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ABSTRACT
Web navigation plays an important role in exploring pub-
lic interconnected data sources such as life science data. A
navigational query in the life science graph produces a re-
sult graph which is a layered directed acyclic graph (DAG).
Traversing the result paths in this graph reaches a target
object set (TOS). The challenge for ranking the target ob-
jects is to provide recommendations that reflect the relative
importance of the retrieved object, as well as its relevance to
the specific query posed by the scientist. We present a met-
ric layered graph PageRank (lgPR) to rank target objects
based on the link structure of the result graph. LgPR is
a modification of PageRank; it avoids random jumps to re-
spect the path structure of the result graph. We also outline
a metric layered graph ObjectRank (lgOR) which extends
the metric ObjectRank to layered graphs. We then present
an initial evaluation of lgPR. We perform experiments on
a real-world graph of life sciences objects from NCBI and
report on the ranking distribution produced by lgPR. We
compare lgPR with PageRank. In order to understand the
characteristics of lgPR, an expert compared the Top K tar-
get objects (publications in the PubMed source) produced
by lgPR and a word-based ranking method that uses text
features extracted from an external source (such as Entrez
Gene) to rank publications.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services – Web-based Services; H.2.8 [Database
Management]: Database Applications – Data Mining
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1. INTRODUCTION
The last few years have seen an explosion in the number

of public Web accessible data sources, Web services and se-
mantic Web applications. While this has occurred in many
domains, biologists have taken the lead in making life science
data public, and biologists spend a considerable amount of
time navigating through the contents of these sources, to
obtain information that is critical to their research.

Providing meaningful answers to queries on life science
data sources poses some unique challenges. First, informa-
tion about a scientific entity, e.g., genes, proteins, sequences
and publications, may be available in a large number of au-
tonomous sources and several sources may provide differ-
ent descriptions of some entity such as a protein. Second,
the links between scientific objects (links between data en-
tries in the different sources) are important in this domain
since they capture significant knowledge about the relation-
ship and interactions between these objects. Third, inter-
connected data entries can be modeled as a large complex
graph. Queries could be expressed as regular expression nav-
igational queries and can more richly express a user’s needs,
compared to simpler keyword based queries.

Consider the following navigational query: Retrieve pub-
lications related to the gene ’tnf’ that are reached by travers-
ing one intermediate (protein or sequence) entry. This query
expresses the scientist’s need to expand a search for gene re-
lated publications beyond those publications whose text di-
rectly addresses the ’tnf’ gene, while still limiting the search
to publications that are closely linked to gene entries.

Consider gene sources OMIM Gene and Entrez Gene, pro-
tein sources NCBI Protein and SwissProt, sequences in NCBI
Nucleotide and biomedical publications in PubMed. Figure
1 represents the results of evaluating this navigational query
against these sources. The result is a layered DAG; we refer
to it as a result graph (RG). All paths in this directed result
graph (RG) start with data entries in the sources OMIM
Gene or Entrez Gene; this is the first layer. They visit one
intermediate data entry in sources NCBI Protein, Swiss Prot
or NCBI Nucleotide (second layer) and they terminate in a
publication data entry in PubMed (final layer).

The query returns all objects in PubMed that are reached
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Figure 1: An example of a result graph (RG)

by traversing results paths; these PubMed entries are re-
ferred to as the target object set (TOS) reached by travers-
ing the result paths of the RG. In contrast, a keyword based
query would not have been able to specify the set of target
publications. Navigational queries, the RG and the target
object set (TOS) that answers the query are defined in the
paper.

It is difficult for a user to explore all target objects in a
reasonable amount of time and it is important to provide
a ranking of the TOS. As is well known, word based rank-
ing methods are very good at identifying the most relevant
results, typically using features extracted from the contents
of the target objects. For example [13] produces a ranking
of documents in PubMed that are most relevant to a gene.
In contrast, PageRank [11] focuses on the importance of the
target object and importance is transferred from other im-
portant objects via the link structure. A recent technique
ObjectRank [1] addresses both relevance and importance; it
exploits schema knowledge to determine the correct author-
ity transfer between important pages. We note that there
is also research on ranking paths [2]. For term-based query
dependent ranking, we refer to [3, 12].

