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Abstract. Recently, there has been a surge of research activity in the area of
Link Analysis Ranking, where hyperlink structures are used to determine the rel-
ative authority of Web pages. One of the seminal works in this area is that of
Kleinberg [15], who proposed the HITS algorithm. In this paper, we undertake
a theoretical analysis of the properties of the HITS algorithm on a broad class
of random graphs. Working within the framework of Borodin et al. [7], we prove
that on this class (a) the HITS algorithm is stable with high probability, and (b) the
HITS algorithm is similar to the INDEGREE heuristic that assigns to each node
weight proportional to the number of incoming links. We demonstrate that our
results go through for the case that the expected in-degrees of the graph follow
a power-law distribution, a situation observed in the actual Web graph [9]. We
also study experimentally the similarity between HITS and INDEGREE, and we
investigate the general conditions under which the two algorithms are similar.

1 Introduction

In the past years there has been increasing research interest in the analysis of the Web
graph for the purpose of improving the performance of search engines. The seminal
works of Kleinberg [15] and Brin and Page [8] introduced the area of Link Analysis
Ranking, where hyperlink structures are used to rank the results of search queries. Their
work was followed by a plethora of modifications, generalizations and improvements
(see [7] and references within). As a result, today there exists a wide range of Link
Analysis Ranking (LAR) algorithms, many of which are variations of each other.

The multitude of LAR algorithms creates the need for a formal framework for as-
sessing and comparing their properties. Borodin et al., introduced such a theoretical
framework in [7]. In this framework an LAR algorithm is defined as a function from
a class of graphs of size n to an n-dimensional real vector that assigns an authority
weight to each node in the graph. The nodes are ranked in decreasing order of their
weights. Borodin et al. [7] define various properties of LAR algorithms. In this work
we focus on stability and similarity. Stability considers the effect of small changes in
the graph to the output of an LAR algorithm. Similarity studies how close the outputs
of two algorithms are on the same graph.
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Italian MIUR under contract ALGO-NEXT.
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Borodin et al. [7] considered the question of stability and similarity over an unre-
stricted class of graphs. They studied a variety of algorithms, and they proved that no
pair of these algorithms is similar, and almost all algorithms are unstable. It appears
that the class of all possible graphs is too broad to allow for positive results. This raises
naturally the question whether it is possible to prove positive results if we restrict our-
selves to a smaller class of graphs. Since the explosion of the Web, various stochastic
models have been proposed for the Web graph [4, 5, 16, 3]. The model we consider,
which was proposed by Azar et al. [4], is the following: assume that every node i in the
graph comes with two parameters ai and hi which take values in [0, 1]. For some node
i, the value hi can be thought of as the probability of node i to be a good hub, while
the value ai is the probability of the node i to be a good authority. We then generate an
edge from i to j with probability proportional to hiaj . We will refer to this model as the
product model, and the corresponding class of graphs as the class of product graphs.
The product graph model generalizes the traditional random graph model of Erdös and
Rèny [13] to include graphs where the expected degrees follow specific distributions.
This is of particular interest since it is well known [16, 9] that the in-degrees of the
nodes in the Web graph follow a power law distribution.

Our contribution. In this paper we study the behavior of the HITS algorithm, proposed
by Kleinberg [15], on the class of product graphs. The study of HITS on product graphs
was initiated by Azar et al. [4] who showed that under some assumptions the HITS
algorithm returns weights that are very close to the authority parameters. We formalize
the findings of Azar et al. [4] in the framework of Borodin et al. [7]. We extend the
definitions of stability and similarity for classes of random graphs, and we demonstrate
the link between stability and similarity. We then prove that, with high probability, un-
der some restrictive assumptions, the HITS algorithm is stable on the class of product
graphs, and similar to the INDEGREE heuristic that ranks pages according to their in-
degree. This similarity result is the main contribution of the paper. The implication of
the result is that on product graphs, with high probability, the HITS algorithm reduces
to simple in-degree count. We show that our assumptions are general enough to capture
graphs where the expected degrees follow a power law distribution as the one observed
on the real Web. We also analyze the correlation between INDEGREE and HITS on a
large sample of the Web graph. The experimental analysis reveals that similarity be-
tween HITS and INDEGREE can also be observed on the real Web. We conclude with a
discussion on the conditions that guarantee similarity of HITS and INDEGREE for the
class of all possible graphs.

2 Related Work

Link Analysis Ranking Algorithms: Let P be a collection of n Web pages that need
to be ranked. This collection may be the whole Web, or a query dependent subset of the
Web. We construct the underlying hyperlink graph G = (P, E) by creating a node for
each Web page in the collection, and a directed edge for each hyperlink between two
pages. The input to a LAR algorithm is the n × n adjacency matrix W of the graph G.
The output of the algorithm is an n-dimensional authority weight vector w, where wi,
the i-th coordinate of w, is the authority weight of node i.
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We now describe the two LAR algorithms we consider in this paper: the INDEGREE

algorithm, and the HITS algorithm. The INDEGREE algorithm is the simple heuristic
that assigns to each node weight equal to the number of incoming links in the graph G.
The HITS algorithm was proposed by Kleinberg [15] in the seminal paper that intro-
duced the hubs and authorities paradigm. In this framework, every page can be thought
of as having a hub and an authority weight. Let h and a denote the n-dimensional hub
and authority weight vectors. Kleinberg proposed an iterative algorithm, termed HITS,
for computing the vectors h and a; the algorithm is essentially a power method com-
putation of the principle eigenvectors of the matrices WW T and W T W respectively.
These are the principal singular vectors of the matrix W . The HITS algorithm returns
the vector a, the right singular vector of matrix W . More information about Singular
Value Decomposition and HITS can be found in Appendix A.1.

