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Abstract—The team-formation problem on social networks asks
for a team of individuals that collectively possess the skills to
perform a task and have low communication cost, as measured
by their distances in the social network. Most related work
assumes a flat structure in the team, where team members
are all indistinguishable. However, in practice, teams often have
complex structures and deep hierarchies, and members with
distinct roles in these structures. In this paper, we consider the
Template-Driven Team Formation problem, where given a fixed
template structure for the team, in the form of a graph, and
a designated role for each node in the template, we ask for
workers that can fill the roles in the template, while minimizing
the communication cost along the template edges. Although the
problem is in general NP-hard, there are variants of the problem
that can be solved optimally using dynamic programming. For the
general case, we provide approximation and heuristic polynomial-
time algorithms. We experiment on real data and we demonstrate
that our heuristic algorithms perform well in practice while being
significantly more efficient. Our case studies highlight the quality
of the teams produced by our algorithms.

Index Terms—team formation, template graph, algorithms

I. INTRODUCTION

Over the last few years, the team-formation problem has
received an increasing interest from researchers and practi-
tioners1 alike. The popularity of online labor markets (e.g.,
Upwork2) that enable the online collaboration of experts in
order to complete projects, as well as the increasing popularity
of online educational platforms (e.g., Coursera3) have brought
team-formation problems into the spotlight, and have raised
new questions and challenges.

The first work that addressed the problem of forming teams,
taking into consideration not only the skills of the experts
but also the communication between them, was the pioneering
work of Lappas et al. [1]. In their setting, each worker is
associated with a set of skills and there is also a network
structure that captures how well a pair of workers can work
together. The goal is to find a team that collectively covers
the set of skills required for completing a task and it has low
communication cost. Since the original work in [1], several
extensions and variations of this general framework have been
considered using different formulations for the communication

1https://www.nytimes.com/2016/02/28/magazine/what-google-learned-
from-its-quest-to-build-the-perfect-team.html

2http://www.upwork.com
3http://www.coursera.org

cost, [2], [3], [4], [5], [1], [6], [13], [14], or different settings
for job arrivals (e.g., offline vs. online) [7], [8].

Most of this existing work assumes a flat team structure,
where all members are indistinguishable. However, in real life
teams often have complex structures, and the team members
have distinct roles within these structures [9]. For example, a
team of authors writing a paper may consist of a professor, a
post-doctoral fellow, and a few students. The post-doc acts
as an intermediary in the communication of the students
with the professor, while the students collaborate closely with
each other to complete the experiments. Similarly, a team for
completing a project in industry, may consist of a manager, a
program manager, programming engineers, testing engineers,
and researchers. These individuals are usually organized in
a fixed hierarchy (different, for different corporations), and
there are specific channels of communication between the
different members of the team. Hierarchical structures, flat or
tall, are very common in diverse types of organizations, such as
corporations, governments, academia, or other institutions [9].

It is thus rarely the case that a team has a free-form
structure, where anyone may assume any role, and everyone
communicates with everyone. More often, there are specific
roles to be filled, that fall within an organizational struc-
ture. Such cases are not addressed by the existing solutions.
Motivated by these observations, we define the Template-
Driven Team Formation (TDTF) problem, where given a fixed
template structure for the team in the form of a graph, and a
designated role for each node of the template, the problem asks
for a team of workers that can fill the roles in the template,
while minimizing the communication cost along the template
edges. To the best of our knowledge, we are the first to
formally define and study this problem. We show that although
the TDTF problem is NP-hard in its full generality, there are
variants of the problem for tree template graphs that an be
solved optimally, using dynamic programming. For the hard
variants, we design approximation and heuristic algorithms
that exploit the properties of the problem.