The focus of this paper is to produce a ranking method
to select the best target objects in the RG that answer the
navigational query. Our ideal ranking must identify target
objects that are both relevant and important. The ranking
must also be query dependent since we must guarantee that
the target objects that are ranked indeed occur in the RG
and answer the navigational query. Further, both relevance
and importance must be determined with respect to the ob-
jects in TOS, rather than with respect to all the data entries
(as is the case with PageRank).

We propose two ranking metrics for the layered graph
RG; they are layered graph PageRank (lgPR) and layered
graph ObjectRank (lgOR). lgPR extends PageRank by dis-
tinguishing different roles (intermediate node, answer node)
which can be played by the same node in the result graph.
It does not perform random jumps so as to respect the RG.
Our second metric lgOR is an extension to ObjectRank; due
to space limitations we only discuss it briefly.

We report on our preliminary evaluation of lgPR on a real
dataset from NCBI/NIH. For some navigational queries, we
apply lgPR to the corresponding RG and use the ranking
distribution for lgPR to illustrate that lgPR indeed discrim-
inates among the TOS objects. We also apply the original
PR metric to the object graph of life science data (against
which we evaluate the query). We compare with applying
lgPR to the actual RG to illustrate that lgPR and PR pro-
duce dissimilar rankings.

Finally, we report on an initial user experiment. We con-
sider a set of complex queries typical of a scientist search-
ing for gene related PubMed publications, and the Top K
results of a word based ranking technique (Iowa) that has
been shown to be accurate in answering gene queries [13].
We compare the Iowa Top K publications with the lgPR Top
K publications, for some sample gene related queries, using
criteria that reflect both relevance and importance. We use
these criteria to understand the characteristics of lgPR.

The paper is organized as follows: Section 2 describes the
data model, navigational query language and layered DAG
result graph. Section 3 presents PageRank, lgPR, Objec-
tRank, and lgOR. 4 reports on preliminary results of an
experimental study with NCBI data and concludes.

2. DATA MODEL
We briefly describe a data model and navigational query

language for the life science graph. Details in [6, 9, 14].

2.1 Data Model for the Life Science Graph
The data model comprises three levels: ontology, source

and data (Figure 2). At the ontology level, a domain ontol-
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Figure 2: A Data Model for the Life Science Graph

ogy describes the universe of discourse, e.g., a gene, a pro-
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tein, etc., and the relationships among them. An ontology
graph OG = (C,LC) models the domain ontology, where
nodes in C represent classes, and edges in LC correspond to
relationships among classes. For example, genes and publi-
cations are classes in OG and the association discuss relates
publications with genes. In this paper, we only consider
one type of link, isRelatedTo, to capture the semantics of a
relationship; therefore, we omit all link labels.

At the source level, a source graph SG = (S,LS) de-
scribes data sources and links that implement logical classes
(C) and associations (LC) in OG, respectively. For example,
PubMed and Entrez Gene are sources that implement the
logical classes publications and genes, respectively. A map-
ping defines logical classes in C in terms of the sources in S
that implement them. A link between sources represents a
hyper-link, a service or an application that connects these
two sources. At the data level, a Data Graph is a graph
(D,LD), where D is a set of data entries and LD is a set
of references between entries. A mapping mS establishes
which data entries in D are published by source S.

2.2 Navigational Query Language
We define a query as a path expression over the alphabet

C in OG, where each class occurrence can optionally be an-
notated with a Boolean expression. The simplest Boolean
expression is the comparison of a Field to a particular value.
In this paper, a field can be either source or Object content,
and the relational operators can be “=” for source and “con-
tains” for Object content. A condition over source and the
relational operator “=”, (source = ”name-of-source”), re-
stricts the query to some specific sources that implement
the class. A condition on Object content and the relational
operator “contains”, specifies the set of keywords that must
occur within objects in the Data Graph. The symbol ε is
a wild-card matching any class and the “.” represents any
relationship.