Independently from Kleinberg, Brin and Page developed the celebrated PAGERANK

algorithm [8], which outputs the stationary distribution of a random walk on the Web
graph. The works of Kleinberg [15] and Brin and Page [8] were followed by numerous
modifications and extensions (see [7] and references within). Of particular interest is
the SALSA algorithm by Lempel and Moran [18], which performs a random walk that
alternates between hubs and authorities.

Theoretical study of LAR algorithms: Borodin et al. [7], in the paper that introduced
the theoretical framework for the analysis of LAR algorithms, considered various al-
gorithms, including HITS, SALSA, INDEGREE, and variants of HITS defined in their
paper. They proved that, on the class of all possible graphs, no pair of algorithms is
similar, and only the INDEGREE algorithm is stable. They also defined the notion of
rank stability and rank similarity, where they considered the ordinal rankings induced
by the weight vectors. The same results carry over in this case. Their work was ex-
tended by Lempel and Moran [19], and Lee and Borodin [17]. The stability of HITS

and PAGERANK has also been studied elsewhere [22, 6].

The product graph model: Product graphs (also known as random graphs with given
expected degrees) were first considered as a model for the Web graph by Azar et al. [4].
The undirected case, where the hi = ai and the edges are undirected, has been studied
extensively [20, 10–12]. The focus of these works is on the case where the parameters
follow a power law distribution, as it is the case with most real-life networks.

3 The theoretical framework

In this section we review the definitions of Borodin et al. [7], and we extend them for
classes of random graphs. Let Gn denote the set of all possible graphs of size n. The
size of a graph is the number of nodes in the graph. Let Gn ⊆ Gn denote a collection
of graphs in Gn. Following the work of Borodin et al. [7], we define a link analysis
algorithmA as a functionA : Gn → R

n that maps a graph G ∈ Gn to an n-dimensional
real vector. The vector A(G) is the authority weight vector produced by the algorithm
A on graph G. The weight vector A(G) is normalized under some chosen norm L, that
is, the algorithm maps the graphs in Gn onto the unit L-sphere. Typically, the weights
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are normalized under some Lp norm. The Lp norm of a vector w is defined as ‖w‖p =

(
∑n

i=1 |wi|p)1/p.

Distance measures: In order to compare the behavior of different algorithms, or the
behavior of the same algorithm on different graphs, Borodin et al. [7] defined vari-
ous distance measures between authority weight vectors. The distance functions we
consider are defined using the Lq norm. The dq distance between two weight vectors
w1, w2 is defined as follows.

dq(w1, w2) = min
γ1,γ2≥1

‖γ1w1 − γ2w2‖q

The constants γ1 and γ2 serve the purpose of alleviating differences due to different
normalization factors. When using distance dq we will assume that the vectors are nor-
malized in the Lq norm. In this paper we consider mainly the d2 distance measure. We
can prove that the d2(a, b) = ‖a − b‖, and thus the d2 distance is a metric. The proof
appears in Appendix A.2.

Similarity: Borodin et al. [7] give the following general definition of similarity for
any distance function d and any normalization norm L. In the following we define
Mn(d, L) = sup‖w1‖=‖w2‖=1 d(w1, w2) to be the maximum distance between any
two n-dimensional vectors with unit norm L = || · ||.
Definition 1. Algorithms A1 and A2 are (L, d)-similar on the class Gn if as n → ∞

max
G∈Gn

d (A1(G),A2(G)) = o (Mn(d, L))

Consider now the case that the class Gn is a class of random graphs, generated according
to some random process. That is, we define a probability space 〈Gn,P〉, where P is a
probability distribution over the class Gn. We extend the definition of similarity on the
class Gn as follows.

Definition 2. Algorithms A1 and A2 are (L, d)-similar with high probability on the
class of random graphs Gn if for a graph G drawn from Gn, as n → ∞

d (A1(G),A2(G)) = o (Mn(d, L))

with probability 1 − o(1).

We note that when we consider (Lq , dq)-similarity we have that Mn(dq , Lq) =
Θ(1). Furthermore, if the distance function d is a metric, or a near metric4, then the
transitivity property holds. It is easy to show that if algorithms A1 and A2 are similar
(with high probability), and algorithms A2 and A3 are similar (with high probability),
then algorithms A1 and A3 are also similar (with high probability).

Stability: Let Gn be a class of graphs, and let G = (P, E) and G′ = (P, E′) be two
graphs in Gn. The link distance d` between graphs G and G′ is defined as d` (G, G′) =

4 A near metric [14] is a distance function that is reflexive, and symmetric, and there exists a
constant c independent of n, such that for all k > 0, and all vectors u, w1, w2, . . . , wk, v,
d(u, v) ≤ c(d(u, w1) + d(w1, w2) + · · · + d(wk, v)).
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|(E ∪ E′) \ (E ∩ E′)| That is, d`(G, G′) is the minimum number of links that we need
to add and/or remove so as to change one graph into the other.

Given a class of graphs Gn, let Ck(G) = {G′ ∈ Gn : d`(G, G′) ≤ k} denote the set
of all graphs that have link distance at most k from graph G. Borodin et al. [7] give the
following generic definition of stability.

Definition 3. An algorithm A is (L, d)-stable on the class of graphs Gn if for every
fixed positive integer k, we have as n → ∞

max
G∈Gn

max
G′∈Ck(G)

d(A(G),A(G′)) = o (Mn(d, L))

Given a class of random graphs Gn we define stability with high probability as
follows.

Definition 4. An algorithm A is (L, d)-stable with high probability on the class of
random graphs Gn if for every fixed positive integer k, for a graph G drawn from Gn

we have as n → ∞

max
G′∈Ck(G)

d(A(G),A(G′)) = o (Mn(d, L))

with probability 1 − o(1).

