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ABSTRACT
Link structure in online networks carries varying semantics.
For example, Facebook links carry social semantics while
LinkedIn links carry professional semantics. It has been
shown that online networks are useful for predicting users’
future activities. In this paper, we introduce a new related
problem: given a collection of networks, how can we deter-
mine the relative importance of each network for predicting
user activities? We propose a framework that allows us to
quantify the relative predictive value of each network in a
setting where multiple networks are available. We give an
ε-net algorithm to solve the problem and prove that it finds
a solution that is arbitrarily close to the optimal solution.
Experimentally, we focus our study on the prediction of ad
clicks, where it is already known that a single social network
improves prediction. The networks we study are implicit af-
filiations networks, which are based on users’ browsing his-
tory rather than declared relationships between the users.
We create two networks based on covisitation to pages in
the Facebook domain and Wikipedia domain. The learned
relative weighting of these networks demonstrates covisita-
tion networks are indeed useful for prediction, but that no
single network is predictive of all kinds of ads. Rather, each
category of ads calls for a significantly different weighting of
these networks.
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1. INTRODUCTION
Over the years, many user networks have come into exis-
tence. Many of these networks carry different meanings:
LinkedIn is a network of professional relationships, Twitter
is a network of microblogging followers, Skype is a commu-
nications network, etc. While there is evidence that user
networks can be useful in predicting users’ activities, it is
an open question whether each network is equally useful in
predicting all kinds of activities, or whether certain networks
are more powerful for predicting certain activities.

In this paper, we introduce the new problem of estimating
the relative utility of networks for predicting user activities.
Our goal is to quantify the value that each network provides
for different kinds of activities. We propose a way to es-
timate this utility by appealing to existing models of user
behavior.

To demonstrate that our approach works, we select one ap-
plication where it is already known that social networks
can be predictive, namely predicting sponsored search ad
clicks [4, 23, 24]. On the other hand, it has also been shown
that not all categories of ads benefit from social network
information [17]. This suggests that advertising is a good
domain to study the predictive value of different kinds of
networks. We emphasize that the problem we are address-
ing is more general - our abstraction can be used to predict
interests, queries, and other kinds of activities. But to illus-
trate the approach on a real dataset, we consider ad clicks.

On top of explicit networks such as social, professional, and
collaboration networks, there are also several implicit net-
works defined by users engaging in common activities with-
out necessarily interacting with each other. Commonly re-
ferred to as affiliation networks, these networks define a spe-
cific type of relationship, depending on the activity that ties
the individuals together. For example, a tie defined between
two individuals that check-in at the same restaurant may be
characterized by locality and similar food preferences, while
a tie defined by two people who read the same political blog
may signal similar political views.

As mentioned earlier, the predictive power of explicit net-
works (particularly social networks) has been studied. How-
ever, less is known about the utility of implicit networks.
In this paper, we are particularly interested in comparing
the predictive power or covisitation networks – networks de-
fined between web users by common visits of a website. We



claim that these networks are important because they pro-
vide signals that explicit networks do not. For example,
many users visit similar pages but are not necessarily con-
nected on social networks. Furthermore, these networks can
be constructed from users’ browsing history without having
to determine their personal connections on explicit networks
such as Facebook, Twitter, or Google Plus.

While it is possible to construct a large number of networks
based on visits to different websites, where each website
generates one network, we choose to compare two networks
based on websites that are very different in nature and very
popular. We investigate covisitation networks based on vis-
its to Wikipedia and Facebook pages. In the Wikipedia
(resp., Facebook) covisitation graph, there is an edge be-
tween two users if they both visited the same Wikipedia
(resp., Facebook) page.

The choice of Facebook and Wikipedia was inspired by the
social and topical nature of each site, respectively. Our goal
is to demonstrate that each one of these networks can be
useful in predicting different kinds of activities (ad-clicks),
so it is important that each network has a different meaning
to better interpret the results. We will show that the rel-
ative utility of these networks depends on the ad category,
i.e., for some categories the Facebook covisitation graph is
more important than the Wikipedia covisitation graph and
in other categories the importance is flipped. Not only can
we tell which network is more important for each category,
but we can also quantify the importance of each network for
predicting future click activity.

Contributions: We propose a general methodology for es-
timating the relative utility of networks in predicting user
activities and focus on ad clicks in our experiments. Given
a category of advertisements and users that belong to multi-
ple networks, our method assesses the relative value of each
network in predicting click behavior. We are not aware of
prior work that provides a comparative analysis of networks
for this task. The model assumes that a user’s click activity
is governed by four key factors: what the user previously
clicked, what everyone clicks, and what their connections in
each network click. A model with these assumptions has
been shown to work well for predicting users’ activities [6].
In our model, we extend the assumptions made in [6] to in-
clude multiple networks and to allow a user’s activities to be
governed by other users who are multiple hops away, not just
direct neighbors. Each of these factors has a relative impor-
tance (weight) depending on the specific activity. We use a
ε-net algorithm for learning a good combination of weights
and prove that the error in our solution is arbitrarily close
to the error from the optimal solution. The parameters of
the model reveal the relative utility that each network has
in predicting click activity.