The query: Retrieve publications that are related to the
gene “tnf or aliases in human” in OMIM or Enrtez Gene,
and are reached by traversing one intermediate resource, is
expressed in the navigational query language as follows: Q =
Gene[Object content contains {“tnf” and aliases in human}
and source = OMIM or Entrez Gene] · ε · Publication

The answer to a query Q is defined at the three levels of
the data model. It comprises three sets of paths: σOG(Q),
σSG(Q) and σDG(Q). The meaning of query Q with respect
to the ontology graph OG, σOG(Q), is the set of simple paths
in OG that correspond to words in the language induced by
the regular expression Q. The meaning of the query with
respect to the source graph SG, σSG(Q), is the set of all
simple paths in SG that correspond to mappings of the paths
in σOG(Q). Finally, the answer for query Q with respect to
the data graph DG, σDG(Q), is the set of simple paths in
DG that are the result of mapping the paths in σSG(Q)
using mapping function mS . A simple path does not repeat
(revisit) the same class, data source or data entry (in the
same path).

The queries that are presented in this section are typi-
cal queries posed by researchers. At present, there are no
query evaluation engines to answer navigational queries and
researchers must rely on manual navigation via browsers or
they must write scripts; the latter involves labor to keep
writing the scripts and the scripts may be inefficient in an-
swering these queries.

2.3 Result Graph
The union of paths in σDG(Q) is the result graph RG. We

note that for our query language, all the paths that satisfy
a query are of the same length, i.e., all the paths in the
sets σOG(Q), σSG(Q) and σDG(Q) are of the same length.
We model a result graph RGQ = (DRG, LRG) for a query
Q, as a layered directed acyclic graph comprising k layers,
L1, ..., Lk, where k is determined by the query. The set of
nodes DRG corresponds to the union of the data entries that
appear in the paths in σDG(Q). LRG represents the links
among these data entries. A layer Li is composed of the
union of the data entries in the paths σDG(Q) that appear
in the i-th position of the paths. The data entries in the
k-th layer are called the target objects and they form the
target object set (TOS) of the RG.

Note that since the result graph has multiple paths, and
since a source may occur in different layers of these paths,
the same data entry may appear multiple times in the dif-
ferent layers, depending on its connectivity to other data
entries. In this case, each occurrence of the data entry is
represented independently within each layer/path in which
it occurs. The result graph framework distinguishes the dif-
ferent roles (intermediate node, answer node) which can be
played by the same node in the result graph.

Figure 1 is a layered RG for the following query: Retrieve
publications related to the gene “tnf” traversing one interme-
diate source; it has three layers. The first layer corresponds
to the genes in the sources OMIM Gene and Entrez Gene
that are related to the keyword “tnf”. The second layer are
the entries in the sources NCBI Protein, Swiss Prot or NCBI
Nucleotide that are reached by objects in the first layer. Fi-
nally, the target objects in the third layer (TOS) are the
publications in PubMed that are linked to the objects in
the second layer.

3. RANKING METRICS
We briefly describe the PageRank metric [11] and then

discuss our metric lgPR for layered DAGs. We briefly dis-
cuss the ObjectRank metric [1] and our extension lgOR.

3.1 PageRank
PageRank assumes that links between pages confer au-

thority. A link from page i to page j is evidence that i is
suggesting that j is important. The importance from page
i that is contributed to page j is inversely proportional to
the outdegree of i. Let Ni be the outdegree of page i. The
corresponding random walk on the directed web graph can
be expressed by a transition matrix A as follows:

A[i, j] =

{
1
Ni

if there is an edge from i to j

0 otherwise

Let E be an arbitrary vector over the webpages, repre-
senting the initial probability of visiting a page. Let d be
the probability of following a link from a page and let (1−d)
be the probability of a random jump to a page. The PageR-
ank ranking vector R = dA ·R+ (1− d)E. R converges for
the web graph with any E, since generally the web graph is
aperiodic and irreducible[5, 10].

PageRank cannot be directly applied to a layered graph.
A Markov Chain is irreducible if and only if the graph con-
tains only one strongly connected component. RG is not

29



outgoing links with respect to the query.
There are several potential ways to extend PageRank for

RG. First, one can ignore links that point to pages without
outgoing edges since these pages do not affect the ranking
of other pages [11]. However we are specifically interested
in obtaining a ranking for the TOS or the objects in the
last layer of the layered result graph RG with no outgoing
links, we cannot ignore these pages. Another possibility
is modifying the transition matrix probability so that one
takes a random jump from a node in the TOS [5]. This
will ensure that the graph will be irreducible and aperiodic.
However, this would arbitrarily modify RG whose structure
is determined by the query; modifying RG will not assure
that it answers the query. To summarize, the extensions to
PageRank in the literature cannot be applied to the problem
of ranking the target object set TOS of RG.