Stability and Similarity: The following lemma shows the connection between stability
and similarity. The lemma is a generalization of a lemma by Borodin et al. [7]. The proof
appears in Appendix A.3.

Lemma 1. Let d be a metric or near metric distance function, L a norm, and Gn a
class of random graphs. If algorithm A1 is (L, d)-stable with high probability on the
class Gn, and algorithm A2 is (L, d)-similar to A1 with high probability on the class
Gn, then A2 is (L, d)-stable with high probability on the class Gn.

4 Stability and similarity on the class of product graphs

The class of product graphsGp
n(h, a) (or, for brevity,Gp

n) is defined with two parameters
h and a, which are two n-dimensional real vectors, with hi and ai taking values in [0, 1].
These can be thought of as the latent hub and authority vectors. A link is generated from
node i to node j with probability hiaj .

Let G ∈ Gp
n, and let W be the adjacency matrix of the graph G. The matrix W can

be written as W = haT + R, where R is a random matrix, such that

R[i, j] =

{
−hiaj with probability 1 − hiaj

1 − hiaj with probability hiaj

We refer to matrix R as the rounding matrix, that rounds the entries of M to 0 or
1. We can think of the matrix W as a perturbation of the matrix M = haT by the
rounding matrix R. The matrix M is a rank-one matrix. If we run HITS on the matrix M
(assuming a small modification of the algorithm so that it runs on weighted graphs), the
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algorithm will reconstruct the latent vectors a and h, which are the singular vectors of
matrix M . Note also that if we run the INDEGREE algorithm on the matrix M (assuming
again that we take the weighted in-degrees), the algorithm will also output the latent
vector a. So, on rank-one matrices the two algorithms are identical. The question is
how the addition of the rounding matrix R affects the output of the two algorithms. We
will show that it has only a small effect, and the two algorithms remain similar.

More formally, let LATENT denote the (imaginary) LAR algorithm which, for any
graph G in the class Gp

n(h, a), outputs the vector a. We will show that both HITS

and INDEGREE are similar to LATENT with high probability. This implies that the two
algorithms are similar with high probability. Furthermore, we will show that it also
implies the stability of the HITS algorithm.

4.1 Mathematical Tools

We now introduce some mathematical tools that we will use for the remaining of this
section. We also review some properties of matrix norms in Appendix A.1.

Perturbation Theory: Perturbation theory studies how adding a perturbation matrix
E to a matrix M affects the eigenvalues and eigenvectors of M . Let G and G′ be two
graphs, and let W and W ′ denote the respective adjacency matrices. The matrix W ′

can be written as W ′ = W + E, where E is a matrix with entries in {−1, 0, 1}. The
entry E[i, j] is 1 if we add a link from i to j, and −1 if we remove a link from i to j.
Therefore, we can think of the matrix W ′ as a perturbation of the matrix W by a matrix
E. Note that if we assume that only a constant number of links is added and removed,
then both the Frobenius and the L2 norms of E are bounded by a constant.

We now introduce an important lemma that we will use in the following. The proof
of the lemma appears in Appendix A.4.

Lemma 2. Let W be a matrix, and let W + E be a perturbation of the matrix. Let u

and v denote the left and right principal singular vectors of the matrix W , and u′ and
v′ the principal singular vectors of the perturbed matrix. Let σ1, σ2 denote the first and
second singular values of the matrix W . If σ1−σ2 = ω(‖E‖2), then ‖u′−u‖2 = o(1)
and ‖v′ − v‖2 = o(1).

Norms of random matrices: We also make use of the following theorem for concen-
tration bounds on the L2 norm of random symmetric matrices. We state the theorem as
it appears in [1].

Theorem 1. Given an m × n matrix A and any ε > 0, let Â be any random matrix
such that for all i, j: E[Âij ] = Aij , V ar(Âij ) ≤ σ2, and |Âij − Aij | ≤ K, where

K =

(
4ε

4 + 3ε

)3
σ
√

m + n

log3(m + n)

For any α > 0, and m + n ≥ 20, with probability at least 1 − (m + n)−α2

,

‖Â − A‖2 < (2 + α + ε)σ
√

m + n
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Chernoff bounds: We will make use of standard Chernoff bounds. The following the-
orem can be found in the textbook of Motwani and Raghavan [21].

Theorem 2. Let X1, X2, . . . , Xn be independent Poisson trials such that, for 1 ≤ i ≤
n, Pr[Xi = 1] = pi, where 0 ≤ pi ≤ 1. Let X =

∑n
i=1 Xi, µ = E[X ] =

∑n
i=1 pi.

Then, for 0 < δ ≤ 1, we have that

Pr[X < (1 − δ)µ] < exp(−µδ2/2) (1)

Pr[X > (1 + δ)µ] < exp(−µδ2/4) (2)

4.2 Conditions for the stability of HITS

We first provide general conditions for the stability of the HITS algorithm. Let Gσ
n de-

note the class of graphs with adjacency matrix W that satisfies σ1(W )−σ2(W ) = ω(1).
The proof of the following theorem (Appendix A.5) follows directly from Lemma 2, and
the fact that the perturbation matrix E has L2 norm bounded by a constant.

Theorem 3. The HITS algorithm is (L2, d2)-stable on the class of graphs Gσ
n .

Theorem 3 provides a sufficient condition for the stability of HITS on general graphs
and it will be useful when considering stability on the class of product graphs. The class
Gσ

n is actually a subset of the class defined by the result of Ng et al. [22]. Translating
their result in the framework of Borodin et al. [7], they prove that the HITS algorithm
is stable on the class of graphs with σ1(W )2 − σ2(W )2 = ω(

√
d), where d is the

maximum out-degree.