Since the networks we consider are completely synthesized,
we begin with basic tests to determine the potential utility
of the networks in predicting activities. We ask if pairs of
users who covisit are more similar in terms of ad clicks than
pairs of users that do not. We find that indeed they are
more similar in both covisitation networks. In addition, we
ask whether having ties that click an ad increases a user’s
chance of clicking the ad themselves. We find that with more

ties that click the ad, the user is herself also more likely
to click the ad. This initial result demonstrates that even
though these covisitation networks are not based on inter-
actions among users, their edges still carry signals regarding
the users’ ad clicks. This is consistent with findings from
real networks [4], but since users connected in our networks
may not interact with or know each other, mechanisms such
as influence or homophily do not necessarily explain these
results.

Having established that these networks are indeed suitable
for ad prediction, we then carry out a massive-scale exper-
iment to learn the relative utility of these covisitation net-
works. We focus on predicting ad categories. For each cat-
egory, we learn four weights indicating the relative impor-
tance of a user’s own history, what the general population
does, and what their covisitors in Wikipedia and Facebook
do. We show that having these networks is better than not
having them, in the sense that without them the test error
increases. Surprisingly, we find that a user’s own personal
click history has almost no power in predicting their future
click activity. Finally, we show that both networks are valu-
able to various degrees depending on the category, although
overall the Facebook covisitation network is more valuable.

2. RELATED WORK
The use of networks for improving targeted advertising has
received considerable attention in the literature. Liu and
Tang [17] consider an instant messaging social network and
observe that the probability of clicking an ad increases when
friends have also clicked the ad. They use this observa-
tion to introduce social features to a classifier that predicts
click probability for behavioral targeting. Papadimitriou et
al. [23] perform a field experiment and show that people with
friends exposed to an advertising campaign are more likely
to pose queries related to the campaign. Recently, Bakshy
et al. [4] showed that on Facebook, the probability of a user
to click an ad increases when given indication that friends
have clicked the same ad. Provost et al. [24] considered
implicit social networks for brand advertising. They used a
network of co-visitations to a social media site to identify po-
tential audiences for brand advertising. In order to identify
audiences, they use measures of closeness between poten-
tial targets and users with known affinity to the brand. We
build on their work and propose a method for comparing the
effectiveness of different user networks in predicting users’
ad click activity, which we test on co-visitation networks.
We note that prior work does not consider the comparative
power of different networks, and in most cases they assume
that the network is given.

The idea that networks of users can be helpful in predicting
their activities is based on the principles of homophily and
influence. Homophily posits that people who are socially
connected tend to be similar to each other [20, 15]. This
phenomenon has been observed in both offline and online
social networks [21, 12, 3, 10, 13, 1]. Other work in offline
settings has also found evidence that both homophily and
influence play a significant role [11]. Aral et al. [3] showed
that distinguishing between influence and homophily driven
by other factors is important to avoid overestimating the
presence of influence in social contagion processes.



There has been work on finding the mechanisms that give
rise to homophily. Crandall et al. [6] developed a methodol-
ogy and analyzed social networks formed in Wikipedia and
LiveJournal to answer the fundamental question of whether
socially connected people become similar because of the in-
fluence they exert on each other after they meet, or whether
they were similar before they met and their similarity causes
them to meet. To answer this question, they develop a model
where users are assumed to select their activities by choos-
ing from their previous activities, their friends’ activities,
and the general population’s activities. We made the same
assumptions in our model and build a framework that allows
us to compare the marginal effectiveness of multiple net-
works in predicting users’ behavior. Furthermore, we allow
users to sample their activities, not only from their neigh-
bors’ activities, but also from their second degree neighbors.

While our methodology applies to any kind of network, we
are particularly interested in implicit co-visitation networks.
Implicit networks of activity online and offline have been
shown to be useful for predicting people’s social connections.
For example, Crandall et al. [7] studied the power of real
life geographical co-occurrences to predict whether people
actually know each other. Their work is related to ours in
that geographical co-occurrences create an implicit network
of common activity in an offline setting. Furthermore, Ea-
gle et al. [8] showed that mobile phone calling behavior can
predict self-reported relational information about subjects.
Finally, Romero at al. [26] showed that common usage of
Twitter post labels known as hashtags can predict social re-
lationships, and that the structure of the Twitter social net-
work can predict the eventual popularity of the hashtags. In
this work, we are also interested in the users’ common ac-
tivities, but our aim is not to predict their social connection
but to compare the relative utility of different networks in
predicting future behavior.

Similarity in online behavior among socially connected users
has been observed previously. Singla el at. [28] found that
there is correlation between people who chat with each other
and the queries they issue. Along the same lines, Panigrahy
et al. [22] consider two different measures of affinity on a
graph, and show that there is correlation between the sim-
ilarity in the queries that people ask on the search engine
and their affinity on the Hotmail correspondence graph. In
this work, our methodology does not assume that we have
access to a social network. Instead, we construct it based on
the web browsing activity of the users alone. Furthermore,
our goal is not just to show that connected pairs are similar,
but to compare the predictive power of different networks,
not necessarily social networks.

