
F
F
-A

M

(c)

20 40 60 80
0

0.2

0.4

0.6

0.8

1

k (in % of snapshots)
F
-m

ea
su
re

fo
r
O

2
B
F
F
-A

A

ITRC

ITRK

ITRR

INCD

INCO

(d)

Fig. 4: Synthetic dataset (pA = 0.9): F -measure for the: (a) O2BFF-MM (b)
O2BFF-MA, (c) O2BFF-AM, and (d) O2BFF-AA problems.

20 40 60 80

0

0.2

0.4

0.6

0.8

1

k (in % of snapshots)

F
-m

ea
su
re

fo
r
O

2
B
F
F
-M

M

(a)

20 40 60 80

0

0.2

0.4

0.6

0.8

1

k (in % of snapshots)

F
-m

ea
su
re

fo
r
O

2
B
F
F
-M

A

(b)

20 40 60 80

0

0.2

0.4

0.6

0.8

1

k (in % of snapshots)

F
-m

ea
su
re

fo
r
O

2
B
F
F
-A

M

(c)

20 40 60 80

0

0.2

0.4

0.6

0.8

1

k (in % of snapshots)

F
-m

ea
su
re

fo
r
O

2
B
F
F
-A

A

ITRC

ITRK

ITRR

INCD

INCO

(d)

Fig. 5: Synthetic dataset (pA = 0.5, pB = 0.9): F -measure for the: (a) O2BFF-MM

(b) O2BFF-MA, (c) O2BFF-AM, and (d) O2BFF-AA problems.

20 40 60 80
1

2

3

4

5

k (in % of snapshots)

f m
m

(a)

20 40 60 80
1

2

3

4

5

k (in % of snapshots)

f m
a

(b)

20 40 60 80
1

2

3

4

5

k (in % of snapshots)

f a
m

(c)

20 40 60 80
1

2

3

4

5

k (in % of snapshots)

f a
a

ITRC

ITRK

ITRR

INCD

INCO

(d)

Fig. 6: DBLP10 dataset: aggregate density functions f

Synthetic datasets. Similar to before, we plant a dense random graph A in k snap-
shots. We then run the FindO2BFF algorithms with the same value of k. In Fig. 4,

Finding Lasting Dense Subgraphs 21

20 40 60 80
22

24

26

28

30

k (in % of snapshots)

f m
m

(a)

20 40 60 80
44

46

48

50

52

k (in % of snapshots)
f m

a
(b)

20 40 60 80
22

24

26

28

30

k (in % of snapshots)

f a
m

(c)

20 40 60 80
48

49

50

51

52

k (in % of snapshots)

f a
a

ITRC

ITRK

ITRR

INCD

INCO

(d)

Fig. 7: Oregon2 dataset: aggregate density functions f

we report the average F measure (and standard deviation) for the different values
of k expressed as a percentage of the total number of snapshots. For the iterative
FindO2BFF algorithm, the at-least-k initialization (ITRK) outperforms the other
two, and it successfully locates A for all four density definitions, when A appears in
a sufficient number of snapshots. Non-surprisingly, all initializations work equally
well for average aggregation over time (i.e., O2BFF-AM and O2BFF-AA). For the
incremental FindO2BFF algorithm, density (INCD) slightly outperforms overlap

(INCO). Overall, the incremental algorithms achieve highest F , when compared
with the iterative ones.