4.3 Similarity of HITS and LATENT

We now turn our attention to product graphs, and we prove that HITS and LATENT are
similar on this class. A result of similar spirit is shown in the work of Azar et al. [4].
We make the following assumption for the vectors a and h.

Assumption 1 For the class Gp
n(h, a), the latent vectors a and h satisfy ‖a‖2‖h‖2 =

ω(
√

n).

As we show below, Assumption 1 places a direct lower bound on the principal singular
value of the matrix M = haT . Also, let A =

∑n
i=1 ai, denote the sum of the authority

values, and let H =
∑n

j=1 hj the sum of the hub values. Since the values are positive,
we have A = ‖a‖1 and H = ‖h‖1. The product HA is equal to expected number of
edges in the graph. We have that HA ≥ ‖a‖2‖h‖2, thus, from Assumption 1, HA =
ω(

√
n). This implies that the graph is not too sparse.

Lemma 3. The algorithms HITS and LATENT are (L2, d2)-similar with high probabil-
ity on the class Gp

n, subject to Assumption 1.

Proof. The singular vectors of the matrix M are the L2 unit vectors a2 = a/‖a‖2 and
h2 = h/‖h‖2. The matrix M can be expressed as M = hT

2 ‖h‖2‖a‖2a2. Therefore,
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the principal singular value of M is σ1 = ‖h‖2‖a‖2 = ω(
√

n). Since M is rank-one,
σi = 0, for all i = 2, 3, . . . , n. Therefore, for matrix M we have that σ1−σ2 = ω(

√
n).

Matrix R is a random matrix, where each entry is a independent random variable
with mean 0, and maximum value and variance bounded by 1. Using Theorem 1, we
observe that K = 1, and σ = 1. Setting ε = 1 and α = 1, we get that Pr[‖R‖2 ≤
8
√

n] ≥ 1 − o (1/n), thus ‖R‖2 = O(
√

n) with high probability.
Therefore,we have that σ1 − σ2 = ω(‖R‖2) with probability 1− o(1). If w2 is the

right singular vector of matrix W normalized in the L2 norm, then, using Lemma 2, we
have that ‖w2 − a2‖2 = o(1) with probability 1 − o(1). ut

Assumption 1 guarantees also the stability of HITS onGp
n. The proof (Appendix A.6)

follows from the fact that if G ∈ Gp
n, then G ∈ Gσ

n , with high probability.

Theorem 4. The HITS algorithm is (L2, d2)-stable with high probability on the class
of graphs Gp

n, subject to Assumption 1.

4.4 Similarity of INDEGREE and LATENT

We now consider the (Lq, dq)-similarity of INDEGREE and LATENT, for all 1 ≤ q <
∞. Again, let A =

∑n
i=1 ai, and let H =

∑n
j=1 hj . Also, let d denote the vector of the

INDEGREE algorithm before any normalization is applied. That is, di is the in-degree
of node i. For some node i, we have that

di =

n∑

j=1

W [j, i] =

n∑

j=1

M [j, i] +

n∑

j=1

R[j, i]

We have that
∑n

j=1 M [j, i] = Hai. Furthermore, let ri =
∑n

j=1 R[j, i], and let r =

[r1, . . . , rn]T . Vector d can be expressed as d = Ha + r.
We first prove the following auxiliary lemma.

Lemma 4. For every q ∈ [1,∞), if H‖a‖q = ω(n1/q ln n), then ‖r‖q = o(H‖a‖q)
with high probability.

Proof. For the following we will use ‖ · ‖ to denote the Lq norm, for some q ∈ [1,∞).
We will prove that ‖r‖ = o(H‖a‖) with probability at least 1−1/n. We have assumed
that H‖a‖ = ω(n1/q ln n), so it is sufficient to show that ‖r‖ = O(n1/q ln n), or
equivalently that for all 1 ≤ i ≤ n, |ri| = O(ln n) with probability at least 1 − 1/n2.
Note that ri = di − Hai, so essentially we need to bound the deviation of di from its
expectation.

We partition the nodes into two sets S and B. Set S contains all nodes such that
Hai = O(ln n), that is, nodes with “small” expected in-degree, and set B contains all
nodes such that Hai = ω(ln n), that is, node with “big” expected in-degree.

Consider a node i ∈ S. We have that Hai ≤ c ln n, for some constant c. Using
Theorem 2, Equation 2, we set δ = k ln n/(Hai), where k is a constant such that
k ≥

√
8c, and we get that Pr[di − Hai ≥ k ln n] ≤ exp(−2 ln n). Therefore, for all

nodes in S we have that |ri| = O(ln n) with probability at least 1− 1/n2. This implies
that

∑
i∈S |ri|q = O(n lnq n) = o(Hq‖a‖q), with probability 1 − 1/n.
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Consider now a node i ∈ B. We have that Hai = ω(ln n), thus, Hai = (ln n)/s(n),
where s(n) is a function such that s(n) = o(1). Using Theorem 2, we set δ = k

√
s(n),

where k is a constant such that k ≥
√

8, and we get that Pr[|di − Hai| ≥ δHai] ≤
exp(−2 lnn). Therefore, for the nodes in B, we have that |ri| = o(Hai) with proba-
bility at least 1 − 1/n2. Thus,

∑
i∈B |ri|q = o(Hq‖a‖q), with probability 1 − 1/n.