3.2 Layered Graph PageRank(lgPR)
We describe layered graph PageRank to rank the TOS.

3.2.1 The Metric
Table 1 lists the symbols used to compute lgPR.

Symbol Meaning
RG(VRG, ERG) Result Graph, a layered DAG, with

objects VRG and edges ERG
eERG an edge in ERG
R ranking vector for objects in RG
Rini initial ranking vector
Alg the transition matrix for objects in RG
k the number of layers in the result graph

OutDegRG(up) outdegree from object u at layer p
(across multiple link types to objects in
layer p+ 1

Table 1: Symbols used by lgPR

The layered DAG result graph RG is represented by a
transition matrix Alg to be defined next. Note that an ob-
ject in the object graph may occur in multiple paths of the
result graph, in different layers; it will be replicated in the
transition matrix for each occurrence. Each object u at layer
p will have an entry in the transition matrix to some object
v at layer q. We denote the occurrence of them as up and
vq respectively.

The ranking vector R is defined by a transition matrix
Alg and initial ranking vector Rini, is as follows:

R = Ak−1
lg Rini = (

k−1∏
l=1

Alg) Rini

We pick Rini as follows: the entry for an object in Rini is
1 if this object is a link in start layer and 0 otherwise. The
transition matrix Alg is computed as follows:

Alg[i
p
u, j

q
v ] =


1

OutDegRG(up)
if OutDegRG(up) > 0

and e(up, vq) ∈ ERG,

0 otherwise.

Note that we define the outdegree of each object in RG
to only consider those edges that actually occur in RG and
link to objects in the next layer. This reflect the probability
that a user follows an object path in the RG. In contrast,
PageRank considers all outgoing edges from a page.

Unlike PageRank, lgPR differentiates the occurrence of a
data entry in different layers, as well as the links to entries
in subsequent layers; lgPR is thus able to reflect the role of
objects and links (from the entire graph of data entries) in
answering a navigational query. Suppose an object a occurs
in an intermediate layer as well as in the TOS of the RG. It
is possible that a is able to convey authority to other objects
in the TOS. However, a may not rank very high in the TOS
for this query. This characteristic is unique to lgPR. Thus,
the score associated with the object is query dependent to
reflect the role played by the object in the result graph.

3.2.2 Convergence Property
This transition matrix Alg is neither irreducible nor ape-

riodic as all rows for target objects contain only 0’s. The
matrix A is a nilpotent matrix and the number of layers is
the index. We provide two defintions (details in [8]).

Definition 3.1. A square matrix A is a nilpotent matrix,
if there exists some positive integer k such that Ak = 0 but
Ak−1 6= 0. Integer k is known as the index of A.

Definition 3.2. Let k be the index of A. {Ak−1x,Ak−2x,
..., Ax, x} form a Jordan Chain, where x is any vector such
that Ak−1x 6= 0.

A characteristic of a nilpotent matrix is that its only eigen-
value is 0. The consequence is that any vector x is an eigen-
vector of A as long as Ax = 0. From the previous defini-
tion {Ak−1

lg Rini, A
k−2
lg Rini, ..., AlgRini, Alg} forms a Jordan

Chain, since Ak−1
lg Rini 6= 0.

We show following two lemmas without providing proof
in this paper.

Lemma 3.3. Jordan chain {Ak−1
lg Rini, A

k−2
lg Rini, ...,

AlgRini, Alg} is a linearly independent set.

Lemma 3.4. {Ak−1
lg Rini, A

k−2
lg Rini, ..., AlgRini, Alg} con-

sists of a sequence of ranking vectors. In Rini, only objects
in layer 0 have non-zero scores; In ranking vector AmlgRini,
only objects in layer m receive non-zero scores.

The final ranking vector by lgPR is the first eigenvector
in the Jordan Chain, given the above initial ranking vector
Rini and the transition matrix Alg. While the traditional
PageRank algorithm converges on a ranking in multiple it-
erations, lgPR can be computed in exactly k − 1 iterations.
Note that because RG is a layered DAG, we can use link
matrices, each of which represents links between neighbor-
ing layers, instead of the single transition matrix Alg for the
entire graph. We also use keywords to filter query answers
at each iteration.