We evaluate our algorithms experimentally on data from two
different domains: academic collaborations, and collaborations
in the movie-making industry. Our experiments demonstrate
that our algorithms perform well in practice, while being quite
efficient. We also conduct two case studies that confirm that
the teams produced by our algorithms are highly intuitive.IEEE/ACM ASONAM 2020, December 7-10, 2020
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II. RELATED WORK

The problem of finding experts has attracted considerable
attention in the research community [10], [11]. Balog et
al., [12] were the first to consider the collaboration network
in expert selection. This idea was formalized by Lappas et
al., [1] who defined the team formation problem on social
networks, where the goal is to identify a subset of experts
with the required skills that induce a subgraph with low
communication cost. A number of extensions and variations
of this idea were considered in the follow-up work using
different formulations for the communication cost [2], [3],
[4], [5], [1], [6], or different settings for job arrivals [7],
[8]. Recently a profit-maximization, load-balancing variant has
been considered [13], [14], as well a game-theoretic view for
strategic team formation [15]. None of these works considers
teams with given structure and fixed roles. At their core, all
these works involve solving an extended version of the set-
cover problem, while our work corresponds to an assignment
problem.

In this line of work, the work most closely related to ours is
the work by Kargar and An [16]. In the problem variant they
consider one of the team members is the designated leader
and the rest of the team communicates mostly through the
leader. Although this work tries to impose a structure on the
identified teams, it only considers the simple star template,
which is a special case of our problem, and it can be solved
in polynomial time by an exhaustive algorithm.

The problem of having fixed roles in the team to which
workers must be assigned is also considered in [17]. However,
this work considers the problem of maximizing respect, rather
than minimizing the communication cost, and it does not
assume a fixed team structure.

A more recent line of work focuses on team-formation
problems where the goal is for the formed teams to define a
subnetwork with certain social-network properties (e.g., have
certain number of dyads, triads, triangles, etc) [18]. There is
a superficial similarity between this line of work and ours
since in both cases there are some desired properties for the
structure of the team network. However, the work in [18]
focuses on optimizing some structural property of the network,
while our work focuses on respecting the exact structure of
an input template. The algorithmic techniques are also very
distinct, since in [18] they use genetic algorithms, while we
use combinatorial methods.

Finally, at a high level, our work is related to the work
on graph pattern-matching [19], [20]. In this problem, we are
given a graph pattern and we look for occurrences of the
pattern in a graph, that is, subgraphs that are isomorphic to
the pattern. We could view the template graph as a pattern that
we want to find in the worker graph. However, this is a very
restricted variant of our problem, where all teams have cost
equal to the number of edges in the template. Our problem
does not look for an exact match of the template graph, but
rather the best possible assignment of workers to the template
nodes.

III. PROBLEM DEFINITION

We are given a undirected connected graph G = (W,EG)
which represents a network of workers. Each edge in EG

represents a connection between two workers, e.g., a past
collaboration, or a personal relationship between the two work-
ers. The edges may be weighted, where the weight denotes
distance between the two workers. The shortest path distance
d(w, u) between two workers in the graph captures the degree
of compatibility of the two workers. Small distance implies
that the two workers can work well together.

Each worker has a set of skills. Given the set of all available
skills, S, we denote by Sw ⊆ S the set of skills of a worker
w ∈ W . These skills may be programming languages if G
represents a network of developers, or research fields if G
represents a network of researchers. Every worker has at least
one skill.

We want to create a team of workers for completing a
task. We assume that we are given as input a template graph
T = (P,ET ). Each vertex p in the template represents a
position in the team to be filled, and it is associated with
a set of required skills Rp ⊆ S. The structure of the template
graph represents the communication structure in the team. For
example if the template is a binary tree of depth two, we
assume that the worker at the root of the tree communicates
with her two subordinates, who in term communicate with
their own two subordinates, and so on. It is thus important that
there is good communication along the edges of the template
graph. The goal is to fill the positions in the team, such that
each worker has the required skills for the assigned position,
and the workers assigned to neighboring positions have small
distance, and thus can work together effectively.

We define a position assignment as a function f : P →
W , where worker f(p) is assigned to position p ∈ P . The
assignment f is acceptable if for every p ∈ P , Rp ⊆ Sf(p),
i.e., the worker assigned to the position has the required skills.
We assume that the function f is injective, that is, a worker
can only be used in a single position.

In order to evaluate an assignment f , we use the cost
function C(f) which is defined as the sum of the distances
in G between the workers assigned to each pair of adjacent
positions in T . Specifically,

C(f) =
∑

(p,q)∈ET

d(f(p), f(q))

We are now ready to define the Template-Drive Team
Formation (TDTF) problem.