Putting everything together we have that ‖r‖q =
∑

i∈S |ri|q +
∑

i∈B |ri|q =
o(Hq‖a‖q), with probability 1 − 2/n. Therefore, ‖r‖ = o(H‖a‖) with probability
1 − 2/n. This concludes our proof. ut

We are now ready to prove the similarity of INDEGREE and LATENT. The following
lemma follows from Lemma 4. The details of the proof appear in Appendix A.7.

Lemma 5. For every q ∈ [1,∞), the INDEGREE and LATENT algorithms are (Lq, dq)-
similar with high probability on the class Gp

n, when the latent vectors a and h satisfy
H‖a‖q = ω(n1/q ln n).

We now make the following assumption for vectors a and h.

Assumption 2 For the class Gp
n(h, a), the latent vectors a and h satisfy H‖a‖2 =

ω(
√

n ln n).

Assumption 2 implies that the expected number of edges in the graph satisfies HA =
ω(

√
n ln n). Note that we can satisfy Assumption 2 by requiring HA = ω(n lnn), that

is, the graph is dense enough. We can satisfy both Assumption 1 and 2 by requiring that
σ1(M) = ‖h‖2‖a‖2 = ω(

√
n ln n).

The INDEGREE and LATENT algorithms are (L2, d2)-similar subject to Assump-
tion 2. The following theorem follows from the transitivity property of similarity.

Theorem 5. The HITS and INDEGREE algorithms are (L2, d2)-similar with high prob-
ability on the class Gp

n, subject to Assumptions 1 and 2.

4.5 Power law graphs

A discrete random variable X follows a power law distribution with parameter α, if
Pr[X = x] ∝ x−α. Closely related to the power-law distribution is the Zipfian dis-
tribution, also known as Zipf’s law [24]. Zipf’s law states that the r-th largest value of
the random variable X is proportional to r−β . It can be proved [2] that if X follows
a Zipfian distribution with exponent β, then it also follows a power law distribution
with parameter α = 1 + 1/β. We will now prove that Assumptions 1 and 2 are general
enough to include graphs with expected in-degrees that follow Zipf’s law with parame-
ter β < 1.

Without loss of generality we assume that a1 ≥ a2 ≥ · · · ≥ an. For some constant
c ≤ 1 the i-th authority value is defined as ai = ci−β, for β < 1. This implies a power
law distribution on the expected in-degrees with exponent α > 2. This is typical for
most real-life graphs. The exponent of the in-degree distribution for the Web graph is
2.1 [9]. For the hub values we assume that hi = Θ(1), for all 1 ≤ i ≤ n. Therefore,
we have that H = Θ(n), and ‖h‖2 = Θ(

√
n). Furthermore, it is easy to show that for

β < 1, ‖a‖2
2 =

∑n
i=1

c
i2β = ω(1).
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Fig. 1. INDEGREE and HITS distributions on the Web graph.

Therefore, ‖a‖2‖h‖2 = ω(
√

n), and H‖a‖2 = ω(n), thus satisfying Assump-
tions 1 and 2. Therefore, we can conclude that HITS and INDEGREE are similar with
high probability when the expected degrees follow a power law distribution. Note that
on this graph we have that the expected number of edges is HA = ω(n ln n).

5 Experimental analysis

In this section we study experimentally the similarity of HITS and INDEGREE on a large
sample of the Web. We analyze a sample of 136M vertices and about 1,2 billion edges of
the Web graph collected in 2001 by the WebBase project5 at Stanford. Figures 1(a) and
1(b) show the distributions of the INDEGREE and HITS authority values. The in-degree
distribution, as it is well known, follows a power law distribution. The HITS authority
weights also follow a “fat” power law distribution in the central part of the plot. Table 1
summarizes our findings on the relationship between INDEGREE and HITS. Since we
only have a single graph and not a sequence of graphs, the distance measures are not
very informative, so we also compute the correlation coefficient between the two weight
vectors. We observe a strong correlation between the authority weights of HITS and the
in-degrees, while almost no correlation between the hub weights and the out-degrees.
Similar trends are observed for the d2 distance, where the distance between hub weights
and out-degrees is much larger than that between authority weights and in-degrees.
These results suggest that although the Web, as expected, is not a product graph, the
HITS authority weights can be well approximated by the in-degrees.

authority/in-degree hub/out-degree
d2 distance 0.36 1.23
correlation coefficient 0.93 0.005

Table 1. Similarity between HITS and INDEGREE

5 http://www-diglib.stanford.edu/∼testbed/doc2/WebBase/
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6 Similarity of HITS and INDEGREE

In this section we study the general conditions under which the HITS and INDEGREE

algorithms are similar. Consider a graph G ∈ Gn and the corresponding adjacency
matrix W . Let σ1 ≥ σ2 ≥ . . . ≥ σn be the singular values of W , and let a1, . . . , an

and h1, . . . , hn denote the right (authority) and left (hub) singular vectors respectively.
All vectors are unit vectors in the L2 norm. The HITS algorithm outputs the vector
a = a1. Let w denote the output of the INDEGREE algorithm (normalized in L2).
Also, let Hi =

∑n
j=1 hi(j) be the sum of the entries of the i-th hub vector. We can

prove the following proposition. The proof appears in Appendix A.8.

Proposition 1. For a graph G ∈ Gn, the d2 distance between HITS and INDEGREE is

d2(a, w) =

√(
σ2H2

σ1H1

)2

+ · · · +
(

σnHn

σ1H1

)2

(3)

We now study the conditions under which d2(a, w) = o(1). Since the values of h1

are positive, we have that H1 = ‖h1‖1, and 1 ≤ H1 ≤ √
n. For every i > 1, we have

that |Hi| ≤ ‖hi‖1 and |Hi| ≤
√

n. The following conditions guarantee the similarity
of HITS and INDEGREE: (a) σ2/σ1 = o(1/

√
n), and there exists a constant k such that

σk+1/σ1 = o(1/n); (b) H1 = Θ(
√

n), and σ2/σ1 = o(1), and there exists a constant
k such that σk+1/σ1 = o(1/n); (c) H1 = Θ(

√
n), and σ2/σ1 = o(1/

√
n).