3.3 Layered Graph ObjectRank(lgOR)
PR is computed a priori on the complete data graph and is

independent of the RG. A recent technique ObjectRank [1]
extends PageRank to consider relevance of query keywords.
It exploits schema knowledge to determine the correct au-
thority transfer in a schema graph. In ObjectRank, the
authority flows between objects according to semantic con-
nections. It does so by determining an authority weight for
each edge in their schema graph. The ranking is (keyword)
query dependent.

Due to space limitations, we do not provide the details
of the ObjectRank metric. Instead, we briefly describe how

irreducible since the last layer in RG contains nodes with no
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the transition matrix for lgPR can be extended to consider
the authority weights associated with edges that occur in
RG.

Consider a metric layered graph ObjectRank(lgOR). The
difference from lgPR is the transition matrix AOG. It is as
follows:

A[ipu, j
q
v ] =

{
α(eERG) if e(up, vq) ∈ ERG,
0 otherwise.

α(eERG) =

{
α(eESG

)

OutDeg(up,eESG
)

if OutDeg(up, eESG) > 0

0 if OutDeg(up, eESG) = 0

Let the edge between up and vq map to an edge ESG in
the SG. α(ESG) represents the authority transfer weight
associated with ESG. OutDeg(up, eESG) is the outdegree in
RG of type ESG.

As discussed in [1], the success of ObjectRank depends on
correctly determining the authority weight to be associated
with each link. Figure 3 (next section) illustrates the source
graph that we use in our evaluation of navigational queries.
For lgOR to be successful, an authority weight may have
to be associated with each link in each result path (type)
in the RG. Experiments with users to determine the correct
authority weights for lgOR is planned for future work.

Currently the importance is computed after query eval-
uation. We compute result graph first, then ranking, for
the reason that the transition matrix is defined in terms of
outdegree in the RG. This motivates further research of com-
bination of two problems, whose ideal solution is to ranking
objects during query evaluation.

4. EXPERIMENTS ON LGPR
We report on experiments on real world data. We show

that the lgPR ranking distribution has the ability to differ-
entiate among the target objects of the RG and it is dif-
ferent from PageRank. A user compared the Top K results
of lgPR and a word based ranking (Iowa) [13], using crite-
ria that reflect both importance and relevance, to determine
their characteristics.

4.1 Experiment Setting
NCBI/NIH is the gatekeeper for biological data produced

using federal funds in the US1. We consider a source graph
SG of 10 data sources and 46 links. Figure 3 presents the
source graph used in this task.We used several hundred key-
words to sample data from these sources (the EFetch utility)
and followed links to the other sources (the ELink utility).
We created a data graph of approximately 28.5 million ob-
jects and 19.4 million links. We note that several objects are
machine predicted objects so it is not uncommon that they
have no links. The object identifiers for the data entries
(nodes of the data graph) and the pair of object identifiers
(links) were stored in a DB2 relational database.

Table 2 identifies the queries and keywords that were used
in this experiment. The symbols g, p, n, s refer to classes
gene, publication, nucleotide and SNP, respectively. Note
that ε is the wild card and can match all the classes and
sources (in the source graph).

For each navigational query, the source paths that answer
the query were determined using an algorithm described in

1www.ncbi.nlm.nih.gov

Class 
PubMed

PmId
Title

Class Author
Name

Class Journal
Name

ClassYear
Year

(1,*)

(1,1)

(1,*)

Class Lash 
Terms

TermId
Descrip

(1,*)

(0,*)

Class Entrez 
Gene

EGId

(1,*) (1,1)

Class Geo
GeoId

ClassOMIM
CddId

Class UniSTS
USId

Class 
UniGene

UGId

Class Entrez 
Protein

EPId

Class dbSNP
dbSID

Class CDD
CddId

Class Entrez 
Nucleotide

NuId

(1,*)

Figure 3: Source Graph for User Evaluation

Queries g.n.p, g.s.p, g.n.s.p, g.s.n.p, g.s.g.n.p, g.s.n.g.p,
g.ε.p, g.ε.ε.p, g.ε.ε.ε.p

“parkinson disease”, “aging”,“cancer”
Keywords “diabetes”, “flutamide”, “stress”

