
Ranked Join Indices

Panayiotis Tsaparas
University of Toronto
tsap@cs.toronto.edu

Themistoklis Palpanas
University of Toronto

themis@cs.toronto.edu

Yannis Kotidis
AT&T Labs-Research

kotidis@research.att.com

Nick Koudas
AT&T Labs-Research

koudas@research.att.com

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

Abstract

A plethora of data sources contain data entities that could
be ordered according to a variety of attributes associated
with the entities. Such orderings result effectively in a rank-
ing of the entities according to the values in the attribute do-
main. Commonly, users correlate such sources for query pro-
cessing purposes through join operations. In query process-
ing, it is desirable to incorporate user preferences towards
specific attributes or their values. A way to incorporate such
preferences, is by utilizing scoring functions that combine
user preferences and attribute values and return a numerical
score for each tuple in the join result. Then, a target query,
which we refer to as top-k join query, seeks to identify the

�

tuples in the join result with the highest scores.
In this paper, we propose a novel technique, which we re-

fer to as ranked join index, to efficiently answer top-k join
queries for arbitrary, user specified, preferences and a large
class of scoring functions. Our rank join index requires small
space (compared to the entire join result) and provides guar-
antees for its performance. Moreover, our proposal provides
a graceful tradeoff between its space requirements and worst
case search performance. We supplement our analytical re-
sults, with a thorough experimental evaluation using a vari-
ety of real and synthetic data sets, demonstrating that in com-
parison to other viable approaches, our technique offers sig-
nificant performance benefits.

1 Introduction

A plethora of data sources contain data entities that could
be ordered according to a variety of attributes associated with
the entities. Such orderings result effectively in a ranking of
the entities according to the values in the attribute domain.
Such values could reflect various quantities of interest for the
entities, such as physical characteristics, quality, reliabilityor
credibility to name a few. As examples, consider a database

of houses ordered (ranked) by price or number of rooms; the
list of all airports in the country ranked by average flight de-
lay; parts in a supplier-partdatabase ranked by their availabil-
ity, or suppliers in the same database ranked by their credibil-
ity or quality of service (derived by recording user experience
with suppliers over time). We refer to such attributes as rank
attributes. The domain of rank attributes depends on their se-
mantics. For example, the domain could either consist of cat-
egorical values (e.g., service can be excellent, fair or poor) or
numerical (e.g., an interval of continuous values from ���).

The existence of rank attributes along with data entities
leads to enhanced functionalityand query processing capabil-
ities. Indeed a variety of recent works have addressed several
aspects of the problem of enhancing query processing taking
into account user preferences towards the values of rank at-
tributes [12, 3, 4]. Of particular importance is query answer-
ing with the goal of optimizing functions that capture user
preferences towards rank attribute values. For example in a
database of rental houses, data entities (i.e., houses) can be
ranked according to a variety of attributes such as, distance
from a specific location, number of rooms, rental price and
buildingage. Users specify their preferences towards specific
attributes. Commonly, preferences are expressed in the form
of numerical weights, assigned to rank attributes by the user.
Query processors incorporate functions that weight attribute
values by user preference deriving scores for individual en-
tities. Specific techniques have been developed to carry out
query processing with the goal of identifying results that op-
timize such functions. A typical instance is a query that seeks
to quickly identify

�
data entities that yield best scores among

all entities in the database. At an abstract level such queries
can be considered as generalized forms of selection queries.

Of equal importance is the ability to support related query
functionality on join queries. Consider Figure 1. It consists
of two tables, parts and suppliers. Table parts con-
tains three attributes availability, name and supplier id. Simi-
larly table suppliers consists of two attributes supplier id
and quality. Assume for purposes of exposition that all parts
correspond to the same piece of a mechanical device possi-

PARTS SUPPLIERS

availability name supplier id supplier id quality

5 PO5 1
2 PO5 2
9 PO5 3

1 10
2 3
3 8

Figure 1. Tables and Rank Attributes

bly of different brand. Rank attributes availability and qual-
ity determine the availability (e.g., current quantity in stock
for this part) and the quality of the supplier (e.g., acquired by
user experience reports on this supplier) respectively, having
as domain a subset of � � as shown in Figure 1. A user in-
terested in purchasing parts from suppliers will have to cor-
relate, through a join on supplier id, the two tables. Rank at-
tributes, could provide great flexibility in query specification
in such cases. For example, a user looking for a part might
be more interested in the availability of the part as opposed to
supplier quality. In a similar fashion supplierquality mightbe
of greater importance to another user, than part availability.
It is imperative to capture user interest or preference towards
rank attributes spanning multiple tables and efficiently sup-
port such queries, involving user preferences and table join
results. User preference towards rank attributes is captured
by allowing users to specify numerical values (weights), for
any rank attribute. The larger the weights the greater the
preference of the user towards the rank attributes. Assuming
the existence of scoring functions that combine user prefer-
ences and rank attribute values, returning a numerical score,
our target queries, which we refer to as top-k join queries,
seek to identify the