Assume now that |Hi|/(σ1H1) = o(1), for all i ≥ 2. One possible way to obtain
this bound is to assume that σ1 = ω(

√
n), or that H1 = Θ(

√
n) and σ1 = ω(1).

Then, we can obtain the following characterization of the distance between HITS and

INDEGREE. From Equation (3) we have that d2(a, w) = o
(√

σ2
2 + · · · + σ2

n

)
. Let

W1 = σ1h1a
T
1 denote the rank-one approximation of W . The matrix R = W − W1 is

called the residual matrix, and it has singular values σ2, . . . , σn. We have that

d2(a, w) = o (‖W − W1‖F ) and d2(a, w) = o

(√
‖W‖2

F − ‖W‖2
2

)
(4)

Equation (4) says that the similarity of HITS and INDEGREE algorithms depends on
the Frobenius norm of the residual matrix. Furthermore, the similarity of the HITS and
INDEGREE algorithms depends on the difference between the Frobenius and the spec-
tral (L2) norm of matrix W . The L2 norm measures the strength of the strongest linear
trend in the matrix, while the Frobenius norm captures the sum of the strengths of all
linear trends in the matrix [1]. The similarity of the HITS and INDEGREE algorithms
depends upon the contribution of the strongest linear trend to the sum of linear trends.

7 Conclusions

In this paper we studied the behavior of the HITS algorithm on the class of product
graphs. We proved that under some assumptions the HITS algorithm is stable, and it
is similar to the INDEGREE algorithm. Our assumptions include graphs with expected
degrees that follow a power law distribution.
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Our work opens a number of interesting directions for future work. First, it would be
interesting to determine a necessary condition for the stability of the HITS algorithm.
Also, it would be interesting to study the stability and similarity of other LAR algo-
rithms on product graphs, such as the PAGERANK and the SALSA algorithms. Finally,
it would be interesting to study other classes of random graphs [5, 16].
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A Supplementary material

A.1 Linear Algebra Background

Matrix Norms: Let M be an n × n matrix. The L2 norm, ‖M‖2 (also referred to as
the spectral norm), and the Frobenius norm ‖M‖F of matrix M are defined as follows.

‖M‖2 = max
v:‖v‖=1

‖Mv‖2

and

‖M‖F =




n∑

i=1

n∑

j=1

M [i, j]2




1/2

Both norms are unitary invariant. That is, for unitary matrices U and V (i.e., U T U =
V T V = I), we have that ‖UT MV ‖ = ‖M‖. For the L2 norm we have that ‖U‖2 =
‖V ‖2 = 1. Furthermore, both norms are consistent, that is for any two matrices M, W ,
we have that ‖MW‖ ≤ ‖M‖‖W‖. The two norms are related by the inequality ‖M‖2 ≤
‖M‖F ≤ √

n‖M‖2.

Singular Value Decomposition: Let M be an n × n matrix. The Singular Value De-
composition of the matrix M is a factorization of the form M = UΣV T , where U and
V are n × n unitary matrices, and Σ is a diagonal matrix, Σ = diag(σ1, σ2, . . . , σn),
where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. The values σ1, . . . , σn are called the singular values
of the matrix M . The pair (uk, vk) of the k-th column vectors of matrix U and V re-
spectively, is a pair of the k-th principal singular vectors of the matrix M . The column
vectors of U are the left singular vectors of M , and the columns of V are the right sin-
gular vectors of M . The left singular vectors of M are also the eigenvectors of MM T ,
while the right singular vectors of M are the eigenvectors of MT M . Given the Singular
Value Decomposition of M we can express the matrix M as M =

∑n
i=1 σiuiv

T
i , that

is, as the sum of n rank one matrices.
The matrix norms can be computed using the singular values. Specifically, we

have that ‖M‖2 = σ1, and ‖M‖2
F = σ2

1 + σ2
2 + · · · + σ2

n. Furthermore, let Mk =∑k
i=1 σiuiv

T
i , denote a rank-k approximation of the matrix M . It can be proved that

Mk is the best rank-k approximation with respect to both the L2 and Frobenius norm.
The HITS algorithm initializes all weights to one, and then iteratively updates the

hub and authority vectors, setting h = Wa, and a = W T h. A normalization step is
then applied, so that the vectors a and h become unit vectors in some norm. After a
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sufficient number of iterations the vectors a and h converge to the principal eigenvec-
tors of the matrices W T W and WW T , respectively. Therefore, the hub vector h is the
principal left singular vector of W , while the authority vector a is the principal left
singular vector of W .

A.2 Metric property of the d2 distance measure

For the following we use ‖ · ‖ to denote the L2 norm.

Lemma 6. Let a and b be two unit vectors in the L2 norm. For the distance measure
d2, we have that d2(a, b) = ‖a− b‖.

Proof. By definition of the d2 distance measure for any two weight vectors a and b,
we have that d2(a, b) ≤ ‖a − b‖. We will now prove that d2(a, b) ≥ ‖a − b‖, which
implies that d2(a, b) = ‖a− b‖.