“degenerative joint”,“tnf”,”insulin”
“fluorouracil”, “osteoarthritis”,“sarcoma”

Table 2: Experiment setting

[14]. Evaluating the paths in the data graph for each source
path was implemented by SQL queries. Since a result graph
RG could involve multiple source paths whose computation
may overlap we applied several multiple query optimization
techniques. The SQL queries were executed on DB2 Enter-
prise Server V8.2 installed on a 3.2 GHz Intel Xeon processor
with 1GB RAM. The execution time for these queries varied
considerably, depending on the size and shape of RG. If we
consider the query g.n.p with keyword “degenerative joint”
used to filter ’g’, one source path was ranked in approxi-
mately 1 second. However, the query (g.ε.ε.ε.p) with the
keyword aging used to filter ’g’ created a very large result
graph and the execution time for this was approximately
2000 seconds. Typically the We note that computing the
high scoring TOS objects of the RG efficiently is a related
but distinct optimization problem.

4.2 lgPR Distribution
We report on the query (g.ε.p), i.e., paths from genes to

publications via one intermediate source.
Figures 4 and 5 report on the distribution of scores pro-

duced by the lgPR metric for the target objects in TOS
for some representative queries. The first 10 bars represent
scores in the range (0.00-0.01) to (0.09-0.1) and the last bar
represents the range (0.1-1.0). Fig 4 shows that a small
number of objects have very high score and the majority
have a low score. As expected, many queries and keywords
produced distributions that were similar to Figure 4. Most
of the objects in TOS, in this case approx. 12,000 objects,
had a very low score, and less than 200 object had a score
in the range (0.1-1.0).

However, we made an interesting observation that some
queries produced distributions that were similar to Figure
5. In this case, while many of the results (approx. 120) had
low scores in the range (0.00-0.02), 46 objects had scores in
the range (0.1-1.0) and 120 objects had scores in between.
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Figure 4: Histogram for query: g[Object content con-
tains “aging”]·ε·p
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Figure 5: Histogram for query: g [Object content con-
tains “degenerative joint”]·ε·p

Finally, we compared the ranking produced by lgPR and
PageRank. We apply PageRank to the entire data graph
of 28.5 million objects and 19.4 million links described in
section 4.1. For the three sample queries (described in the
next section), there are no PubMed ID’s in common to the
Top 25, 50, 100 for each of the queries, except that the
top 50 of query with Lash term “allele” have 1 PubMed
publications in common, and top 100 of same query have 3
in common. We speculate that the link structure of the RG
is distinct compared to the link structure of the data graph;
hence applying lgPR to the RG results in dissimilar ranking
compared to a priori applying PageRank to the entire data
graph.

We summarize that the lgPR score can both identify those
objects with a very low ranking that may not be of interest
to the user. However, it can also be used to discriminate
amongst objects in the TOS whose ranking has a much lower
variation of scores. Finally, lgPR ranking is not the same
as that produced by PageRank applied to the entire data
graph.

4.3 User Evaluation
In our user evaluation of lgPR, we consider a set of com-

plex queries typical of a scientist searching for gene related

PubMed publications, and the Top K results of a word based
ranking technique (Iowa) that has been shown to be accurate
in answering gene queries [13]. We compare the Iowa Top
K publications with the lgPR Top K publications, for some
sample gene related queries. We use criteria that reflect
both relevance and importance to identify characteristics of
lgPR.

Researchers are particularly interested in genetic and phe-
notypic variations associated with genes; these phenomena
are often studied in the context of diseases, in a chromoso-
mal region identified by a genomic marker (a unique known
sequence) associated with the disease. Genetic and pheno-
typic knowledge are described using terms of the Lash con-
trolled vocabulary [7]. We focus on a branch of the Lash
vocabulary that relates to phenotypes and population ge-
netics. Terms of interest include linkage disequilibrium,
quantitative trait locus and allele. Figure 6 presents
a portion of the Lash controlled vocabulary (term hierar-
chy). LD is not listed as the synonym to the term linkage

disequilibrium, because LD may often refer to another con-
cept. In the following experiment, we did not consider the
plural form of some terms, such as alleles to allele, but this
can be extended in the future studies.