Definition 1 (TDTF): Given a network of workers G =
(W,EG), with skills {Sw ⊆ S : w ∈ W}, and a template
T = (P,ET ), with required skills {Rp : p ∈ P} find an
acceptable assignment f : P → W , that minimizes the cost
C(f).

Given the general problem definition above, we can distin-
guish interesting subproblems by constraining the parameters
of the problem. First, we constrain the number of skills a
worker can have, i.e., the cardinality of the set Sw, for w ∈W .
We consider the special case where every worker has a single



TABLE I: Variants of the TDTF problem

TDTF-SUT TDTF-MUT TDTF-SRT TDTF-MRT TDTF-SUG TDTF-MUG TDTF-SRG TDTF-MRG

skills/worker Single Multiple Single Multiple Single Multiple Single Multiple
template skills Unique Unique Repeated Repeated Unique Unique Repeated Repeated
template graph Tree Tree Tree Tree General General General General

skill. We then constrain the number of times that a skill can
appear in the template. We consider the special case where
each position requires a unique set of skills, that is, each skill
appears only once in the template. For simplicity, we assume a
single skill per position in this case. Finally, we constrain the
type of the template. We consider specific families of graphs
that make sense in our setting. We will study in detail tree
template graphs, which model hierarchical team structures,
commonly found in real-life teams [9].

In order to differentiate between the different problem
variants we will append a letter to the problem name that
determines the variant we consider. We use the letters S and
M to discriminate between Single and Multiple skills per
worker. We use the letters U and R to discriminate between
Unique and Repeated skills in the template positions. We use
the letter T to denote the Tree structure, and G to denote a
General graph. So, for example, the problem where we have
a tree template graph, a single skill per worker, and unique
skills in the template is denoted as TDTF-SUT. The general
problem corresponds to the TDTF-MRG problem. In Table I,
we provide a summary of the notation and the properties of
the different problem variants.

We prove the following theorem for the problem complexity.
Theorem 1: All variants of the TDTF problem are NP-hard,

except for the TDTF-SUT problem.
We omit the proof due to space constraints. In the next
Section we show that there is a polynomial-time dynamic
programming algorithm for the TDTF-SUT problem. This is
the only variant of the problem that has a polynomial time
solution. It is the combination of all three constraints that
makes the problem tractable.

IV. ALGORITHMS

We now present our algorithms for the TDTF problem.
First, we show that the general problem can be solved in
polynomial time in the case of star template graphs. Then, we
consider the TDTF-SUT problem, and we show that there
is a dynamic programming algorithm that solves the problem
optimally. We then consider other variants of the problem on
trees, and we propose a heuristic modification of the dynamic
programming algorithm for these cases. Finally, we propose
an algorithm for general template graphs, and we study the
approximation guarantees for certain template graph families.

A. Algorithm for star templates.

The star template graph is a simple, yet natural template for
teams, where we assume that there is “leader” to whom every-
one reports. A similar problem has been considered in [16].
The TDTF problem in this case can be solved optimally with

an algorithm that considers all possible candidate workers for
the center of the star. For a position p, let Wp denote the
workers in W that are candidates for this position, that is,
they have the set of skills Rp. Let c denote the center of the
star. The algorithm considers all candidate workers in Wc as
possible assignments for the center. For a given assignment
f(c) = w, w ∈ Wc, let p be a child of the center node
c in the template. For the unassigned worker u ∈ Wp the
cost of assigning u to p is the distance d(w, u), and it is
independent of all other assignments to the leaves of the star.
Each worker is candidate for multiple positions, and each
position has multiple candidates. Finding the assignment with
the minimum cost corresponds to finding a matching between
positions and workers with the minimum cost. This can be
solved in polynomial time using the Hungarian algorithm [21].

B. Dynamic Programming Algorithm for TDTF-SUT.

Recall that in the TDTF-SUT problem we assume a tree
graph template, a single skill per worker, and unique skills
in the template. We will show that this case can be solved
optimally using a Dynamic Programming (DP) algorithm. The
algorithm traverses the template tree structure in a bottom-
up fashion, solving the problem for the subtrees, and then
aggregating the solutions of the subproblems to solve bigger
ones, until reaching the root of the tree.