Borodin et al. [7] prove that at least one of the constants γ1,γ2 should be equal to 1.
Without loss of generality, assume that γ1 = 1. We have that d2(a, b) = minγ≥1 ‖a − γb‖.
Given two vectors a and b, let cos(a, b) denote the cosine of the angle of the vectors a

and b. For two unit vectors a and b it is easy to show that ‖a− b‖2 = 2 − 2 cos(a, b).
Also we have that

‖a − γb‖2 = ‖a‖2 + ‖γb‖2 − 2‖a‖‖γb‖ cos(a, γb)

≥ 2γ − 2γ cos(a, b) ≥ ‖a− b‖2

The first inequality follows from the fact that 1 + γ2 ≥ 2γ. ut

A.3 Proof of Lemma 1

Proof. Let G ∈ Gn be a graph drawn from the class Gn. Also let M = Mn(d, L). Since
A1 and A2 are (L, d)-similar with high probability on the class Gn, it follows that p1 =
Pr[d(A2(G),A1(G)) = Ω(M)] = o(1). Furthermore, since A1 is (L, d)-stable with
high probability on the class Gn, we have that p2 = Pr[maxG′∈Ck(G) d(A1(G),A1(G

′)) =
Ω(M)] = o(1). Define graph G1 = arg maxG′∈Ck(G) d(A1(G),A1(G

′)) and graph
G2 = arg maxG′∈Ck(G) d(A2(G),A2(G

′)). By definition of the graph G1, we have
that d(A1(G),A1(G2)) ≤ d(A1(G),A1(G1)), thus p3 = Pr[d(A1(G),A1(G2)) =
Ω(M)] = o(1).

From the metric or near metric property of the function d, we have that

d(A2(G),A2(G2)) ≤
c (d(A2(G),A1(G)) + d(A1(G),A1(G2)) + d(A1(G2),A2(G2))) .

Therefore, Pr[d(A2(G),A2(G2)) = Ω(M)] ≤ p1 + p2 + p3 = o(1). Therefore, A2 is
(L, d)-stable with high probability. ut
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A.4 Proof of Lemma 2

We use results from perturbation theory [23] to study how the principal singular vectors
of a matrix W change when we add the matrix E. The theorems that we use assume
that both the matrix W and the perturbation E are symmetric, so instead of using the
matrices W and E we will consider the matrices B and F which are defined as follows.

B =

[
0 W T

W 0

]
and F =

[
0 ET

E 0

]
(5)

If σi is the i-th singular value of W , and (ui, vi) is the corresponding pair of singular
vectors, then the matrix B has eigenvalues ±σi, with eigenvectors [vi, ui]

T for the
eigenvalue σi, and [vi,−ui]

T for the eigenvalue −σi. Therefore, instead of studying
the perturbation of the singular values and vectors of matrix W + E, we will study the
eigenvalues and eigenvectors of matrix B + F . Note also that ‖F‖2 = ‖E‖2, and that
‖F‖F =

√
2‖E‖F .

We make use of the following theorem by Stewart (Theorem V.2.8 in [23] for the
symmetric case).

Theorem 6. Suppose B and B + F are n by n symmetric matrices and that

Q = [q, Q2]

is a unitary matrix, such that the vector q is an eigenvector for the matrix B. Partition
the matrices QT BQ and QT FQ as follows

QT BQ =

[
λ 0
0 B22

]
and QT FQ =

[
f11 fT

21

f21 F22

]

Let

δ = min
µ∈λ(B22)

|λ − µ| − |f11| − ‖F22‖2

where λ(B22) denotes the set of eigenvalues of B22. If δ > 0, and δ > 2‖f 21‖2, then
there exists a vector p such that

‖p‖2 < 2
‖f21‖2

δ

and

q′ = q + Q2p

is an eigenvector of the matrix B + F . For the eigenvalue λ′ that corresponds to the
eigenvector q′, we have that

λ′ = λ + f11 + fT
21p

We now give the proof of Lemma 2.



16

Proof. In the following, we will argue that under condition σ1 − σ2 = ω(‖E‖2), per-
turbing matrix W by E causes only a small perturbation of the principal left and right
singular vectors of W . Moreover, we will prove that the perturbed singular vectors re-
main the principal singular vectors of W since the perturbation does not change the
relative order of the first and the second singular values.

In Theorem 6, define matrices B and F as in the Equation (5). Now, set q = [u, v]T ,
where u and v are the left and right singular vectors of W respectively. We have that
λ = σ1. We have that

δ = σ1 − σ2 − |f11| − ‖F22‖2

Note that f11 = qT Fq, F22 = QT
2 FQ2, and f 21 = QT

2 Fq. Since ‖AB‖2 ≤ ‖A‖2‖B‖2,
and unitary matrices have L2 norm 1, we have that |f11| ≤ ‖F‖2, ‖F22‖2 ≤ ‖F‖2, and
‖f21‖2 ≤ ‖F‖2.

Note that ‖F‖2 = ‖E‖2. If σ1 − σ2 = ω(‖E‖2), then δ = ω(‖E‖2) and obviously
δ > 0 and δ > 2‖f21‖2. Therefore, there exists a vector p with ‖p‖2 < ‖f21‖2/δ,
such that the vector

q′ = q + Q2p

is an eigenvector of the matrix B + F . We also have that ‖p‖ = o(1) since ‖f 21‖ ≤
‖E‖2 and δ = ω(‖E‖2).

The eigenvalue associated with the vector q′ is λ′ = λ + f11 + fT
21p. Therefore,

|λ − λ′| = |f11 + fT
21p| ≤ |f11| + ‖fT

21‖2‖p‖2

≤ ‖E‖2 + o(‖E‖2) = O(‖E‖2)

The first and second inequalities follow from the well known property of the absolute
value and the properties of the L2 vector norm. The last inequality follows from the fact
that ‖fT

21‖2 = O(‖E‖2), and ‖p‖2 = o(1).
Note that λ = σ1 is the principal singular value of the matrix W . Let σ′

i denote the
i-th singular value of the matrix W ′ = W + E. We know that for any singular value
σi, |σi − σ′

i| ≤ ‖E‖2. We have that |σ1 − σ′
1| ≤ ‖E‖2 and |σ2 − σ′

2| ≤ ‖E‖2. We
have assumed that σ1 − σ2 = ω(‖E‖2) Therefore, it must be that σ′

1 −σ′
2 = ω(‖E‖2).