�
tuples in the join result of parts and

suppliers with higher scores.
In this paper, we propose a novel technique, which we re-

fer to as ranked join index, to efficiently answer top-k join
queries for arbitrary, user specified, preferences and a large
class of scoring functions, namely monotone linear scoring
functions. Our ranked join index requires small space (com-
pared to the entire join result) and provides guarantees for its
performance. It can exist separately from the joined relations
and utilized in a variety of query processing scenarios, since
like traditional join indices [16] it is compatible with rela-
tional operations like selection and union.

In particular, we make the following contributions:
� Our ranked join index design provides guaranteed worst

case search performance for top-k join queries for a
large class of scoring functions parameterized by arbi-
trary user preferences.

� We show that for a large class of scoring functions of
interest, the space required by our ranked join index is
much smaller than that required for materializing the en-
tire join result. For a maximum value of

�
(provided at

construction time) denoting an upper bound on the num-
ber of results requested by top-k join queries, we show
that the worst case space requirements of our index are

small and independent of user preferences. We propose
an algorithm to identify the join result tuples that are
necessary to include and maintain in our ranked join in-
dex.

� We provide an efficient algorithm to construct the
ranked join index and derive its properties with respect
to worst case search performance for any top-k join
query,

��� �
involving arbitrary user preferences. We

show that its performance is logarithmic in the size of
the index and the size of the query result.

� We demonstrate that our design provides a graceful
tradeoff between space and worst case search perfor-
mance and we quantify this tradeoff.

� We propose and implement alternate solutions for an-
swering top-k join queries based on R-trees.

� We experimentally demonstrate the performance bene-
fits our approach offers when compared to an approach
based on R-trees.

This paper is organized as follows: Section 2 reviews re-
lated work. Section 3 formally defines the class of scoring
functions and the problem we consider in this paper. In sec-
tion 4 we present an algorithm that identifies the tuples in the
join result that should be further indexed and processed with
our ranked join index. Sections 5 and 6 present our design for
the ranked join index, proposing an algorithm to construct it
and analytically derive its worst case search properties. Sec-
tion 8 presents the results of a thorough experimental eval-
uation using real and synthetic datasets, presenting the per-
formance advantages of our approach when compared with
other applicable approaches. Finally, section 9 concludes the
paper and points to problems of interest for further study.

2 Related Work

Agrawal and Wimmers [1] proposed a framework for pref-
erence based query processing. Various works considered re-
alizations of a specific instance of this framework, namely
top-k selection queries, that is, quickly identifying

�
tuples

that optimize scores assigned by monotone linear scoring
functions on a variety of ranked attributes and user specified
preferences [10, 6, 12, 3, 5]. Most of these techniques for an-
swering top-k selection queries [10, 12, 6, 3] are not based
on indexing. Instead, they are geared towards optimizing the
number of tuples examined in order to identify the answer un-
der various cost models of interest. Such optimizations in-
clude, minimization of tuples read sequentially from the in-
put [12, 10, 6] or minimization of random disk access [3, 4].
Chang et al. [5] propose an indexing technique for answer-
ing top-k selection queries. This technique does not provide
guarantees for its performance and in the worst case, the en-
tire data set has to be examined in order to identify the correct
answer to a top-k selection query.

A significant volume of work in multimedia databases ad-
dresses issues of incorporating user preferences into query

2

processing [9, 8, 7]. The optimization objectives and the na-
ture of solutions are not directly related to our framework as
these works do not address indexing.

Natsev et al. [14] proposed techniques to answer top-k
queries over the join of two relations. They assume no pre-
processing and compute the join of the relations from scratch
for each join condition and user supplied preference values.
The techniques provide no performance guarantees for gen-
eral data distributions and arbitrary user preferences. How-
ever, since the entire join is computed from scratch, they of-
fer the flexibility of incorporating arbitrary join conditions
between the two relations. A recent study presents an effi-
cient implementation of a pipelined operator for ranked joins
[13]. Our work presents the first solution providing perfor-
mance guarantees for top-k join queries over two relations,
when preprocessing to construct a ranked join index for a spe-
cific join condition is permitted.

We note that our work is also applicable in the case of a
single relation in the spirit of the works in [10, 12, 5]. In
this case, our work extends these approaches in the sense that
it provides the first solution to the top-k selection problem
with monotone linear functions, having guaranteed worst
case search performance for the case of two ranked attributes
and arbitrary preference vectors.