Finally, there is a significant amount of work in the area of
collaborative filtering [9, 25], where similarity of past behav-
ior between users is utilized to predict future behavior and
make recommendations. In particular, collaborative filter-
ing has been used in different contexts to make accurate pre-
dictions of product preferences [16], ad relevance to search
queries [2], movie preferences [27], etc. Recently, the infor-
mation about the users’ social network is also incorporated
in collaborative filtering techniques by exploiting the fact
that connected users are likely to behave in a similar way
[19, 18]. These methods bear resemblance to our approach

since they use the past user behavior and social connections
to predict future ad clicks. However, our main goal in this
work is not to develop a new method for ad click prediction,
but rather to investigate and compare the signal from dif-
ferent networks on user behavior – the prediction model is
just a means to that end. Extracting this information from
collaborative filtering models is computationally intensive
so instead we use a simpler model, directly quantifying the
prediction value of each network.

3. METHODOLOGY
In this section we formalize the problem of network value,
and present our methodology.

3.1 Problem Definition
Let G = {G1, . . . , Gk} be a collection of k weighted undi-
rected graphs, corresponding to k different networks in which
a web user may participate. Graph Gi = (Ni, Ei) has nodes
Ni and weighted edges Ei, where the weight of edge (u, v)
denotes the strength of the relationship between nodes u
and v. The graphs are not necessarily defined over the same
set of nodes, since some users may not participate in some
networks. We use U =

⋃k
i=1Ni to denote the set of users

that belong to any of the networks in G, and I =
⋂k
i=iNi

to denote the users that belong to all of the networks in G.
The latter set is important since it allows us to study users
that are affected by all different types of networks.

Now, let A denote the set of all ads that may be shown to
the users in U . If m is the size of A, then for every user
u ∈ U we define an m-dimensional vector Vu, where Vu(a)
is the number of clicks of user u on ad a. Let A ⊆ A denote
a set of advertisements we are interested in studying. This
set may consist of a single ad, the ads of a specific domain,
the ads corresponding to a campaign, or all of the ads of
a specific category. In our experiments the sets of ads we
consider correspond to different categories of ads. For a user
u ∈ U we define the click activity of user u over the set A

as Cu(A) =
∑

a∈A Vu(a)∑
a∈A Vu(a)

, that is, the fraction of ad clicks of

user u to the ads in the set A.

Our hypothesis is that for a given set A, the click activity
of the users in I over A is affected by their membership to
the networks in G. The goal of this work is to verify this
hypothesis and quantify the effect of the networks on the
user click activity over different subsets (categories) of ads.
That is, given a set A, and a collection of graphs G produce
a value fA(Gi) that measures the utility of network Gi in
estimating the click activity Cu(A).

3.2 User behavior model
To quantify how much the network affects the behavior of
a user, we first need a model of how the network affects the
behavior of a user. Let u ∈ I be a user that belongs to all
k networks. Making similar assumptions made in [6], we
assume that the click activity of user u over a set of ads
A is affected by the following factors: (a) u’s own personal
history; (b) the click activity of all users in U ; (c) the click
activity of the users that are close to u in the networks
G1, ..., Gk.



More formally, let Cu,t(A) denote the click activity of user
u over A during time period t = (τ1, τ2), and let Cu,T (A)
denote the click activity of user u over A at the time period
preceding time t, i.e. T = (τ0, τ1). We assume that the click
activity Cu,t(A) of user u over A during time period t is
determined according to the following model, parameterized
by R = {ψ, α, γ1, ..., γk}, where ψ + α+

∑
i γi = 1.

• With probability ψ, the click activity of user u is de-
termined by her own past history. In other words,
Cu,t(A) is the same as Cu,T (A); the user continues to
act as she has acted so far.

• With probability α, the click activity of user u is deter-
mined by the activity of the global population. More
specifically, Cu,t(A) is the same as Cv,T (A), where
v ∈ U is a user chosen uniformly at random from the
set of all users U . If n = |U |, we use CU,T (A) =∑
v∈U

1
n
Cu,T (A) to denote the expected click activity

of the global population.

• With probability γi the click activity of user u is de-
termined by the behavior of the users in network Gi.
Intuitively, user u is more influenced by users that are
close to her in the network than those that are fur-
ther away. Therefore, instead of sampling uniformly
at random from all the users in the network as we did
for the case of U , we will bias sampling towards nodes
that are close to u in Gi. We implement this idea by
performing a random walk with restarts. The random
walk starts at node u. At each step, with probability
1− β, it follows an outgoing edge of the current node,
with probability proportional to the weight of the edge.
With probability β, the random walk restarts at node
u. This process converges to a unique stationary dis-
tribution. Let πiu(v) denote the stationary probability
of ending up at node v when we start the random walk
at node u. Because of the restart, the stationary dis-
tribution gives higher probability to the nodes that are
only a few hops away from node u and are connected
with u with multiple paths. As it is customary with
random walks of this type, we set β = 0.15.

To determine the click activity Cu,t(A) of node u we
sample a node v from network Gi according to the
distribution πiu(v), and set Cu,t(A) = Cv,T (A). If Ni
is the set of nodes in network Gi, we use Ciu,T (A) =∑
v∈Ni

πiu(v)Cv,T (A) to denote the expected click ac-
tivity of the social circle of user u in the network Gi.