We conduct a second experiment in which we plant a dense random graph A

with edge probability pA = 0.5 in all snapshots and a dense random graph B with
the same number of nodes as A and edge probability pB = 0.9 in k snapshots.
In Fig. 5, we report the average F measure (and standard deviation) assuming
that B is the correct output for the O2BFF problem for different values of k
expressed as a percentage of the total number of snapshots. Again, by comparing
the different initializations for the iterative FindO2BFF algorithm, we observe that
among the iterative algorithms, ITRK successfully locates B for all four density
definitions, when B appears in a sufficient number of snapshots. As in the previous
experiment, all initializations work equally well for average aggregation over time.
The incremental algorithms outperform the iterative ones with INCD being the
champion, achieving high F values even when B appears in a few snapshots.
Real datasets. We also apply the FindO2BFF algorithms on all real datasets for
various values of k. In Figs. 6 and 7, we report the value of the aggregate density
for DBLP10 and Oregon2 for different values of k, again expressed as a percentage of
the total number of snapshots of the input graph history. Results are qualitatively
similar for the other datasets. Overall, we observed that, in contradistinction to
the experiments with real datasets, the contiguous initialization (ITRC) of the iter-
ative O2BFF-AA algorithm emerges as the best algorithm in many cases, slightly
outperforming INCD. This is indicative of temporal locality of dense subgraphs in
these datasets, i.e., in these datasets dense subgraphs are usually alive in a few
contiguous snapshots. This is especially evident in datasets from collaboration net-
works such as the DBLP datasets. We also notice that the incremental algorithms
find solutions with density very close to that of the iterative algorithms. Finally,
we also observe that as k increases the aggregate density of the solutions decreases.
This again is explained by the fact that often dense subgraphs are only “alive” in
a few snapshots.

Convergence and running time: In terms of convergence, the iterative algo-
rithms required 2-6 iterations to converge in all datasets. In Fig. 8, we report the

22 Konstantinos Semertzidis 1 et al.

20 40 60 80

0.5

1

1.5

k (in % of snapshots)

T
im

e
(s
ec
)

ITRC ITRK ITRR INCD INCO

(a)

20 40 60 80
0

20

40

60

k (in % of snapshots)

T
im

e
(s
ec
)

ITRC ITRK ITRR INCD INCO

(b)

Fig. 8: Execution time of O2BFF algorithms for the O2BFF-MA problem for (a)
the DBLP10, and (b) the Oregon2 datasets.

execution time of O2BFF algorithms for the O2BFF-MA problem for the DBLP10,
and Oregon2 datasets. Results are qualitatively similar for the other datasets and
O2BFF problems. Both the iterative and incremental INCO algorithms scale well
with k. Comparing between the incremental algorithms, INCO is up to 6x and
3.5x faster than INCD in the synthetic and the Oregon2 datasets respectively due
to the quadratic complexity of the latter.

Scalability: We also test the scalability of the algorithms in terms of both the
size of the graphs and the number of snapshots using the synthetic datasets. For
testing scalability with size, we create 10 graph snapshots with N nodes (for N =
20,000 up to 100,000). Then, in each one of the 10 snapshots we plant at half of
the snapshots a dense random subgraph A with 100 nodes each by inserting extra
edges with probability pA = 0.9. We consider subgraph A as our ground truth. We
report the average execution time (and variance) of the different algorithms for
the O2BFF-MA problem with k = 50% in Fig. 9(a), when trying to recover A. For
testing scalability with the number of graph snapshots, we create T snapshots of
a graph with 50,000 nodes for T = 10 up to 50 snapshots, as described previously.
We report the average execution time (and variance) in Fig. 9(b). In terms of
scalability, INCO scales well with both the number of nodes and snapshots and
clearly outperforms INCD.

Summary: In conclusion, all algorithms successfully discovered the planted dense
subgraphs that lasted a sufficient percentage (much less than half) of the snapshots
with the incremental ones being more sensitive. The incremental algorithms out-
perform the iterative ones in most cases. Among the incremental algorithms, INCD
is slightly better than INCO. However, given the slow running time of INCD, INCO
offers an attractive alternative. Finally, in datasets consisting of dense subgraphs
with temporal locality, ITRC is a good choice for detecting such graphs.

Finding Lasting Dense Subgraphs 23

20 40 60 80 100
101

102

103

nodes

T
im

e
(s
ec
)

ITRC ITRK ITRR INCD INCO

(a)

10 20 30 40 50

102

103

104

105

snapshots

T
im

e
(s
ec
)

ITRC ITRK ITRR INCD INCO

(b)

Fig. 9: Synthetic dataset (pA = 0.9): execution time (log scale) of O2BFF-MA

problem for varying number of (a) nodes, and (b) snapshots.

5.3 Case studies

In this section, we report indicative results we obtained using the DBLP10 and the
Twitter datasets. These results identify lasting dense author collaborations and
hashtag co-occurrences respectively.