Given a tree template T = (P,ET ), we assume that the tree
is rooted, and we use r to denote the root of the tree. For any
node p in T we use Tp to denote the subtree rooted at node
p. Let F(Tp) denote the set of all possible worker assignment
functions for the subtree Tp. Let Fw|p(Tp) denote the set of all
possible worker assignments where node p is assigned worker
w. Let f∗w|p = argminf∈Fw|p C(f) denote the assignment in
Fw|p with the minimum cost. We use B(w, Tp) = C(f∗w|p)
to denote the cost of this assignment. For the overall optimal
assignment f∗, we have C(f∗) = minw∈Wr B(w, T ) (recall
that Wr is the set of candidate workers for position r). Also,
if w∗ = argminw∈Wr

B(w, T ), then f∗ = f∗w∗|r.
The B(w, Tp) values are computed recursively on the height

of the tree as follows. For a subtree Tp of height zero, that is, a
single leaf node in the template tree, we define B(w, Tp) = 0,
since there is no communication cost involved. For a subtree
Tp of height greater than zero, the cost of the solution that
assigns worker w to the root of the tree p can be decomposed
into the communication cost of worker w with the workers
assigned to the children of the root, plus the cost for each
subtree assignment. For each child q of the root p, we need to
consider all candidate workers x ∈Wq , and find the one that
minimizes the sum d(w, x) + B(x, Tq). The key observation
is that since each worker has a single skill, and skills are



unique in the template, the sets of candidate workers for each
position are disjoint, and thus we can consider each child
independently. Therefore, letting Chld(p) denote children of
node p in the template graph, we have:

B(w, Tp) =
∑

q∈Chld(p)

min
x∈Wq

{d(w, x) +B(x, Tq)} (1)

Given the discussion above, we can now design a dynamic
programming algorithm, DP, for finding the optimal assign-
ment f∗. The algorithm maintains two |W | × |P | matrices B
and F , where B[w, p] stores B(w, Tp), and F [w, p] stores the
optimal assignment f∗w|p. The assignment is stored as a set of
pairs {(w, q) : w ∈ W, q ∈ Tp} that define the assignment of
workers to positions.

The DP algorithm traverses the tree T in a post-order
fashion, staring from the leaves and working its way up to the
root r. Using Equation 1, at each node p it computes the value
B(w, Tp) and stores it in B[w, p] along with the respective
assignment f∗w|p in F [w, p]. When reaching the root of the
tree r, it computes w∗ = argminw∈Wr B[w, r] and returns
the assignment F [w∗, r].

The complexity of the algorithm is determined by the sizes
of the candidate sets of the skills in the template. For an
edge (p, q) in the template we need to consider all pairs of
candidates |Wp|× |Wq|. If NT is the size of the template, and
Ns the popularity of the most popular skill, then the cost of
the DP is O(NTN

2
s ).

C. Heuristic Algorithms for Tree Templates

We now consider the TDTF-SRT, TDTF-MUT and
TDTF-MRT variants of the problem, were we still have a
tree template graph, but workers may have multiple skills, or
the same skill may be repeated in the template. The common
characteristic of these variants is that they allow a worker w
to be candidate for more than one positions in the template.
The DP algorithm we defined for the TDTF-SUT problem
breaks down in this case, since the subproblems defined by the
subtrees of a node are no longer independent. For example, a
worker w that is eligible for two positions, may be the best
candidate for both of these positions. As a result, w may
appear in the optimal assignments for two subtrees Tp and
Tq , which are children of a node v. Since we cannot assign
worker w to both positions, it is no longer the case that we
can express the cost for node v as a function of the optimal
costs for nodes p and q.

We now consider heuristic algorithms for these problems.
1) Dynamic Programming Heuristic Algorithm (DPH): The

first heuristic algorithm modifies the DP algorithm, addressing
the issue of workers that are eligible for multiple positions in
a greedy fashion. More specifically, when computing the cost
B(w, Tp) for the subtree rooted at position p, with w being
assigned to the root, the algorithm maintains a set Xwp with
all the workers that have already been assigned to some node
in the subtree Tp. The algorithm iterates over the nodes in
Chld(p) in an arbitrary order. When considering a position q ∈
Chld(p), it goes through the candidates z ∈Wq in decreasing