Essentially, our model stipulates that user u “adopts” the
click activity of some user v in U . This user is either herself,
someone from the full population, or someone close to the
her in one of the networks she is a member of.

Therefore, the click activity of user u over A at time t is
expressed as follows.

Cu,t(A) = ψCu,T (A) + αCU,T (A) +

k∑
i=1

γiC
i
u,T (A) (1)

Note that the ψ, α, and the γi’s parameters are specific to
the set of ads A, and they quantify the effect of each factor

on the click activity of the users over this set of ads. High γi
value for a graph Gi implies that network Gi is conductive to
the spread of the ads in A within its population. If γi > γj ,
this implies that network Gi has a stronger effect on the
click activity of the users over the set A than network Gj .
Therefore, network Gi has higher utility for an advertiser
for this class of ads.

3.3 Estimating network value
Given the model described above, we will estimate the utility
of a network for a set of ads A by finding the parameter
values that best fit the model to the observed data. The
observed data consists of the ad clicks of the users in U
over a period of time. For a set of ads A and a user u,
we compute the “true” click activity Cu,t(A) of user u over
the set A during time period t by computing the fraction of
clicks of user u on an ad in A over the time interval (t1, t2).
We estimate the history of user u prior to time t, that is the
click activity Cu,T (A), as the fraction of clicks of u over the
time period (t0, t1) over the set A. For a given setting of

parameters R = {ψ, α, γ1, γ2}, we use Ĉu,t,R(A) to denote
the click activity estimated by our model. We define the
sum of squares error of our estimation as follows:

SSE(R) =
1

|U |
∑
u

(
Ĉu,t,R(A)− Cu,t(A)

)2
We want to find the set of parameters that minimizes the
SSE(R) error, that is, find the set of parameters R∗A such
that

R∗A = arg min
R

SSE(R)

Note that the set R∗A = {ψ∗A, α∗A, γ∗A,1, ..., γ∗A,k} is specific to
the set of ads A. The value γ∗A,i defines the relative utility
of the network Gi for the set A. That is, fA(Gi) = γ∗A,i.

In order to approximate R∗A, we construct an ε-net of the
parameters RA and search for the parameters that produce
the smallest error. That is, for each parameter in RA we
search in the range [0, 1] with spacing ε and identify the set
of parameters RεA with smallest error. We only consider sets
of parameters RA that sum to 1. While it is possible that R∗A
does not fall in the ε-net, we prove that the error produced by
the parameters RεA is arbitrarily close to the error produced
by the optimal set of parameters R∗A. That is, we show
that we can make |SSE(R∗A) − SSE(RεA)| arbitrarily small
by choosing a small ε.

Claim 1. Let δ > 0 and ε <
√

δ
2(k+2)

. Let RεA be the set

of parameters on the ε-net that produce the smallest error
SSE(RεA). Then |SSE(R∗A)− SSE(RεA)| < δ.

Proof. Assume that ε <
√

δ
2(k+2)

and consider a set

of parameters R̂A closest to R∗A on the ε-net. Note that
|ψ∗ − ψ̂| < ε, |α∗ − α̂| < ε, |γ∗1 − γ̂1| < ε, . . . , |γ∗k − γ̂k| < ε.

We now have:



|SSE(R∗A)− SSE(R̂A)| =

1

|U |

∣∣∣∣∣∑
u

[
(Ĉu,t,R∗(A)− Cu,t(A))2

− (Ĉu,t,R̂(A)− Cu,t(A))2
]∣∣∣

≤ 1

|U |
∑
u

|[Ĉu,t,R∗(A)− Cu,t(A))2 − (Ĉu,t,R̂(A)− Cu,t(A)]2|

≤ 1

|U |
∑
u

2[|Ĉu,t,R∗(A)− Ĉu,t,R̂(A)|]2

=
1

|U |
∑
u

2[|ψ∗ − ψ̂|Cu,T (A)

+ |α∗ − α̂|CU,T (A) +

k∑
i=1

|γ∗i − γ̂i|Ciu,T (A)]2

≤ 1

|U |
∑
u

2[|ψ∗ − ψ̂|+ |α∗ − α̂|+
k∑
i=1

|γ∗i − γ̂i|]2

≤ 1

|U |
∑
u

2[ε+ ε+ kε]2 = 2((2 + k)ε)2

< δ

Since |SSE(R∗A)−SSE(R̂A)| < δ then |SSE(R∗A)−SSE(RεA)| <
δ. Otherwise, R̂A would have been chosen in the ε-net pro-
cedure.

4. AFFILIATION NETWORKS
To test our methodology, we used browsing logs and con-
structed implicit affiliation networks defined by covisitations
of users to common web pages. In this section we describe
the process of constructing the affiliation networks and con-
firm that the networks we constructed constitute a useful
source of information for user click activity.

4.1 Affiliation network construction
Affiliation networks are defined by creating a link between
two individuals if they share a common activity. This could
include co-editing of a Wikipedia page, purchasing of the
same product, participation in the same board, or check-in
at the same venue. Affiliation networks have been studied
extensively in the literature of network analysis [14, 24] and
they have several advantages as potential predictors of ac-
tivities: (a) They are relatively easy to obtain; (b) The links
between individuals are supported by common activity and
this can indicate a stronger connection than other kinds of
relationships; (c) By controlling the activity that brings the
two individuals together we can control the type of relation-
ship between the two users.