Lasting dense co-authorships in DBLP10: In Table 7, we report the set of nodes
output as solutions to the different BFF problem variants, on the DBLP10 dataset.

First, observe that three authors “Wei Fan”, “Philip S. Yu”, and “Jiawei Han”
are part of all four solutions. These three authors have co-authored only two
papers together in our dataset, but pairs of them have collaborated very frequently
over the last decade. The solutions for BFF-AM and BFF-AA contain additional
collaborators of these authors. For BFF-AA we obtain a solution of 8 authors.
Although, this group has no paper in which they are all co-authors, subsets of the
authors have collaborated with each other in many snapshots, resulting in high
value of faa. The solutions for BFF-MM and BFF-MA contain the aforementioned
three authors and some of their collaborators, but also some new names. These are
authors that have scarce or no collaborations with the former group. Thus, in this
case, the solutions consist of more than one dense subgroups of authors (grouped
in parentheses), that are densely connected within themselves, but sparsely or not
connected with others, while this is not the case for BFF-AM and BFF-AA.

Lasting dense hashtag appearances in Twitter : In Table 8, we report results
of the O2BFF problem on the Twitter dataset. Note that the results of the BFF

problem on this dataset (as shown in Tables 2, 3, and 4) are very small graphs, since
very few hashtags appear together in all 15 days of the dataset. As seen in Table
8, we were able to discover interesting dense subgraphs of hashtags appearing in k

= 3, 6, and 9 of these days. These hashtags correspond to actual events (including
f1 races, the tpp agreement and wikileaks) that were trending during that period.

Note also, that for large values of k, we do not get interesting results which is
a fact consistent with the ephemeral nature of Twitter, where hashtags are short-
lived. This is especially true for fmm and fma that impose strict density constraints
and as a result the solutions consist of disconnected edges.

24 Konstantinos Semertzidis 1 et al.

Table 7: The BFF solutions for DBLP10 (in parenthesis dense author subgroups)

BFF-MM

(Wei Fan, Philip S. Yu, Jiawei Han, Charu C. Aggarwal), (Lu Qin, Jeffrey Xu Yu, Xuemin
Lin), (Guoliang Li, Jianhua Feng), (Craig Macdonald, Iadh Ounis)

BFF-MA

(Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han, Charu C. Aggarwal), (Jeffrey Xu Yu, Xuemin
Lin, Ying Zhang)

BFF-AM

(Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han)

BFF-AA

(Wei Fan, Jing Gao, Philip S. Yu, Jiawei Han, Charu C. Aggarwal, Mohammad M. Masud,
Latifur Khan, Bhavani M. Thuraisingham)

For each solution, we also report the selected snapshot dates. As expected there
is time-contiguity in the selected dates, but our approach also captures the interest
fluctuation over time. For example, for the wikileaks topic that is captured in the
dense hashtag set {“wikileaks”, “snowden”, “nsa”, “prism”}, the best snapshots
are collections of contiguous intervals, rather than a single contiguous interval.

When comparing the results of the different variants of the O2BFF problem, we
see that the variants that consider average density over time (i.e., O2BFF-AA and
O2BFF-AM) return much larger solutions than the variants that impose strict den-
sity requirement at each and every snapshot (i.e., O2BFF-MM and O2BFF-MA).
For large k, the returned subgraphs refer to the “wikileaks” topic, while for small
k, all variants, but O2BFF-AM, return subgraphs that refer to the “f1” topic,
indicating that “wikileaks” was loosely trending for a longer period, as opposed
to “f1” for which we get dense subgraphs for smaller periods. O2BFF-AM poses a
requirement on the average minimum density and returns, for k = 6, a “wikileaks”
subgraph consistent with the longer trending of this topic. For k = 3, it finds a
large “tpp” subgraph whose average density may be smaller than the large “f1”
subgraph found by O2BFF-AA but all of its nodes are sufficiently connected with
every other node in this “tpp” subgraph.

6 Related work

To the best of our knowledge, we are the first to systematically study all the
variants of the BFF, and O2BFF problems.