Since |λ − λ′| = O(‖E‖2), it follows that λ′ = σ′
1. Thus, the vector q′ is the principal

eigenvector of the matrix B + F , and q′ = [u′, v′]T , where u′ and v′ are the left and
right singular vectors of W ′. Since ‖Q2p‖2 ≤ ‖p‖2, it follows that ‖q − q′‖2 = o(1).
Therefore,

‖v′ − v‖2 = o(1) and ‖u′ − u‖2 = o(1)

ut

A.5 Proof of Theorem 3

Proof. The proof follows directly from Lemma 2. Given a graph G ∈ Gσ
n with adja-

cency matrix W , and a graph G′ ∈ Ck(G) with adjacency matrix W ′, let E = W −W ′.
We have ‖E‖2 ≤ ‖E‖F =

√
k. Therefore, σ1 − σ2 = ω(‖E‖2). If a and a′ are the

weight vectors of the HITS algorithm (normalized under the L2 norm) on the graphs G
and G′, then ‖a − a′‖2 = o(1). ut
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A.6 Proof of Theorem 4

Proof. Assumption 1 guarantees that the principal singular value of matrix M is ω(
√

n).
Furthermore, since the matrix M is a rank-one matrix, σ2 = 0, thus σ1 −σ2 = ω(

√
n).

The L2 norm of the rounding matrix R is O(
√

n) with high probability. Perturbation
theory [23] guarantees that the singular values of the matrix M cannot be perturbed
more than ‖R‖2, that is |σi(M + R) − σi(M)| ≤ ‖R‖2, for every singular value
σi. We have that σ1(M) = ω(

√
n); therefore, σ1(M + R) = ω(

√
n). Furthermore,

σ2(M) = 0, so σ2(M + R) = O(
√

n). It follows that for the matrix W = M + R we
have that σ1(W )−σ2(W ) = ω(

√
n) with high probability. From Theorem 3 it follows

that HITS is stable on Gp
n with high probability. ut

A.7 Proof of Lemma 5

Proof. For the following we will use ‖ · ‖ to denote the Lq norm, for some q ∈ [1,∞).
Let dq and aq denote the d and a vectors when normalized under the Lq norm. We will
now bound the difference ‖γ1aq − γ2dq‖ for γ1, γ2 ≥ 1.

First we observe that since d = Ha+r, using norm properties, we can easily show
that

H‖a‖ − ‖r‖ ≤ ‖d‖ ≤ H‖a‖ + ‖r‖
Since we have that ‖r‖ = o(H‖a‖), it follows that ‖d‖ = Θ(H‖a‖).

Now consider two cases. If ‖d‖ ≥ H‖a‖, then let γ1 = 1 and γ2 = ‖d‖
H‖a‖ ≥ 1. We

have that

‖γ1aq − γ2dq‖ =

∥∥∥∥
a

‖a‖ − ‖d‖
H‖a‖

Ha + r

‖d‖

∥∥∥∥ =
‖r‖

H‖a‖ .

If ‖d‖ ≤ H‖a‖, then let γ1 = H‖a‖

‖d‖
> 1 and γ2 = 1. We have that

‖γ1aq − γ2dq‖ =

∥∥∥∥
H‖a‖
‖d‖

a

‖a‖ − Ha + r

‖d‖

∥∥∥∥ ≤ ‖r‖
‖d‖ ≤ c

‖r‖
H‖a‖

for some constant c, such that ‖d‖ ≥ cH‖a‖.
Therefore, we have that ‖γ1aq − γ2dq‖ ≤ c ‖r‖

H‖a‖ . When H‖a‖ = ω(n1/q ln n),
we have that ‖r‖ = o(H‖a‖). Therefore ‖γ1aq − γ2dq‖ = o(1) which concludes the
proof. ut

A.8 Proof of Proposition 1

Proof. The adjacency matrix W of graph G can be decomposed as W = σ1h1a
T
1 +

· · · + σnhnaT
n . Let d denote the vector such that the i-th entry d(i) of this vector is

the in-degree of node i (not normalized). We have that d(i) = σ1H1a1(i) + · · · +
σnHnan(i), and d = σ1H1a1 + · · · + σnHnan. Note that

‖d‖2 = (σ1H1a1 + · · · + σnHnan)(σ1H1a1 + · · · + σnHnan)T

= σ2
1H2

1 + · · · + σ2
nH2

n ≥ σ2
1H2

1
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where the last equation follows from the fact that aT
i ai = 1 and aT

i aj = 0.
The output of INDEGREE is w = d/‖d‖, and the output of HITS is a = a1. We

are interested in bounding ‖a − γw‖, where γ = ‖d‖/σ1H1 ≥ 1. We have that

‖a− γw‖2 =

∥∥∥∥
σ2H2

σ1H1
a2 + · · · + σnHn

σ1H1
an

∥∥∥∥
2

=

(
σ2H2

σ1H1
a2 + · · · + σnHn

σ1H1
an

)T

·
(

σ2H2

σ1H1
a2 + · · · + σnHn

σ1H1
an

)

=

(
σ2H2

σ1H1

)2

+ · · · +
(

σnHn

σ1H1

)2

Therefore,

d2(a, w) =

√(
σ2H2

σ1H1

)2

+ · · · +
(

σnHn

σ1H1

)2

ut