3 Problem Definition

Let ��� � be two relations, with attributes �����������	�
��� and � ����� �� respectively. Without loss of generality, assume
that ����� � are rank attributes with domain a subset of � �
and � an arbitrary join condition defined between (sub)sets of
�����������
����� ,

 ��������� ��� ����� ��� . For a tuple �� �!�"� � ,
��# � � � (similarly

 # � � �), corresponds to the value of attribute
��# of tuple � . Let $&% � �(' � �*) � � be a scoring function
that takes as input the pair of rank attribute values

�,+ � � + � �.-� �/� � � � � � � � ��� of tuple �0 �1�"� � , and produces a score
value $ �2+ � � + � � for the tuple � .
Definition 1 (Monotone Functions) A function $3% ���!'
� ��) � � is monotone if the following holds: if 4 � � 4 � ,
and 5�� � 5�� , then $ � 46���75�� � � $ � 48���75�� � .

Let 9 - �;: � � : � � denote the user defined preferences
towards rank attributes � � � � . We define a linear scor-
ing function $=<>% � �?' � �@) � � as a scoring func-
tion that maps a pair of score values

�,+ � � + � � to the value
$ < �2+ � � + � �A- : � + �CB : � + � . We assume that user preferences
are positive (belonging to � �); this is an intuitive assump-
tion as it provides monotone semantics to preference values
(the greater the value the larger the preference towards that at-
tribute value). In such a case, the linear function $ < is mono-
tone as well. We use D to denote the class of monotone lin-
ear functions. Note that the pair of user defined preferences
9 uniquely determines a function $& ED .

Definition 2 (top-k join query) Given relations ��� � , a join
condition � and a scoring function $�<F GD , a top-k query
returns a collection HJI � 9 �*K �L� � � of

�
tuples ordered

by $�< � ��� � � � � � � � ��� , such that for all �M �@�"� � , �ON
H8I � 9 �QP $ < � � � � � � � � � � �
� � $ < � � � � �
� � � � �
�
� , for all ��#C
H < � �R� ��S �FT � � .

Thus, a top-k join query returns as a result
�

tuples from the
join of two relations with the highest score, for a user spec-
ified scoring function $ < , among all tuples in the join result.
We are now ready to formally define the main problem we
address in this paper.

Problem 1 (Ranked Join Index) Given relations ��� � , a
join condition � , a class of scoring functions D and an up-
per bound

�
for the maximum requested result size of any

top-k join query, preprocess �U� � � and construct an in-
dex, providing answers with guaranteed performance on any
top-k join query,

� � �
, issued using any scoring function

$& VD .

We will demonstrate that our solutionoffers search perfor-
mance logarithmic to the size of the index. We present our
solutions in the following steps. First we show that only a
subset of �?� � � is necessary to be represented in our join
index. This subset is the same for all scoring functions in
D . Then we present the construction of the join index and
show its properties. All the proofs of lemmas and theorems
are omitted due to space constraints. They are available in the
full version of this paper.

4 Pruning the Join Result

If the relations ��� � to be joined consist of W �2X � tuples,
the size of the join relation ��� � � may be as large as W �,X � � .
We demonstrate that most of the tuples of the join relation,
����� � , are not necessary for answering top-k join queries.
In particular, we will show that for a fixed value

�
and for

the entire class of linear functions D , in the worst case, a num-
ber of tuples much smaller than W �,X � � is sufficient to provide
the answer to any top-k join query,

� � �
. We present algo-

rithms that successively prune the relation �Y� � � to pro-
duce the number of required tuples.

We first note that we do not need to generate the complete
join result �M� � � . Let Z denote the subset of �M� � � nec-
essary to generate, in the worst case, in accordance to Prob-
lem 1. We make a simple observation that limits the size of
Z substantially. Note that although each tuple � of � could
join in the worst case with W �,X � tuples of

�
, for a fixed value

of
�

, we only join � with at most
�

tuples in
�

, the ones that
have the highest rank values. Therefore, among the possible
W �,X � tuples in the join that are produced for each tuple �� � ,
only the

�
tuples with the highest rank values are required.

Due to the monotonicity property of functions in D these
�

tuples will have the highest scores for any $[�D . This is
formalized by the following lemma.