order of the cost d(w, z) + B(z, Tq). For a candidate z ∈
Wq , we have the set Xzq of all the workers that are utilized
in the assignment f∗z|q . If Xzp ∩ Xwp = ∅, that is, if none
of the workers in f∗z|q have already been used, then we add
f∗z|q to the solution f∗w|p, update the set Xwp accordingly, and
move on to the next child of p. Otherwise, we discard this
candidate, and move to the next one. If for some child of
p there is no acceptable candidate, then we consider w as
unacceptable for p, and move on to the next candidate for p.
If no candidate for p produces a solution, then the algorithm
halts and outputs no solution. Similar to before, the algorithm
proceeds in a bottom-up fashion, until it reaches the root, or
until it halts unable to produce a solution. The greedy aspect of
the algorithm is that once it finds the lowest-cost assignment
for a subtree (for a given root assignment) it discards all other
assignments. However, as we move up the tree, this may result
in excluding some assignments for sibling nodes that could
yield a lower-cost solution overall. The pseudocode for the
algorithm appears in Algorithm 1.

The complexity of the DPH algorithm is O(N2
TN

2
s ). The

additional NT factor comes from time needed to compute the
intersection between the sets of assigned workers.

2) Top-Down Heuristics: We also consider two greedy
heuristic algorithms that fill the template in a top-down fash-
ion.

The TopDown algorithm: TopDown assigns to the root of the
tree the worker with the highest closeness centrality, among the
candidate workers. The closeness centrality for a worker in the
graph G is defined as the inverse of the average distance of the
node to all other nodes in the graph. Given the assignment for
the root, the algorithm goes down the tree, each time assigning
to a position the unassigned candidate worker that is closest
to the worker of the parent node, until the whole template is
filled.

The TopDown+ algorithm: TopDown+ is the same as Top-
Down, except for the fact that for the root assignment it
considers all possible candidate workers in Wr. It then returns
the assignment with the minimum cost.

The MaxCentrality baseline: We also consider a simple
baseline that selects workers based on their closeness centrality
in the network. The algorithm fills the positions in a top-down
fashion, where for each position it selects the worker with the
maximum centrality among the unused workers that have the
required skill. This is a very efficient but naive algorithm, and
we use it as a baseline in our experiments.

D. Algorithm for general templates

We now consider an algorithm for the TDTF problem on
general templates. The algorithm exploits the fact that we have
a methodology to solve the problem on trees. It first constructs
a spanning tree of the template, by making a BFS traversal of
the template graph. It then solves the TDTF problem using
the BFS tree as the template, and computes the cost of the
solution on the full template graph. The starting node for
the BFS traversal determines the root and the structure of



Algorithm 1 Dynamic Programming Heuristic Algorithm
(DPH)

Input: Graph G = (W,EG), template T = (P,ET ), distance
function d on graph G.

Output: optimal assignment f∗

1: O ← PostOrder(P )
2: B ← |W | × |P | Array storing B(w, Tp)
3: F ← |W | × |P | Array storing f∗w|p
4: X ← |W | × |P | Array storing the workers in f∗w|p
5: for p ∈ O do
6: for w ∈Wp do
7: B[w, p]← 0
8: F [w, p]← {(w, p)}
9: X[w, p] = {w}

10: for q ∈ Children(p) do
11: mincostq ←∞
12: Lq ← {z ∈ Wq} in decr. order of d(z, w) +

B[z, q]
13: for z ∈ Lq do
14: if X[z, q] ∩X[w, p] = ∅ then
15: mincostq ← d(w, z)B[z, q]
16: F [w, p]← F [w, p] ∪ F [z, q]
17: X[w, p]← X[w, p] ∪X[z, q]
18: B[w, p] = B[w, p] + mincostq
19: break
20: end if
21: end for
22: if mincostq =∞ then
23: B[w, p] =∞
24: break
25: end if
26: end for
27: end for
28: if minw∈Wp

B[w, p] =∞ then
29: halt
30: end if
31: end for
32: w∗ = argminw∈Wr B[w, r]
33: return F [w∗, r]

the tree. For some template graphs the choice of the starting
node is obvious. In the general case, the algorithm considers
all possible starting nodes, and reports the solution with the
minimum cost. We refer to this algorithm as the Spanning Tree
Algorithm (STA).