The research most related to ours is the recent work of Jethava and Beeren-
winkel (2015) and Rozenshtein et al. (2014, 2017). To the best of our understand-
ing, Jethava and Beerenwinkel (2015) consider one of the four variants of the BFF

problem we studied here, namely, BFF-MA. In their paper, the authors conjec-
ture that the problem is NP-hard and they propose a heuristic algorithm. Our
work performs a rigorous and systematic study of the general BFF problem for
multiple variants of the aggregate density function. We have also compared ex-
perimentally their DCS algorithm for the BFF-MA problem with our algorithms
and shown that DCS is outperformed by the much faster FindBFFA algorithm.
Additionally, we introduce and study the O2BFF problem, which is not studied
by Jethava and Beerenwinkel (2015). Rozenshtein et al. (2014) study a problem

Finding Lasting Dense Subgraphs 25

Table 8: The hashtags and the chosen snapshot dates output as solutions to the
O2BFF problem on Twitter .

k = 3 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

kimi, abudhabigp, f1, allowin ozpol, nz, mexico, malaysia,
signapore, vietnam, chile,
peru, tpp, japan, canada

abudhabigp, fp1, abudhabi,
guti, f1, pushpush, skyf1,
hulk, allowin, bottas, kimi,
fp3, fp2

Dates: Oct 31-Nov 2 Oct 27-28, Nov 7 Oct 31-Nov 2

Density: fmm = 3.0, fma = 3.25 fam = 3.33 faa = 4.15

k = 6 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

abudhabigp, f1, skyf1 wikileaks, snowden, nsa,
prism

abudhabigp, fp1, abudhabi,
guti, f1, pushpush, skyf1,
hulk, allowin, bottas, kimi,
fp3, fp2

Dates: Oct 28-Nov 2 Oct 27-28, Nov 3,5,7 Oct 28, Oct 30-Nov 1, Nov 9

Density: fmm = 1.0, fma = 1.33 fam = 2.0 faa = 2.35

k = 9 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

(No lasting graph found) wikileaks, snowden, nsa,
prism

assange, wikileaks, snowden,
nsa, prism

Dates: Oct 27-31, Nov 3,5-7 Oct 27-29,31, Nov 3,5-7,10

Density: fam = 1.33 faa = 2.13

k = 12 O2BFF-MM, O2BFF-MA O2BFF-AM O2BFF-AA

(No lasting graph found) wikileaks, snowden, nsa assange, wikileaks, snowden,
nsa, prism

Dates: Oct 27-Nov 1, Nov 3-7,10 Oct 27-31, Nov 2-7, 10

Density: fam = 1.33 faa = 1.76

that can be considered as a special case of the O2BFF problem. In particular,
their goal is to identify a subset of nodes that are dense in the graph consisting of
the union of edges appearing in the selected snapshots, which is a weak definition
of aggregate density. Furthermore, they focus on finding collections of contiguous
intervals, rather than arbitrary snapshots. They propose an algorithm similar to
the iterative algorithm we consider, which we have shown to be outperformed by
the incremental algorithms.

There is a huge literature on extracting “dense” subgraphs from a single graph
snapshot. Most formulations for finding subgraphs that define near-cliques are
often NP-hard and often hard to approximate due to their connection to the
maximum-clique problem: Alvarez-Hamelin et al. (2005); Bourjolly et al. (2002);
Makino and Uno (2004); McClosky and Hicks (2012); Tsourakakis et al. (2013). As
a result, the problem of finding the subgraph with the maximum average or mini-
mum degree has become particularly popular, due to its computational tractability.
Specifically, the problem of finding a subgraph with the maximum average degree
can be solved optimally in polynomial time (e.g., Charikar (2000); Goldberg (1984);
Khuller and Saha (2009)), and there exists a practical greedy algorithm that gives
a 2-approximation guarantee in time linear to the number of edges and nodes of
the input graph (Charikar (2000)). The problem of identifying a subgraph with
the maximum minimum degree, can be solved optimally in polynomial time (Sozio
and Gionis (2010)), using again the greedy algorithm proposed by Charikar (2000).
In our work, we use the average and minimum degree to quantify the density of
the subgraph in a single graph snapshot, and we extend these definitions to sets
of snapshots. The algorithmic techniques we use for the BFF problem are inspired
by the techniques proposed by Charikar (2000), and by Sozio and Gionis (2010);
however, adapting them to handle multiple snapshots is non-trivial.