3

Lemma 1 For relations of size W �2X � and a value
�

in ac-
cordance to Problem 1, the worst case size of Z is W �2X � � .
Note that this worst case size is query independent, i.e., using
the same set of tuples Z of worst case size W �2X � � one can
answer any top-k join query,

� � �
, for any $ D . In a

preprocessing step, Z can be determined by joining � and
�

and selecting for each tuple �� � the
�

(worst case) tuples
contributed by � to the join result, that have the highest rank
values in

�
. Such a preprocessing step can be carried out in

a fully declarative way using SQL. We seek ways to reduce
the size of Z further.

Definition 3 Let � and � � denote two tuples of �3� � � . Let�,+ � � + � � and
�,+ � � � + � � � denote the pairs of rank values associ-

ated with each tuple. We say that tuple � � dominates tuple � ,
if
+ � � + � � , and

+ � � + � � .
The domination property provides a basic means to prune Z
further. The intuition is as follows. Lemma 1 prunes the join
result, by restricting the number of the tuples contributed to
the join by a single tuple of a relation. The domination prop-
erty of Definition 3 enables pruning by examining the tuples
contributed to the join by multiple tuples of a relation. This
intuition is formalized by the following lemma.

Lemma 2 For a value of
�

in accordance to Problem 1, if
some tuple �(OZ is dominated by at least

�
other tuples,

then � can safely be excluded from Z as it cannot be in the
answer set of any top-k join query,

� � �
.

A proof for this lemma follows from the monotonicity prop-
erties of the scoring functions. It is evident from Lemma 2
that a viable strategy to reduce the size of Z is to identify all
tuples in Z dominated by at least

�
tuples. We formalize this

with the following definition.

Definition 4 Given a set Z , the dominating set
���

is the
minimal subset of Z with the following property: for every
tuple ��N ��� with rank values

�,+ ��� + � � , there are at least
�

tuples ��#C � � , that dominate tuple � .
We present the algorithm for computing the dominating

set,
� �

for any value of
�

in Figure 2. Every tuple �7# in Z is
associated with a pair of rank values

�,+ # � � + # � � . The algorithm
maintains a priority queue � (supporting insertions/deletions
in logarithmic time) storing the

�
largest

+ # � rank values en-
countered so far. It first sorts the tuples in the join result in
non-increasing order with respect to the

+ # � rank values. It
then considers the tuples one at a time in that order. For ev-
ery tuple �
, if its

+ # � rank value is less than the minimum rank
value present in � we discard it. Otherwise the tuple is in-
cluded in the dominating set, and the priority queue � is up-
dated. It can be shown that this algorithm correctly computes
the dominating set

� �
, for a top-k join query, for

� � �
.

Algorithm DominatingSet (shown in Figure 2), requires
time W ��� Z �
	����� Z � � for sorting and computes the dominating
set

���
in W ��� Z �
	��� � � time. The number of tuples pruned

DominatingSet(�����)
Initialize priority queue � and ������� .
Sort the join result in non-increasing order of the "! rank values.
For the # th tuple $&% with rank values '(%) �� %!+*

if (, �-,�./�)
include $0% in �1�
insert %) in �

else
if %)32547698;: �1< discard $0%

else
include $0% in �1�
insert %) in �
if , �-,>=/? delete the minimum element of �

Output ���
Figure 2. The DominatingSet Algorithm

PARTS

availability name supplier id

SUPPLIER

supplier id quality
5 PO5 1
3 PO5 2
1 PO5 3

PARTS

availability name supplier id

SUPPLIER

supplier id quality

5 PO5 1 1 5
3 PO5 2 2 3
2 PO5 3 3 4
 4 1

1 2
2 4
3 6
4 1

(a) (b)

Figure 3. Examples of set � � for different join results

by algorithm DominatingSet depends on the distribution of
the rank value pairs in the join result. In practice we expect
the size of

���
to be much smaller than W �,X � � . In the worst

case, however, no tuple is dominated by
�

other tuples and as
a result algorithm DominatingSet does not achieve any prun-
ing. Consider the following example.

Example 1 Figure 3 presents two pairs of relations with dif-
ferent rank attribute values. For both pairs of relations, the
size of the join result is the same (equal to 3). For the tu-
ples of each join result in Figure 3 we draw a geometric anal-
ogy and represent the tuple by the rank attribute pair (qual-
ity,availability) as a point in two dimensional space. For the
rank attribute value distributions in Figure 3(a) the set

� �
has size 3 (worst case) since no tuple is dominated by any
other tuple. Thus, in this case algorithm DominatingSet will
produce

� � having a size equal to the theoretically predicted
worst case. In contrast, in Figure 3(b), algorithm Dominat-
ingSet will produce a set

� � with size 1 (containing the tuple
whose rank attribute pair dominates the other two).

In Section 8 we experimentally evaluate the amount of prun-
ing achieved by the algorithm for several data distributions.