Despite the simplicity of the STA algorithm we can prove
some interesting properties for it, by exploiting the triangular
inequality of graph distances, and the fact that we have
an optimal solution for the TDTF-SUT problem. For the
following, let n denote the number of nodes, and m the
number of edges in the template graph T . We prove the
following Lemma for the TDTF-SUG problem, where we
assume a general graph template, single skill per worker, and
unique skills in the template. We omit the proof due to space

Dataset Skills
Academic AI, Architecture, Computer Graphics, Data,

Distributed-Parallel, HCI, Languages, Net-
works, OS, Security, Theory

Movies Actor, Actress, Casting, Producer, Writer, Vi-
sual Effects, Director, Editor, Dir. of Photog-
raphy, Screenplay, Art Director

TABLE II: Skills for Academic and Movies datasets

constraints.
Lemma 1: The STA algorithm is a (m−n+2)-approximation

algorithm for the TDTF-SUG problem.
The approximation bound in Lemma 1 is very loose for

large m and n. However, note that m and n correspond to the
edges and nodes in the template graph, which we expect to be
small. Also, the bound in Lemma 1 is pessimistic, since for
every edge of the template not in the spanning tree we charge
the cost of the whole BFS tree. We can obtain better bounds
for specific families of graphs.

V. EXPERIMENTS

The goals of the experiments are the following: (a) Com-
pare the performance of different algorithms for the TDTF-
SUT problem with respect to the cost metric, and study the
effectiveness-efficiency tradeoff; (b) Study the performance
of the heuristic algorithms for tree templates when workers
can have multiple skills, and skills may appear in multi-
ple positions (TDTF-MRT); (c) Compare the heuristic and
approximation algorithms with an exhaustive algorithm on
general graph templates; (d) Perform an empirical evaluation
of the quality and intuitiveness of the teams produced by our
algorithms by considering specific case studies.

A. Datasets

The Academic dataset: This dataset consists of information
about academic publications, collected from Microsoft Aca-
demic4. We consider 11 fields of Computer Science, shown
in Table II, and the corresponding conferences, shown in
Table III. We collected all publications in the interval between
2000 and 2017 for these conferences, and the authors of
these publications. We filtered out the authors with less than
7 publications in this interval, and we created the author
collaboration graph, where each node is an author and there
is an edge between two nodes if they have collaborated at
least thrice in the specified time interval. We keep the largest
connected component of this graph, resulting in a graph with
2,476 nodes and 3,853 edges. Each author is assigned as skills
the fields in which she has authored a publication. When a
single skill is required, we assign to each author the field in
which she has the most publications.

The Movies dataset: This dataset consists of data about
movies obtained from The Movie DB (TMDb)5. For the 3,000
most popular movies (according to TMDb) released after

4http://academic.microsoft.com
5https://www.themoviedb.org/



TABLE III: Fields and conferences in Academic dataset

Fields Conferences

Theory stoc, focs, soda, icalp, stacs
Languages popl, icfp, icse, pldi, icsm
Distrib. & Parallel podc, icdcs, spaa, ics, sc
Operating Systems sosp, osdi, atc, fast, eurosys
Architecture asplos, icsa, ispd, ches, iccd
Networks sigcomm, nsdi, mobicom, mobisys, infocom
Security usenix, oakland, crypto, acns, ccs
Data sigmod, vldb, pods, kdd, www
Artificial Intelligence aaai, icml, iccv, cvpr, acl
Computer Graphics siggraph, i3d, mm, dcc, icme
H.C.I. chi, cscw, uist, iui, gi

TABLE IV: Skill distributions and graph statistics.

Movies Academic

Skill Single Mult. Skill Single Mult.

Actor 1020 1318 theory 186 300
Actress 1199 1323 distr-paral 58 411
Casting 487 503 ai 572 1099
Producer 1919 2433 os 25 195
Writer 609 1327 cg 442 920
Visual Effects 92 100 languages 21 111
Director 1151 1485 arch 11 100
Editor 699 830 security 44 157
Dir. of Photo. 545 588 hci 380 647
Screenplay 726 1121 data 420 901
Art Direction 708 730 networks 317 527

avg skills/worker 1 1.1758 1 2.168
avg workers/skill 832.27 1069 225.09 488

Total nodes 9155 2476
Total edges 78832 3,853

2010, we collected information about the cast and the crew
of the movies. Given that the cast of a movie may contain
tens of actors and actresses, we kept the 2,000 actors and
2,000 actresses that were on average ranked as most popular
(according to TMDb) in our data. We also selected the crew
members with key roles, shown in Table II, resulting in total
11 distinct roles. We created a graph by creating a node for
each crew or cast member, and an edge between two nodes if
they have collaborated in at least one movie. We subsampled
10K nodes to make the data manageable, and kept the largest
connected component. The resulting graph has 9,155 nodes
and 78,832 edges. Each node is assigned as skills all the roles
she has assumed in the dataset. When a single skill is required,
the most popular role is used.