1. EPIGENETIC ALTERATION
· · ·

2. GENOMIC SEGMENT LOSS
· · ·

3. GENOMIC SEGMENT GAIN
· · ·

4. GENOMIC SEQUENCE ALTERATION
· · ·

5. PHENOTYPIC ASSOCIATION
(synonym: phenotype, trait)
(a) locus association (synonym: locus, loci)

i. linkage

ii. quantitative trait locus (synonym: QTL)

(b) allelic association (synonym: allele)

i. linkage disequilibrium

Figure 6: Branch 5 in Hierarchical controlled vo-
cabulary of genetics terms (Lash Controlled Vocab-
ulary)

The navigational query used in our evaluation experiment
can be described in English as follows: “Return all publica-
tions in PubMed that are linked to an Entrez Gene entry
that is related to the human gene TNF (or its aliases). The
entry in PubMed must contain an STS marker and a term
from the Lash controlled vocabulary.”

We used the query term ”TNF AND 9606[TAXID]” 2 to
sample data from Entrez Gene. We then followed 8 paths to
PubMed. Table 3 reports on the number of entries in Entrez
Gene as well as the cardinality of the TOS for some sample
queries 3.

We briefly describe the word-based ranking method (Iowa)
that focuses on ranking documents retrieved by PubMed

2Note the Taxonomy ID for human is 9606 [4], and term
9606[TAXID] was used to select human genes.
3We use g[“tnf” and aliases in human] to denote
g[Object content contains {“tnf” and aliases in human}];
the entries in the first column of Table 3 are similar.
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Query Cardinality of TOS
g[“tnf” and aliases in human] 649
g[“tnf” and aliases in human] · ε·p[STS

2777
marker and “allele”]
g[“tnf” and aliases in human] · ε·p[STS

257
marker and “linkage disequilibrium”]
g[“tnf” and aliases in human] · ε·p[STS

22
marker and “quantitative trait locus”]

Table 3: Cardinality of TOS

for human gene queries [13], so that relevant documents are
ranked higher than non-relevant documents. This method
relies on using post-retrieval queries (ranking queries), au-
tomatically generated from an external source, viz., Entrez
Gene (Locus Link), to rank retrieved documents. The re-
search shows that ranking queries generated from a com-
bination of the Official Gene Symbol, Official Gene Name,
Alias Symbols, Entrez Summary, and Protein Products (op-
tional) were very effective in ranking relevant documents
higher in the retrieved list. Documents and ranking queries
are represented using the traditional vector-space represen-
tation, commonly used in information retrieval. Given a
gene, the cosine similarity score between the ranking query
vector for the gene and each document vector is computed.
Cosine scores are in the [0, 1] range and documents assigned
a higher score are ranked higher than documents with a
lower score. In the absence of summary and protein prod-
uct information, ranking queries generated from the gene
symbol, name and aliases are used to rank retrieved docu-
ments. In this experiment study we are working on the Bio
Web documents alone.

We use the following criteria to compare the Top K results
from Iowa and lgPR, to understand basic characteristics of
the two methods. Criteria labeled R appear to judge the
relevance of the paper and those labeled I appear to judge
importance. Some criteria appear to judge both and are
labeled R,I.

1. R: Does the title or abstract of the article contain the
term TNF or its aliases in human? Does the article
discuss immune response?

2. R,I: Does the article contain any disease related terms?
Does the article contain any genomic components (genes,
markers, snps, sequences, etc.)?

3. R,I: Does the article discuss biological processes re-
lated to the Lash terms?

4. R,I: What is the connectivity of the article to gene
entries in Entrez Gene that are related to TNF? Note
that as shown in Table 3, there are 649 Entrez Gene
entries that are related to human gene TNF. Each
PubMed publication was reached by following a re-
sult path through the result graph RG that started
with one of these Entrez Gene entries. However, some
PubMed publications may have been reached along
multiple paths in the RG reflecting much greater con-
nectivity.

5. I: What is the category of the article (review, survey,
etc.). Does the article address some specific topics or
is it a broad brush article?

6. I: Where did the article appear? What is the journal
impact factor? Has the article been highly cited?

Top 10 Rel. Imp. Criteria
PMID (0-5) (0-5) 1. 2. 3. 4. 5. 6.