26 Konstantinos Semertzidis 1 et al.

Existing work also studies the problem of identifying a dense subgraph on
dynamic time-evolving graphs: Epasto et al. (2015); Bahmani et al. (2012); Bhat-
tacharya et al. (2015). These are graphs where new nodes and edges may appear
over time and existing ones may disappear. The goal in this line of work is to devise
a streaming algorithm that at any point in time it reports the densest subgraph for
the current version of the graph. In our work, we are not interested in the dynamic
version of the problem and thus the algorithmic challenges that our problem raises
are orthogonal to those faced by the work on streaming algorithms.

Other related work focuses on detecting heavy, or dense, subgraphs in a special
class of temporal weighted graphs with fixed nodes and edges, where only edge
weights change over time and may take both positive and negative values (e.g.,
Bogdanov et al. (2011); Ma et al. (2017)). A filter-and-verify approach was pro-
posed by Bogdanov et al. (2011), while a more scalable data-driven approach was
recently introduced by Ma et al. (2017). The problem addressed in this work is
different, since the set of edges is fixed, while we consider graphs with changing
edge sets. Furthermore, density in the presence of edges with negative weights has
different semantics.

Discovering evolving communities in graphs has also received a lot of attention
(e.g., see Spiliopoulou (2011) and Fortunato (2009) for surveys). In this paper, we
are interested in a more specific problem, that of identifying the densest subgraph
over time, which in some sense can be viewed as a special type of a tightly-
knit evolving community. Various approaches have been proposed for discovering
communities in time-evolving graphs including incremental tensor analysis (e.g.,
Araujo et al. (2016)).

An interesting line of work casts the problem of finding dense subgraphs as a
problem of frequent closed set discovery in ternary relations, or boolean tensors
(e.g., Cerf et al. (2008); Nguyen et al. (2011, 2013)). In this setting an “itemset” is
defined in the node space, and the support is defined over time. The goal is to find
itemsets that appear frequently in time. This can be used to find dense subgraphs
over multiple snapshots (similar to the O2BFF problem), but it requires that the
edges of the discovered subgraph appear in all snapshots, which is not necessarily
the case in our setting.

Finally, another line of research focuses on processing queries e.g., reachability,
path distance, graph matching, etc. over multiple graph snapshots: Semertzidis
et al. (2015); Moffitt and Stoyanovich (2016); Semertzidis and Pitoura (2016, 2017,
2018); Khurana and Deshpande (2013); Ren et al. (2011). The main goal of this
work is to devise effective storage, indexing and retrieving techniques so that
queries over such sequences of graphs are answered efficiently. In this paper, we
propose a novel problem that of finding dense subgraphs.

7 Summary

In this paper, we introduced and systematically studied the problem of identify-
ing dense subgraphs in a collection of graph snapshots defining a graph history.
We showed that for many definitions of aggregate density functions the problem
of identifying a subset of nodes that are densely-connected in all snapshots (i.e.,
the BFF problem) can be solved in linear time. We also demonstrated that other
versions of the BFF problem (i.e., BFF-MA and BFF-AM) cannot be solved with

Finding Lasting Dense Subgraphs 27

the same algorithm. To identify dense subgraphs that occur in k, yet not all, the
snapshots of a graph history we also defined the O2BFF problem. For all variants
of this problem we showed that they are NP-hard and we devised an iterative and
an incremental algorithm for solving them. Our extensive experimental evalua-
tion with datasets from diverse domains demonstrated the effectiveness and the
efficiency of our algorithms.