Details and statistics for both datasets appear in Table IV.

B. Results for TDTF-SUT
Recall that for the TDTF-SUT problem we assume that the

template is a tree, each worker has a single skill, and the skills
appear in at most one position in the template. We construct
the input for our experiments as follows. First, we assume
that the template graph is a complete binary tree (CBT) of
size ranging from 2 to 11 nodes (total number of skills), and
there is a single skill per position. We start with a template
of size 2, with 2 randomly chosen skills, and we construct

templates of larger size, by adding one node at the time, with
a skill randomly selected among the ones that have not already
been used. In this way, we guarantee that the template of size
n is a subset of the template of size n+ 1. In our results we
report the average performance of the algorithms over 50 such
experiments.

Figure 1 shows the solution costs and the running times for
our algorithms in the two datasets as a function of the template
size. As expected, DP yields the lowest cost, at the expense
of a much higher running time. The MaxCentrality baseline
is significantly faster than all other algorithms, but with much
higher solution cost. Between the two top-down heuristics, the
TopDown+ algorithm strikes the best balance between DP and
MaxCentrality. Its running time is slightly higher than that of
TopDown but it is still reasonably low, while the solution cost
is almost identical to that of the optimal DP algorithm.

C. Results for TDTF-MRT

We now consider the TDTF-MRT problem, where the
template graph is still a tree, but the same skill may appear
multiple times in the template, and workers may have more
than one skill. We generate the templates as before, but now,
when assigning a skill to a position, we sample from all
possible skills. We will study the performance of the different
heuristics, and also consider templates of larger size.

Figure 2 shows the results of our experiment. We observe
again that the DPH algorithm performs best in terms of
solution cost but has also the highest running time. The
TopDown+ algorithm is again the best option with low running
time, and solution cost essentially identical to that of DPH.

Note also that the DPH algorithm may not always produce
a solution. In our experiments, this was never the case for the
Movies dataset, but for the Academic dataset, for template size
between 26 to 31 we had failures ranging from 2% to 16%.
These are non-negligible percentages, which demonstrate the
weakness of DPH for large templates.

D. Results for general graph templates

We now consider the TDTF problem on templates different
from trees. Our goal is to study the performance of the STA
algorithm against an exhaustive algorithm that considers all
possible assignments.

Since it is computationally prohibitive to run the exhaustive
algorithm on the full dataset, we construct smaller instances,
by considering the ego-network of certain nodes in the net-
work. The ego-network of a node consists of all the neighbors
of the selected node, and all the edges between them. From
the Academic dataset, we extracted the ego-network of Jon
Kleinberg which consists of 34 nodes. We will refer to
this dataset as EgoKleinberg . From the Movies dataset, we
extracted the ego-network of George Clooney, which consists
of 81 nodes. We will refer to this dataset as EgoClooney .
To reduce the running time of the exhaustive algorithm we
assume a single skill per worker. Also, since the neighbors in
the EgoKleinberg network were heavily concentrated in just
3 fields, for this dataset we use the conferences as the skills.
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Fig. 1: Solution cost and running time for the TDTF-SUT problem with a CBT template.
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Fig. 2: Solution cost and running time for the TDTF-MRT problem with CBT template for varying template size.

We considered a “flower” template for our experiments. In
the flower template we have a center node that is connected to
`k other nodes, which are organized in ` cliques (“petals”) of
size k. This corresponds to a structure with a single manager
that manages ` teams of k workers that collaborate fully with
each other. We can show that the STA algorithm has a k-
approximation ratio for this family of templates. We set k = 2
and we vary ` from 1 to 3. For each template we conducted
50 different experiments with random skill assignments, where
skills may be repeated in the template. We report the average
cost of the solutions.