The following lemma establishes the relationship among

4

the sets
� I associated with each top-k join query possible

with
� � �

.

Lemma 3 Consider two top-k join queries requesting
� ��� � �

results and
� � � � � � � . For the dominating sets

� I����� I�� � ��� , the following property holds:
� I � K � I�� K ���

.

Lemma 3 shows that it is sufficient to identify and material-
ize only set

���
, since the answers to any top-k join query,� � �

are contained in this set. Also the lemma holds for any
scoring function $& VD . Executing algorithm DominatingSet
on Z , using

�
as provided in Problem 1 identifies all the tu-

ples necessary to answer any top-k join query with
� � �

.
In the next section we will consider the issues that arise when
one is interested to index set

� �
in order to provide answers

to top-k join queries with guaranteed worst case access time.

5 Constructing the Ranked Join Index

We now present an algorithm to preprocess set
� �

and
construct an index structure, called RJI, providinganswers to
top-k join queries in an efficient way.

Every function $L YD is completely defined by a pair
of preference values

�;: � � : � � . The value of $ on a tuple
�1 � �

with rank values
�,+ � � + � � is

: � + � B : � + � . We
will present our construction by representing members of D
and rank value pairs for each � � �

as vectors in a 2-
dimensional space. Since every $�< GD is completely de-
fined by the pair 9 - � : � � : � � we can think of every func-
tion $ to be represented by the vector 9 -�� ��� � � � �;: � � : � �	�
on the plane. Similarly, rank value pairs, can be represented
as a vector

+ -�� �
� � � � �2+ ��� + � �	� . In light of this geometric
representation the value of a function $ on a tuple � � �
with rank values

�2+ � � + � � is the inner product of the vectors
9 , and

+
. The intuition behind representing members of D as

vectors, is as follows. Assume that ��9�� - S , that is, 9 is a
unit vector. Then, the value of $� � ��� � �	� �,+ ��� + � � is the length
of the projection of vector

+
on vector 9 , as shown in Figure

4(a). The assumption that 9 is a unit vector is solely for sim-
plifyingour presentation; it is not required for the correctness
of our approach. The result of any top-k join query H I � 9 � is
the same, independent of the magnitude of 9 . Let � -�� 9
be some vector in the direction of 9 with length

�
. H I � 9 � is

exactly the same as HJI � � � since the lengths of the projected
vectors change only by a scaling factor, and thus, their rela-
tive order is not affected.

The set of tuples
� �

can be represented as points in
two dimensional space using the rank values of each tu-
ple as shown in Figure 4(b). Given a unit vector 9 , we
define the angle � � 9 � of the vector to be the angle of 9
with the axis representing (without loss of generality) the

+ �
rank values as shown in Figure 4(b). For a set of � tuples� � ��� �7����� � � � ����� , we define W���� < � � � ��� �7����� � � � ���	� � to be the or-
dering of the tuples

� � � � � � ��� � � � � � � when the rank value pairs
associated with each tuple are projected on the vector 9 , and

sorted by non-increasing order of their projection lengths.
We use W ��� < � � � ��� �7����� � � � ����� � to denote the reverse of that
ordering. HJI � 9 � contains the top

�
tuples in the ordering

W���� < � � � ��� �7����� � � � ����� � . Figure 4(b) presents such an ordering.
Let the vector 9 sweep the plane defined by the domains

of rank attributes (� �>' � �). In particular assume that
the sweep starts from the

+ � -axis moving towards the
+ � -

axis (i.e., counter-clockwise). Thus 9 ranges from 9 -
� ��� � � � � S�� � ��� to 9 -!� �
� � � � � �
� ��S ��� . We are interested to ex-
amine how the ordering W ��� < � � � � varies as 9 sweeps the
plane, thus considering every possible scoring function.

Let us first consider two tuples and examine their relative
ordering. Let

+ � - �2+ �� � + �� � , and
+ � - �,+ � � � + �� � be the rank

value pairs for two tuples � � � � � � � . Since rank value pairs
are represented as vectors, let

� + � + � ��- + �#" + � denote the
vector defined by the difference of

+ � and
+ � , and let $ denote

the angle of the vector
� + � + � � with the

+ � -axis. Figure 4(c)
presents an example. The ordering of � � and � � as 9 sweeps
the plane is governed by the following lemma.
Lemma 4 Let

+ � - �,+ �� � + �� � and
+ � - �,+ � � � + �� � be two vec-

tors formed by the rank value pairs corresponding to two tu-
ples � � � � � � �

. Depending on the angle $ that vector� + � + � � forms with the
+ � -axis, as 9 sweeps the plane one of

the following holds:

(a) if $� &% � ��' ��(, W ��� < � � � � � � � � � is the same for all 9 .
(b) if $� &% " ' � � � (�) %�'� ��* (, let 9,+ be the vector perpendicular

to
� + � + � � . We have:

(i) $�<.- �,+ �� � + �� �.- $�<�- �2+ � � � + �� � ,
(ii) W ��� <.� � � � ��� �7�,� � - W ��� < � � � � ��� �7�/� � , for all

vectors 9 � �	9 � with � � 9 � � ��� � 9 � �10 � � 9,+ � , or
� � 9�� � ��� � 9�� �32 � � 9 + � ,

(iii) W ��� < � � � � � � � � � �.- W ��� < � � � � � � � � � � , for all 9 � �	9 � ,
such that � � 9 � �42 � � 9,+ �52 � � 9 � � . Moreover, as a
vector 9 sweeps the positive quadrant, tuples ����� �7�
are adjacent in the ordering W ��� < � � � � immedi-
ately before 9 crosses vector 9/+ , and remain adja-
cent in W���� < � ��� � immediately after 9 crosses 9 + .

Lemma 4 indicates that as 9 sweeps the plane, the order-
ing of tuples � � and �	� changes only when 9 crosses 9 + , which
is defined as the vector perpendicular to

� + � + � � . If the vector� + � + � � has positive slope, then the ordering of the tuples � ��� �7�
remains the same for all 9 . We call the vector 9/+ the separat-
ing vector of tuples ��� and �	� , and � � 9 + � the separating point.
Figure 5 presents an example of this behavior. We note that
more than two tuples may share the same separating vector.
For example, if � � � � � � ��6 are three tuples such that their cor-
responding rank value pairs are co-linear, they all share the
same separating vector. We generalize Lemma 4 as follows.

Lemma 5 If � � � � � ��� � � � � � are � tuples with co-linear rank
value pairs that share the same separating vector 9 + , then
W���� < � � � � � � � � ��� � � � � � � � - W ��� < � � � � � � � � ��� � � � � � � � , for all
� � 9�� � ��� � 9�� � such that � � 9=� �32 � � 9 + �72 � � 9�� � .

5

p1

p2

s2

s1

t3
t1

t2

a(e)

order: t3,t1,t2

b

s

s
2

1

(a) (b) (c)

s1

s2

s1

s2

s1

s2

p1s1+p2s2

Figure 4. Vector representation of scoring functions and rank attribute values

t1

t2

t1

t2

es

es

(a) (b)

b b

order: t1,t2

e1

e2

order: t2,t1 a(e1) < a(es)

order: t1, t2 a(e2) > a(es)

Figure 5. The two cases of Lemma 4

Lemma 5 demonstrates that each separating vector corre-
sponds to the reversal of two or more adjacent points. Lem-
mas 4 and 5 demonstrate properties of the relative ordering of
the elements of

���
for all possible members of D . We will

now utilize these properties to efficiently index
� �

.

6 Algorithm ConstructRJI

We present algorithm ConstructRJI which preprocesses���
and constructs an index on its elements. We let a vec-

tor 9 sweep the plane, and we keep track of the composition
of H � � 9 � . Every time vector 9 crosses a separating vector,
W ��� < � � � � changes by swapping two (or more if they are co-
linear) adjacent tuples as shown by Lemmas 4 and 5. A key
observation is that this swap is of interest for indexing pur-
poses only if it causes the composition of H � � 9 � to change.

ConstructRJI(� �)
For all '($ % ��$�� * , $ % ��$���� � ����

Compute separating vectors �	��
 � and separating points '��	��
 � *
Sort

�
in non-decreasing order of '�����
 � *

Form � consisting of top- � tuples in � � with respect to �	�)�� ���
Set � = 0; ��� ��� ;
For each element '($0% ��$ � * of

�
if $0%0��$ � ��� or $0%0��$ ������

No change in � ’s composition by �	��
 � ; discard ����
 �
if $ % ��� and $�� ����

Materialize '��	��
 � * , � ; replace $ % with $�� in �
if $ % ���� and $�� ���

Materialize '�� ��
 � * , � ; replace $ � with $0% in �
When

�
is exhausted, materialize �

Figure 6. Algorithm ConstructRJI

The algorithm is shown in Figure 6. Assuming that
� �

contains tuples of the form
� � T � #7� + # � � + # � � , where � T ��# a tuple

identifier, and
+ # � � + # � the associated rank values, the algorithm

starts by first computing the set ! of all separating vectors.
This involves considering each pair of tuples in

���
and com-

puting their separating vector and the associated separating
point. Let 9,+
 � (� � 9,+
 � �) be the separating vector (separating
point) for each pair of tuples �7#	� �#" ��S �GT ��$ � � � � �

. Each
pair

� � T � # � � T � " � along with the associated separating point
� � 9�+
 � � is computed and materialized as set ! . Then set ! is
sorted in non-decreasing order of � � 9�+
 � � . If two separating
vectors have the same � � 9 +
 � � value, we sort them according
to their projection in the

+ � -axis.
The algorithm then sweeps the (positive quadrant of the)

plane, going through the separating vectors in ! in sorted
order. The algorithm maintains also a set � that stores (un-
sorted) the

�
tuples with highest score according to the func-

tion $ < , where 9 is the current position of the sweeping vector.
We initialize � to hold the top-k tuples with respect to the ini-
tial position of vector 9 , namely 9 -!� ��� � � � � S�� � ��� (function
$� � � % �). Initializing � is easy, since the set

� �
computed at

the end of algorithm DominatingSet is sorted by
+ # � .

Each � � 9,+
 � � in ! (and the corresponding vector 9�+
 �) is
associated with two tuple identifiers

� � # � � " � . When 9 crosses
the vector 9,+
 � during the sweep it causes the ordering of tu-
ples �
#	� �#" to change according to Lemmas 4 and 5. In case
both tuple identifiers belong to � , or neither belongs to � , we
can safely discard the vector 9 +
 � under consideration, since
it does not affect the composition of � . Otherwise, we ma-
terialize � � 9,+
 � � together with the composition of � , and we
update � , to reflect the new tuple identifiers. We also mate-
rialize the last value of � , after the sweep is completed.

At the end of the algorithm we have accumulated & sep-
arating vectors 9 � �79 � �������	�	9(' (represented by their separat-
ing points � � 9 # � ��S � T � &). The collection of vectors
9 # ��S �OT � & partitions the quadrant into & B S regions.
Each region

T
,
� � T � & , is defined by vectors 9�#7�	9 # � � ,

where 9)% - � �
� � � � � S�� � �	� , and 9*' � �
- � ��� � � � ��� ��S ��� . Re-

gion
T

is associated with a set of
�

points � # K � �
, such

that for any vector 9 , with � � 9 # � � � � 9 � � � � 9 # � �
�
, uniquely

identifying a function $ < D , H � � 9 � is equal to a permuta-
tion of ��# . This permutation is derived by evaluating $ < on
every element of � # and then sorting the result in nondecreas-
ing order. That is, ��# contains (up to a permutation) the an-
swer to any top-k query,

� � �
, for any function defined by a

6

t2 t3

t1

t4

t2 t3

t1

t4

e23 e24

e34

order: t1,t3,t2,t4

order: t1,t3,t4,t2

order: t1,t4,t3,t2

order: t1,t2,t3,t4

(b)
a(e23)a(e34) a(e24)

(a)

e23

e34

R2={t1,t2} R1={t1,t3}

R0={t1,t4}

Figure 7. Example operation of algorithm ConstructRJI

vector in region
T
. We illustrate the operation of the algorithm

with the following example.

Example 2 Consider Figure 7(a). It presents a set
� � con-

sisting of four tuples ��� � �7��� � 6 � ��� . The algorithm starts by
computing the separating vector for each pair of tuples.
For brevity in Figure 7(a) we present the separating vec-
tors only for pairs of tuples � � � ��6�� � � . The separating vec-
tors 9 6 � �79������	9�� 6 are computed for each pair as shown in Fig-
ure 7(a). Each pair is stored along with the associated sepa-
rating point and the collection is ordered based on separat-
ing points. Setting

� -��
, we construct an index answer-

ing top-1 and top-2 join queries. Consider now a vector 9
sweeping the plane. The first two tuples in W ��� � � % � � � � � are
�
- � � ��� ����� . The first vector crossed by 9 is 9 6 � , which cor-

responds to swapping tuples � 6 and � � . The swap changes the
composition of � . In particular, � � is replaced with � 6 . At this
point, � � 9 6 � � is stored along with the � % - �

- � � � � �����
and the current composition of � becomes �

- � � � � ��6�� .
Then � � 9 ��� � is encountered in the sorted order but the swap
of � � � � � does not affect the composition of � . The next vector
in the sorted order is 9 � 6 . The composition of � is affected so
� � 9 � 6 � is stored along with � � - � - � � � � ��6�� , and the cur-
rent composition of � changes to �

- � ����� �7�,� . When the
input is exhausted, the current ordering � � - � - � � � � � � �
is stored, and the algorithm terminates. Figure 7(b) shows
the final partitioning of the plane.