In the affiliation networks we consider we define a link be-
tween two users if they share a visit to a common web page.
The weight of an edge is defined as the number of com-
mon visits between the two neighbors. We could poten-
tially construct an affiliation network for every domain on
the web. However, for our experiments, we consider the affil-
iation networks defined by visits to Facebook and Wikipedia
web pages. Our choice was motivated by two factors. First,

these are two of the most popular destinations on the Web.
More importantly, we wanted to test our methodology on
two networks that capture two completely different types
of connections. Common visits to a Facebook profile may
indicate some degree of social “closeness” between the two
users since they share a common interest to a member of
the social network. On the other hand, common visits to
Wikipedia pages may be indicative of a topical connection
between the two users, since they share a common interest
to a specific topic.

We state upfront that by no means do we claim that our
Facebook covisitation network approximates the true Face-
book network or any other social network. Covisitation does
not imply friendship. For example, some Facebook profiles
are celebrities, business, organizations, etc. This means that
users who are not even socially close to each other could eas-
ily co-visit a celebrity page. To partially mitigate this sit-
uation, we remove pages with a very high number of visits,
which probably correspond to celebrity pages. In a simi-
lar vein, Facebook friendship does not imply covisitation.
Since Facebook users receive updates about their friends on
their wall, there is not always a reason to explicitly visit a
Facebook page. Furthermore, when friendships disappear or
become weak, users may still be Facebook friends but may
not visit the same Facebook pages.

On the other hand, covisitation is an indication of social
proximity. Users connected in our graph covisited a person’s
profile, picture, status update, etc., so they are likely to be
socially close, if not actually friends. In the work of Provost
et al.[24], through a similar construction of the covisitation
graph, they showed that connected users are very likely to
visit each other’s profile in the social networking site, sug-
gesting that they indeed share a social relationship. Given
that the average Facebook user has hundreds of friends, but
visits a much smaller number of profiles, a visit to a page
is arguably a stronger indication of interest than an explicit
Facebook friendship. Additionally, our graph could include
users who are not on Facebook, yet still visit Facebook pro-
files. Thus, in some ways, our graph is more inclusive than
the Facebook graph.

Finally, we note that any social graph is structurally dif-
ferent from a covisitation network. While there are some
common features for both graphs, such as the power law
degree distribution and the existence of a giant component,
the covisitation graph consists of the union of many cliques.
Indeed, every Facebook profile yields a clique among all the
users who visited the profile. In this sense, the structure of
the covisitation graph differs dramatically from a graph of
friendships.

It is easier to argue for the topical nature of the ties in the
Wikipedia covisitation graph. Web users browse Wikipedia
articles to either obtain or contribute information about a
topic, hence a common visit implies a common topical in-
terest. Note that there is large variation in Wikipedia con-
tent. While some may be indicative of a very specific in-
terest such as the Wikipedia article for a local basketball
team, others are very broad such as the Wikipedia article for
Sports. Hence, each individual covisitation to a Wikipedia
article may indicate a different degree of topical similarity,



but as a whole, the set of Wikipedia covisitations of a pair
of users can be a strong signal of their commonalities. Sim-
ilar to the construction of the Facebook graph, we remove
any Wikipedia pages that were visited many times before
constructing the graph.

4.1.1 Browsing Data
The data used to construct our covisitation networks was
based on two months of web browsing data collected from
consenting users (Dec 2011 and Jan 2012). Note that this
data contains every page visited by the user, including clicks
on search results, as well as visits outside of search results.
The data can viewed as triplets of the form user id, page
browsed, timestamp, where the user id is unique to each
browser. To remove celebrity Wikipedia and Facebook pages,
we removed pages visited by more than 600 users over two
months.

4.1.2 Affiliation Network Statistics
Table 1 shows some basic statistics of the Facebook and
Wikipedia graphs. Both covisitation networks have on the
order of millions vertices, with the Facebook network hav-
ing 3̃.5 times the vertices as the Wikipedia network. The
number of nodes in the network depends on site traffic, ex-
plaining why the Facebook graph has more vertices. The
median degree of the Facebook graph is 65, while the me-
dian degree of the Wikipedia graph is 258. Evidently, when a
user visits an average Wikipedia page, they are connected to
more users than when they visit an average Facebook page.
Finally, we report the number of edges in this network where
pairs of users click on the same ad domain.

In the following, for simplicity, we will refer to the Wikipedia
covisitation graph as the Wikipedia graph, and the Facebook
covisitation graph as the Facebook graph.

4.2 Affiliation network validation
The Wikipedia and Facebook graphs we constructed cap-
ture our notion of social and topical connection, but there
is no guarantee that they are appropriate for the task we
are interested in, that is, predicting the user click activity.
Therefore, before applying our methodology we perform two
additional experiments to validate that our graphs are suit-
able for the task at hand.