References

J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-
nani. Large scale networks fingerprinting and visualization using the k-core
decomposition. In Advances in Neural Information Processing Systems 18 [Neu-

ral Information Processing Systems, NIPS 2005, December 5-8, 2005, Vancouver,

British Columbia, Canada], pages 41–50, 2005.
Miguel Araujo, Stephan Günnemann, Spiros Papadimitriou, Christos Falout-

sos, Prithwish Basu, Ananthram Swami, Evangelos E. Papalexakis, and Danai
Koutra. Discovery of ”comet” communities in temporal and labeled graphs

comˆ2. Knowl. Inf. Syst., 46(3):657–677, 2016. doi: 10.1007/s10115-015-0847-2.
Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greed-

ily finding a dense subgraph. volume 34, pages 203–221, 2000. doi:
10.1006/jagm.1999.1062.

Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest sub-
graph in streaming and mapreduce. PVLDB, 5(5):454–465, 2012. doi:
10.14778/2140436.2140442.

Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalam-
pos E. Tsourakakis. Space- and time-efficient algorithm for maintaining dense
subgraphs on one-pass dynamic streams. In Proceedings of the Forty-Seventh An-

nual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR,

USA, June 14-17, 2015, pages 173–182, 2015. doi: 10.1145/2746539.2746592.
Petko Bogdanov, Misael Mongiov̀ı, and Ambuj K. Singh. Mining heavy subgraphs

in time-evolving networks. In 11th IEEE International Conference on Data Mining,

ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011, pages 81–90, 2011.
doi: 10.1109/ICDM.2011.101.

Jean-Marie Bourjolly, Gilbert Laporte, and Gilles Pesant. An exact algorithm
for the maximum k-club problem in an undirected graph. European Journal of

Operational Research, 138(1):21–28, 2002. doi: 10.1016/S0377-2217(01)00133-3.
Löıc Cerf, Jérémy Besson, Céline Robardet, and Jean-François Boulicaut. Data

peeler: Contraint-based closed pattern mining in n-ary relations. In Proceedings

of the SIAM International Conference on Data Mining, SDM 2008, April 24-26,

2008, Atlanta, Georgia, USA, pages 37–48, 2008. doi: 10.1137/1.9781611972788.4.
Moses Charikar. Greedy approximation algorithms for finding dense components

in a graph. In Approximation Algorithms for Combinatorial Optimization, Third

International Workshop, APPROX 2000, Saarbrücken, Germany, September 5-8,

2000, Proceedings, pages 84–95, 2000. doi: 10.1007/3-540-44436-X 10.
Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph

computation in evolving graphs. In Proceedings of the 24th International Confer-

ence on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages
300–310, 2015. doi: 10.1145/2736277.2741638.

28 Konstantinos Semertzidis 1 et al.

Santo Fortunato. Community detection in graphs. CoRR, abs/0906.0612, 2009.
URL http://arxiv.org/abs/0906.0612.

Andrew V Goldberg. Finding a maximum density subgraph. Technical report,
1984.

Vinay Jethava and Niko Beerenwinkel. Finding dense subgraphs in relational
graphs. In Machine Learning and Knowledge Discovery in Databases - European

Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceed-

ings, Part II, pages 641–654, 2015. doi: 10.1007/978-3-319-23525-7 39.
Samir Khuller and Barna Saha. On finding dense subgraphs. In Automata, Lan-

guages and Programming, 36th International Colloquium, ICALP 2009, Rhodes,

Greece, July 5-12, 2009, Proceedings, Part I, pages 597–608, 2009. doi:
10.1007/978-3-642-02927-1 50.

Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over histor-
ical graph data. In 29th IEEE International Conference on Data Engineering,

ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 997–1008, 2013. doi:
10.1109/ICDE.2013.6544892.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolu-
tion: Densification and shrinking diameters. TKDD, 1(1):2, 2007. doi:
10.1145/1217299.1217301.

Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. Fast com-
putation of dense temporal subgraphs. In 33rd IEEE International Conference

on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages
361–372, 2017. doi: 10.1109/ICDE.2017.95.

Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal
cliques. In Algorithm Theory - SWAT 2004, 9th Scandinavian Workshop on Algo-

rithm Theory, Humlebaek, Denmark, July 8-10, 2004, Proceedings, pages 260–272,
2004. doi: 10.1007/978-3-540-27810-8 23.