16271851 4 2 H M H L L L
1946393 4 4 H L H M H H
12217957 4 4 H H H L H H
12545017 4 4 H M H L H H
9757913 3 3 H L H L H H
8882412 4 4 H M H L H H
2674559 4 3 H M H L H L
7495783 4 3 H H H L H L
15976383 5 4 H H H H H L
10698305 3 3 H L H L H H

Table 4: Relevance and Importance of Top 10 Puli-
cations Reported by Iowa Ranking Method

Top 10 Rel. Imp. Criteria
PMID (0-5) (0-5) 1. 2. 3. 4. 5. 6.

7560085 5 5 H H H H H H
12938093 5 5 H H H H H H
10998471 3 3 M H H L H L
11290834 5 4 H H H H H L
11501950 4 3 H H H L H L
11587067 5 4 H H H H H L
11845411 2 4 L H H L H H
12133494 5 4 H H H H H L
12594308 4 4 H H H L H H
12619925 5 5 H H H H H H

Table 5: Relevance and Importance of Top 10 Puli-
cations Reported by lgPR Ranking Method

Tables 4 and 5 report Top 10 publications in PubMed that
are linked to an Entrez Gene entry that is related to hu-
man gene TNF and contain the term linkage disequilibrium.
The first column reports the PubMed identifiers (PMIDs)
of the Top 10 publications returned by the Iowa and the
lgPR ranking methods. The human evaluation results are
reported in the fourth to the ninth columns using the the
six criteria listed above. An H represents the publication
is highly matched to the correspoinding criteria (M and L
represents medium and low respectively). An H indicates:

1. The PubMed entry is linked to the human gene TNF
with Entrez Gene identifier GeneID:7124.

2. The publication contains both diseases related terms
and genomic components.

3. The publication contains multiple Lash terms.

4. The connectivity is high, if there are more than five
related gene entries linked to the publication.

5. A research article considered more important than a
review or a survey, and a more specific topic is better.

6. The article is published in a journal with the impact
factor higher than 10.0, or the article is cited by ten
or more publications.

We then score the relevance (rel.) and the importance
(imp.) in the second and the third columns by combining
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the number of H and M reported in the six criteria. Crite-
ria 1 weighs twice compared to the other five criteria. We
use a number between 0 and 5, in which 5 indicates the
corresponding PubMed entry is highly relevant or highly
important to the given query. While both rankings appear
to identify “good” documents, Iowa appears to favor rele-
vant documents based on their word content. lgPR appears
to exploit the link structure of the RG, and have higher in-
terconnectivity to TNF related entries in Entrez gene. The
publications retrieved by lgPR are more likely to contain
diseases related terms or genomic components. The Iowa
ranking has a primary focus on the relevance of documents
(based on document contents; it is not able to differentiate
the importance of these relevant documents. In contrast,
lgPR has a primary focus on importance (based on the link
structure of the result graph); it is not able to differentiate
the relevance of important documents. We conclude that
further study is needed to determine how we can exploit the
characteristics of both methods.

There is no intersection between two sets of Top 10 pub-
lications returned by these two ranking methods. The first
common PMID is 7935762, which is ranked 24 in the Iowa
method and 21 by the lgPR method.

5. CONCLUSIONS
We have defined a model for life science sources. The an-

swer to a navigational query are the target objects (TOS) of
a layered graph Result Graph (RG). We define two ranking
metrics layered graph PageRank (lgPR) and layered graph
ObjectRank (lgOR). We also report on the results of exper-
iments on real world data from NCBI/NIH. We show that
the ranking distribution of lgPR indeed discriminates among
the TOS objects of the RG. The lgPR distribution is not the
same as applying PageRank a priori to the data graph. We
perform a user experiment on complex queries typical of
a scientist searching for gene related PubMed publications,
and the Top K results of a word based ranking technique
(Iowa) that has been shown to be accurate in answering gene
queries the query. Using criteria that judge both relevance
and importance, we explore the characteristics of these two
rankings. Our preliminary evaluation indicates there may
be a benefit or a meta-ranking.

We briefly presented layered graph ObjectRank (lgOR)
which is an extension to ObjectRank. The challenge of
ObjectRank is determining the correct authority weight for
each edge. For lgOR, we need to find the weight for the
edges that occur in RG. Experiments with users to deter-
mine the correct authority weights for lgOR is planned for
future work. We expect that IR techniques can be used to
determine authority weights.
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