Ad Similarity. In the first experiment, we measure the
similarity between connected users in our graph with re-
spect to their click activity. For a user u we define Au to
be the set of ad domains clicked by u. The data we col-
lect is sponsored search ad clicks, i.e., these are ads clicked
as a result of a search query. We do not consider display
or contextual ad clicks. We measure the similarity between
two users u, v as the Jaccard similarity of the sets Au and

Av, J(u, v) = Au
⋂
Av

Au
⋃
Av

. For a graph G, we wish to know if

connected users are more similar to disconnected ones. We
compute the average Jaccard similarity among users who are
connected in each network, and we normalize it by average
similarity of two disconnected users (the baseline similarity).
This ratio captures the relative increase in similarity due to
the connection between the users. In order to study the ef-
fect of the number of covisitations on the similarity between
users, we compute this ratio for each number of covisita-

tions separately. More precisely, for each integer k > 1, we

define Jk =
1

|Ek|
∑

(u,v)∈Ek

J(u, v) where Ek is the set of all

user pairs with k covisitations in the network. The value
of Jk is the average Jaccard similarity among pairs with k

covisitations. We define Rk =
Jk
B

where B is the baseline

similarity of the network. The ratio Rk tells us how many
times more similar pairs with k covisitation are than pairs
with no covisitations at all.

Figure 1 shows the value of Rk vs. k for the two different net-
works with confidence intervals of 95% confidence for each
value. We note three important points. First, the curves are
significantly higher than 1, which corresponds to the baseline
value, for all values of k. This means that even though the
connections were constructed using page covisitations, which
could be a weak and noisy signal, we still observe a signif-
icantly increased level of similarity among connected users.
Second, for the Wikipedia network we observe a monotonic
increase in Rk as k increases. For the Facebook graph, the
increasing trend is much less clear. It appears that most
of the power of social ties for ad similarity is realized at a
single covisitation without increasing much with additional
covisitations. Finally, we observe that the curve of the Face-
book graph lies above that of the Wikipedia graph for small
values of k, but as the number of covisitations increases the
topical curve catches up to the social one. In some sense,
the number of covisitations measures the strength of the tie,
hence Figure 1 suggests that socially connected users are
more similar than topically connected ones only for the case
of weak ties.
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Figure 1: Average Jaccard similarity of ads over
baseline as a function of number of common pages
visited. Comparisons between networks based on
Facebook and Wikipedia covisitations.

Ad Engagement. In the second experiment we measure
how the engagement of the users with ads changes when they
have ties in the network that have clicked on the ad domain.
If d is an ad domain, we estimate the probability that a user
will click on d given that she is connected to exactly k users

who clicked on d. We define it by Pk(d) = |Ik(d)|
|Xk(d)|

where

Xk(d) is the set of users connected to exactly k users who



Site Number of Users Number of Edges Median Degree Edges with Shared Ad Clicks
Wikipedia 7.6M 2.6B 258 368M
Facebook 26.1M 3.8B 65 442M

Table 1: Basic statistics for the Facebook and Wikipedia covisitation networks: Number of Users, number of
edges, median degree and number of edges in the covisitation where users shared an ad click. Networks are
based on two months of search activity.
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Figure 2: Probability of clicking on an ad given that
k ties clicked on it.

clicked on the ad domain d and Ik(d) is the set of users in
Xk(d) who clicked d. Using the function Pk we can mea-
sure how the probability of a user clicking on an ad domain
changes as the number of connections who clicked the ad
domain increases. Figure 2 shows a clear increasing trend
for both the Facebook and Wikipedia networks. Further-
more, we observe that topical ties provide a weaker signal
for the probability of clicking on a domain ad than social
ties. For these plots we opt to show the raw values instead
of the increase relative to the baseline P0. This is because
the probability P0 of a node with no connections that have
clicked on the ad, to click on the ad is essentially the proba-
bility that a randomly selected node clicks on the ad, which
is very small. Therefore, the ratios take very large values
which are no longer informative.

Our experiments show users connected in both the Wikipedia
and Facebook graphs tend to have more similar ad clicks
than disconnected users, and in the case of Wikipedia the
similarity increases with additional covisitations. Further-
more, for both graphs, users are more likely to click on an
ad if they are connected to others who clicked on the ad.
These findings suggest that the covisitation graphs are in-
deed suitable for our prediction task.

Note that in [4], the authors demonstrated that Facebook
users are more likely to click an ad if they are explicitly told
how many and which friends previously clicked the ad. In
contrast, our users do not know if their ties clicked an ad,
or even who their ties are. The fact that we still see an
increasing trend in Figure 2 is striking.

5. EXPERIMENTS
We conducted a large-scale experiment over several months
of browsing activity to learn the parameters of our model.
Our experiment is directed towards predicting the distribu-
tion of ad category clicks. The key findings are (1) Affiliation
networks do indeed improve our ability to predict the future
distribution of ad clicks. We find this intriguing given that
we are not using any explicit user network such as Facebook
or Twitter, but rather completely synthesized covisitation
graphs. (2) A user’s own personal history of ad clicks is
surprisingly unhelpful in predicting the future distribution
of ad clicks and (3) Both Wikipedia and Facebook covisita-
tion networks are helpful to various degrees depending on
the category of ads, although the Facebook network is more
helpful on average than the Wikipedia network.