Benjamin McClosky and Illya V. Hicks. Combinatorial algorithms for the maxi-
mum k-plex problem. J. Comb. Optim., 23(1):29–49, 2012. doi: 10.1007/s10878-
010-9338-2.

Vera Zaychik Moffitt and Julia Stoyanovich. Towards a distributed infrastructure
for evolving graph analytics. In Proceedings of the 25th International Conference on

World Wide Web, WWW 2016, Montreal, Canada, April 11-15, 2016, Companion

Volume, pages 843–848, 2016. doi: 10.1145/2872518.2889290.
Kim-Ngan Nguyen, Löıc Cerf, Marc Plantevit, and Jean-François Boulicaut. Mul-

tidimensional association rules in boolean tensors. In Proceedings of the Eleventh

SIAM International Conference on Data Mining, SDM 2011, April 28-30, 2011,

Mesa, Arizona, USA, pages 570–581, 2011. doi: 10.1137/1.9781611972818.49.
Kim-Ngan Nguyen, Löıc Cerf, Marc Plantevit, and Jean-François Boulicaut. Dis-

covering descriptive rules in relational dynamic graphs. Intell. Data Anal., 17
(1):49–69, 2013. doi: 10.3233/IDA-120567.

Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On querying
historical evolving graph sequences. PVLDB, 4(11):726–737, 2011.

Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. Discovering dynamic com-
munities in interaction networks. In Machine Learning and Knowledge Discovery

in Databases - European Conference, ECML PKDD 2014, Nancy, France, September

15-19, 2014. Proceedings, Part II, pages 678–693, 2014. doi: 10.1007/978-3-662-
44851-9 43.

Finding Lasting Dense Subgraphs 29

Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. Finding dynamic dense
subgraphs. TKDD, 11(3):27:1–27:30, 2017. doi: 10.1145/3046791.

Konstantinos Semertzidis and Evaggelia Pitoura. Durable graph pattern queries
on historical graphs. In 32nd IEEE International Conference on Data Engineer-

ing, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 541–552, 2016. doi:
10.1109/ICDE.2016.7498269.

Konstantinos Semertzidis and Evaggelia Pitoura. Historical traversals in native
graph databases. In Advances in Databases and Information Systems - 21st Eu-

ropean Conference, ADBIS 2017, Nicosia, Cyprus, September 24-27, 2017, Proceed-

ings, pages 167–181, 2017. doi: 10.1007/978-3-319-66917-5 12.
Konstantinos Semertzidis and Evaggelia Pitoura. Top-k durable graph pattern

queries on temporal graphs. volume 30, 2018. doi: 10.1109/TKDE.2018.2823754.
Konstantinos Semertzidis, Evaggelia Pitoura, and Kostas Lillis. Timereach: His-

torical reachability queries on evolving graphs. In Proceedings of the 18th Inter-

national Conference on Extending Database Technology, EDBT 2015, Brussels, Bel-

gium, March 23-27, 2015., pages 121–132, 2015. doi: 10.5441/002/edbt.2015.12.
Konstantinos Semertzidis, Evaggelia Pitoura, Evimaria Terzi, and Panayiotis

Tsaparas. Best friends forever (BFF): finding lasting dense subgraphs. CoRR,
abs/1612.05440, 2016.

Mauro Sozio and Aristides Gionis. The community-search problem and how to plan
a successful cocktail party. In Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, July

25-28, 2010, pages 939–948, 2010. doi: 10.1145/1835804.1835923.
Myra Spiliopoulou. Evolution in social networks: A survey. In Social Network Data

Analytics, pages 149–175. 2011. doi: 10.1007/978-1-4419-8462-3 6.
Paraskevas Tsantarliotis and Evaggelia Pitoura. Topic detection using a crit-

ical term graph on news-related tweets. In Proceedings of the Workshops of

the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT), Brussels, Belgium, March

27th, 2015., pages 177–182, 2015.
Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria A. Tsiarli. Denser than the densest subgraph: extracting optimal
quasi-cliques with quality guarantees. In The 19th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL,

USA, August 11-14, 2013, pages 104–112, 2013. doi: 10.1145/2487575.2487645.