Figure 3 shows the results for the two datasets. We consider
two variants of the STA algorithm, one that uses MaxCen-
trality to solve the problem on the spanning tree (STA-
MaxCentrality), and one that uses DPH (STA-DPH). Note
that the spanning tree is a star, so the solution of DPH and
TopDown+ on the spanning tree is optimal. We observe that
the STA-DPH algorithm outperforms STA-MaxCentrality, and
it is very close to that of the exhaustive algorithm, indicating
that STA works well in practice.

E. Case Studies

Finally, we perform two case studies, one for each dataset.
We consider the TDTF-SUT problem, and we manually set
the template skills and evaluate the results. Our goal is to
empirically evaluate the solutions of the DP algorithm.

For the Academic dataset, in order to make the experiment
more interesting, we introduced an additional attribute to each
researcher, which measures the seniority of the researcher.
To this end, we used the total citation count of each author,
as provided by Microsoft Academic, which we mapped to
the nominal values senior, middle, and junior. We label
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Fig. 3: Solution costs for flower graph templates, for varying
number of petals (`) with fixed petal size k = 2.

researchers with citations in the top-5% (more than 17,165
citations) as senior, researchers in the top-35% (more than
3,752 citations) as middle, and the rest as junior6. Using the
seniority attribute, we construct skills that use a combination
of the seniority and a research field.

The template we used in our experiment with Academic
is shown in Figure 4a. The scenario we consider is that of
creating a new research lab. The head of the lab should be
a senior researcher, irrespective of the field. There are three
divisions, one in Theory one in Data, and one in AI, which
will be headed by a researcher of middle seniority in the field.
Each division head will manage two junior researchers in their
respective field.

The result we obtain, shown in Figure 4b, is highly intuitive.
Ion Stoica, Professor at U.C. Berkeley, authority in the field
of distributed systems with a broad set of interests, is the

6Some seniority labels are debatable. The problem of defining the right
notion of seniority is beyond the scope of our paper.
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head of the lab. Piotr Indyk, Professor at MIT, authority
in theoretical computer science, is the head of the Theory
division. P. Indyk has common collaborators with I. Stoica
(Sammuel Madden). He manages his former student, Alexandr
Adoni, and Ronitt Rubinfeld who is also professor at MIT.
Hence both are academically close to him. The head of the
Data division is Michael Franklin, longtime collaborator of
I. Stoica, highly respected in the field of Data Bases. He
manages his former Ph.D. student Shawn R. Jeffery, and Peter
Bailis, U.C. Berkeley graduate and former Ph.D. student of I.
Stoica, with whom he has co-authored several papers. The
head of the AI division is Steven Seitz, an expert in computer
vision. He received his Bachelor from U.C. Berkeley, and
he has common collaborators with I. Stoica (e.g., Sameer
Agarwal). He manages two of his former Ph.D. students, Ira
Kemelmacher-Shilzerman and Li Zhang.

The template we use for the Movies dataset is shown in
Figure 5a. We have a Producer at the root of the tree who
employs an Editor, a Director and a Writer, and the Director
collaborates with an Actor and an Actress. The solution of
the DP algorithm is shown in Figure 5b. The Producer,
T. Luckinbill, has worked together with T. Sheridan and J.
Walker in the movie Sicario (2015) and with J. M. Vallee in
Demolition (2015) in which J. Gyllenhaal stars as a lead actor.
Also, R. Witherspoon stars in Vallee’s movie Wild (2014).
Therefore, again the solution we obtain is highly intuitive.

VI. CONCLUSION

In this paper we introduced and studied the novel problem
of template-driven team formation (TDTF). We showed that
the problem is NP-hard in the general case, but it can be
solved in polynomial time using dynamic programming for
tree templates when workers have a single skill, and the
template positions have unique skills. We provided heuristic
and approximation algorithms for the general case. Our experi-
ments demonstrate that our algorithms are effective in practice.
For future work, we are interested in studying the effect of
the template graph on the team formation problem and on
the problem approximability, and also incorporate ideas from
skill-specific ranking [22] into the team formation process.

REFERENCES

[1] T. Lappas, K. Liu, and E. Terzi, “Finding a team of experts in social
networks,” in ACM SIGKDD, 2009.
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