5.1 Data Preprocessing
As mentioned previously, our experiments are based on the
browsing activity of consenting users. The browsing activity
records pages visited by the user including clicks on search
results, clicks on sponsored search ads, and also visits to
pages outside of the search results. We construct two co-
visitation networks based on two months of full browsing
history (12/2011, 01/2012). The vertices of the graph GW
(resp., GF ) are users who visited Wikipedia (resp., Face-
book) pages visited by at least one more user in the set.
The weight of the edge (u, v) in GW (resp., GF ) is the num-
ber of Wikipedia (resp., Facebook) pages that both u and v
visited. The probability of walking from u to v in the ran-
dom walk is the weight of (u, v) divided by the total weight
of all edges emanating from u.

Ideally, we would compute the stationary distribution of the
matrix corresponding to the random walk in GW and GF .
However, because the matrix grows very large very quickly,
we only computed a two-step random walk with restarts.
For computational reasons, we compute this two-step walk
when removing vertices of high degree, set to 200 or larger
in our experiment.

For each user in the network, we also gather ad clicks. The
ads considered in this study are sponsored search only, i.e.,
ads that surface as a result of a search query on any ma-
jor search engine. As a result, we obtain a broad set of
ad clicks that are not biased from the ranking, population
demographics, or other characteristics of a specific search
engine. Since our goal is to learn the parameters of our
model for large classes of activities, we categorized the ads
into the Open Directory Project (ODP) taxonomy using the
categorizer proposed in [5]. The categorizer uses the text of
the ad to determine the probability that a URL belongs to
a category. While in principle every ad should have a cate-
gory, in reality, we do not obtain categories for all ads, e.g.,
the text of the ad may not be available or the categorizer



may not produce any categories with sufficiently high confi-
dence. Roughly 20% of the ads are categorized in our data.
While the effectiveness of the categorizer does influence our
results, the coverage is certainly non-trivial. We categorized
the ads into 189 second level categories in ODP.

Our experiment is based on data collected over four time
periods t1 < t2 < t3 < t4. During time period t1 we create
the covisitation graph. During time periods t2, t3 and t4 we
create the distribution of clicks over ad categories for each
user. The distribution from t2 comprises the user’s history,
while the distribution from t3 is used to learn the parameters
of the model, and the distribution from t4 is used to evaluate
the performance of the learned model. We separate t1 from
t2 to be certain that the ad clicks are not somehow influenced
by visits to Wikipedia or Facebook pages. The remaining
time periods are separated for more customary reasons, i.e.,
separating training data from testing data. While t1 is based
on two months of data, t2, t3, t4 are each based on one month
of data that consecutively follow t1, i.e., t2 is 02/2012, t3 is
03/2012 and t4 is 04/2012.

After restricting the user population to those who clicked
ads that we could categorize and those with connections in
both GW and GF , we were left with 0.5 million users. To
learn the parameters of the model, we exhaustively tried all
(ψ, α, γW , γF ) values such that ψ+α+γW +γF = 1 on an ε-
net of granularity 0.01 and output the choice that minimized
training error, as indicated in section 3.

5.2 Findings
The output of our learning procedure is one set of the four
parameters (ψ, α, γW , γF ) for each ad category. In the find-
ings below, we provide perspective into these values.

We begin by asking if the covisitation networks are helpful
for predicting future ad clicks. In order to answer this ques-
tion, we learned parameters for each ad category when only
α and ψ were possible parameters, i.e., no networks were
allowed by setting γW = γF = 0, and compared that to
learning when both networks were allowed. For each cate-
gory, we compare the the two models by taking the ratio rc
of the test error with the networks over the test error with-
out the networks. The average test error with the networks
is 0.00109. The average value of rc is 0.8, indicating a 20%
improvement in error. Furthermore, through a t-test we
confirm that distribution of rc values has mean significantly
lower than 1 (p-val < 0.01).

Usually, the best predictor of what a user will do in the
future is what they have done in the past. However, since
users do not click many ads, their history is often too sparse
to have any predictive power in this case. The parameters
learned by our model confirm this. For 93% of the categories,
the weight placed on a user’s history ψ is less than 0.05.

Next, we compare the distribution of α+ ψ with the distri-
bution of γW + γF . Our goal is to understand, across all ad
categories, how the importance placed on network compares
with the importance placed on everyone’s history. Figure 3
shows the CDF of the value α+ψ for all the categories. Note
that α+ψ = 1−γW +γF , hence one can easily infer the dis-
tribution of γW+γF from the CDF of α+ψ. We observe that
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Figure 3: Cumulative distribution function of the
value α+ ψ for all of the second-level categories.

Category γW γF
Recreation/Aviation 0 0
Reference/Knowledge Management 0 0
Society/Genealogy 0 0
Arts/Animation 0 0
Society/Death 0.02 0
Society/Folklore 0.02 0
Arts/Online Writing 0.01 0.01
Reference/Education 0.01 0.02
Computers/Programming 0 0.03

Table 2: Categories where the sum in γF + γW is
minimized

there are quite a few categories where the network does not
play a large role, i.e. α+ ψ is very large. That is, for many
of the categories, most of the predictive value comes from
the users’ own history combined with the general popula-
tion’s history. We provide some examples of such categories
in Table 2. For these categories, ties do not provide much
information to advertisers. Instead they should rely on the
user’s personal history, and the global population behavior.

On the other hand, for a significant percent of the categories
(about 40%), the importance of the networks is larger than
the importance of the users’ own history and the popula-
tion’s history. That is, for about 40% of the categories,
α+ ψ is less than 0.5.

Regarding the relative importance of the two networks, a
scatter plot of γW versus γF is shown in Figure 4. We find
that that for 80% of the categories, γF > γW . This suggests
that the social network is, on average, more predictive than
the topical network. However, for most of the categories,
both γW and γF tend to be relatively large, implying that
both networks contribute a significant amount. For instance,
for 74% of the categories both γW and γF are larger than
0.05.

Finally, we show some specific categories with interesting
parameters. First, we show a set of categories where the dif-
ference between γF and γW is large. If (γF − γW ) is large,
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Figure 4: Scatter plot of γW versus γF .

then the Facebook co-visitation network is more accurate
in predicting future ad clicking activity than the Wikipedia
network, and vice-versa when (γW − γF ) is large. Table 3
shows categories where γF − γW is maximized followed by
categories where γW − γF is maximized. While we do not
aim to explain why certain categories benefit more from one
network than the other, we note that there are some interest-
ing trends. For example, Business categories seem to mostly
benefit from the Facebook covisitation network and Arts cat-
egories seem to favor mostly from the Wikipedia network.
It is possible that the social aspect of the Facebook network
and the topical aspect of the Wikipedia network may ex-
plain these differences. However, we leave any hypotheses
that may explain these difference as future work. Identi-
fying, which categories benefit from each network could be
useful for advertisers. For example, advertisers of categories
that benefit mostly from Facebook may place greater weight
on a person’s Facebook covisitors than Wikipedia covisitors.

6. DISCUSSION AND FUTURE WORK
With many networks in existence today, and many more on
the horizon, advertisers are challenged to find ways to use
these networks in beneficial ways. Our work abstracts this
question into a model that predicts user behavior via the
behavior of others: be it themselves, everyone, or their ties in
multiple networks. Our findings enable us to understand the
relative usefulness of ties in various networks for predicting
future click activity.

This work scratches scratches the surface of how to study
the use of multiple, heterogeneous networks for advertising.
Any system that makes use of the network should take into
account that users are part of multiple networks (both ex-
plicit and implicit) that complement, amplify, or contradict
each other. It is an open question how one can make the
most of these multiple networks. This question goes be-
yond advertising and our methodology is not restricted to
ads. In principle, it could be applied to any kind of activity:
search queries, browsing clicks, online purchases. However,
we believe that more techniques and tools will be required
to address new challenges posed by the existence of multiple
networks.

Category γW γF
Business/Information Technology 0.07 0.92
Business/Marketing & Advertising 0.07 0.92
Computers/Computer Science 0.07 0.92
Sports/Golf 0 0.7
Science/Math 0 0.6
Business/Accounting 0.04 0.59
Society/Holidays 0.05 0.47
Shopping/Pets 0.06 0.46
Kids and Teens/People and Society 0.05 0.45
Business/Aerospace and Defense 0.03 0.42

Arts/Performing Arts 0.12 0.06
Sports/Basketball 0.18 0.1
Health/Pharmacy 0.13 0.03
Society/Government 0.19 0.09
Games/Card Games 0.35 0.23
Kids & Teens/Health 0.27 0.11
Arts/Music 0.49 0.3
Arts/Architecture 0.49 0.03
Recreation/Humor 0.47 0
Society/Religion & Spirituality 0.49 0.01

Table 3: Categories where the difference in γF − γW
is maximized as well as where γW −γF is maximized.

In our work, we experimented with affiliation networks cre-
ated by covisitations of users to common web pages. We
defined our networks by common visits to pages from the
Facebook and Wikipedia domains. We observed that the
ties in these networks provide useful signals for advertising,
and we can identify cases where one network is more helpful
than the other. Given the implicit way these networks are
constructed, this is a striking finding.

Furthermore, our view of the covisitation domain (Face-
book and Wikipedia in our case) as giving a type to the
link between two individuals (social and topical in our case)
is powerful and can form the basis for studying other net-
works that explore different types of relationships. For ex-
ample, Twitter covisitations are interesting in that users
follow their friends as well as people with similar topical
interests. LinkedIn covisitations could induce a professional
covisitation network. Yelp, Amazon, or IMDB covisitation
networks can be used for more specialized purposes. More
generally, a larger scale experiment could be implemented
where every website generates a network.

From an advertising perspective, there is more to be done.
We did not explore the problem of predicting ad click-through
rate in this paper. Ad click-through rate is a well-studied
problem involving many features. A full-blown advertising
experiment determining whether and how signals from ties
improve ad click-through rate above and beyond existing fea-
tures is still an open question. Finally, our work opens the
possibility for new bidding systems where advertisers can
bid on users who have ties in various affiliation networks.
Exploring the economic value of ties in these networks and
pricing strategies for bidding on them is an interesting sub-
ject for future work.
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