We organize the separating points along with the associ-
ated ��# ’s in a B-tree, indexed by � � 9�# � ��S � T � & , storing
in the leaves of the B-tree, the sets � # of tuple identifiers in���

. We now proceed with the space and performance anal-
ysis of this structure.

6.1 Analyzing Algorithm ConstructRJI

Critical to the size of the index is the size of & , the num-
ber of separating vectors identified by the algorithm. We pro-
vide a worst case bound on & by bounding the number of
times that a tuple identifier can move from position

� B S
to position

�
in W ��� < � � � � . Lemmas 4, 5 guarantee that

whenever a swap happens between elements of W����R< � ��� � ,
it takes place between two adjacent elements in W ��� < � � � � .
Thus, we only index the separating vectors that cause a swap

of the elements in positions
�

and
� B S in W ��� < � � � � , since

these are the ones that cause the composition of H to change.
For every ��#. � � define ��� X ���
 � 9 � to be the position of tu-
ple � # in the ordering W ��� < � ��� � . The following lemma pro-
vides the means for bounding the value of & .

Lemma 6 For every tuple �7#� � �
, ��� X ���
 � 9 � can change

from
� B S to

�
at most

�
times for every vector 9 .

We claim the following theorem.

Theorem 1 Given a set of dominating points
� �

, we
can construct an index for top-

�
join queries in time

W ��� ��� � � 	���-� ��� � � using space W ��� ��� � � � � providing an-
swers to top-

�
join queries in time W � 	��� � � � � B � 	��� �R� ,��� �

.

Lemma 6 guarantees that each element in
� �

contributes
at most

�
changes to H � � 9 � . This means that each tuple in-

troduces at most
�

separating vectors and consequently in-
troduces

�
separating points that need to be stored in the

worst case. Therefore, the number & of separating points
is at most W ��� ��� � � � . After the separating points � � 9 + � are
identified, they are organized along with the associated sets
��# in a B-tree indexed by � � 9/+ � . The leaf level stores point-
ers to the sets ��# . Thus, the total space requirement becomes
W ��� ��� � � � � . There are W �,X � � elements in

���
in the worst

case, so the number & of separating points that require rep-
resentation in the index is at most W �,X � � � . Thus, the total
space used by this structure in the worst case is W �2X � 6 � . The
worst case time complexity for constructing the ranked join
index is: W �,X � � � � time to compute the separating vectors
and separating points; W �,X � � � 	���AX � � � � time to sort the
separating points. Constructing a B-tree can be performed
during the single scan on the sorted separating point col-
lection of algorithm ConstructRJI. Thus, the total construc-
tion time is W �,X � � � 	���R�2X � � � ��� . We note that these are the
worst case space and construction time requirements for the
index RJI. In section 8 we will experimentally evaluate the
requirements of RJI for a variety of data distributions.

At query time given the vector 9 that defines a function
$�< D , we compute � � 9 � , and search the B-tree using � � 9 �
as a key. This effectively identifies the region that contains
vector 9 . Then, we retrieve the associated set � # and eval-
uate $ < for all elements of ��# , sorting the results to produce
H I � 9 � . Thus, query time is W � 	��� �2X � � � B � 	��� � �

in the
worst case, for any top-k join query,

��� �
.

6.2 Space/Time Tradeoffs in RJI

Our ranked join index design provides a variety of space-
time tradeoffs which can be utilized to better serve the per-
formance/space constraints in various settings.

If the space is a critical resource, one could decrease the
space requirements significantly, at almost no expense on
query time. Note that sets � # and � # � � associated with two

7

t1

t2

t3

t4

t5

t1
t2

t3

t4

t5

t1
t2

t3

t4

t5

<t1,t2> <t2,t3>

<t3,t2>

<t3,t4>

<t4,t3>

<t4,t5>

<t5,t4>

<t2,t1>

(c)(a) (b)

e13

e24

e35

e24

e12
e13 e23

e24

e34

e35

e45

R0 = {t4,t5}

R1 = {t3,t4}

R2 ={t2,t3}

R3 ={t1,t2}

R0 = {t3,t4,t5}

R1 = {t1,t2,t3}

Figure 8. Space Time Tradeoffs of RJI

neighboring regions differ, in the worst case, by only one tu-
ple. Therefore, the set ��#) ��# � � contains

� B S distinct
tuples. If we merge � regions, then the resulting region con-
tains at most

� B �
" S distinct tuples. Note that this is

a worst case bound; depending on the distribution, a region
may contain less than

� B �
" S distinct tuples. Therefore,

if we initially have & separating vectors, merging every �
regions reduces the number of separating vectors to & �

� .
The space for the index becomes W � & � � B �

� �
�
�
, and the

query time W � 	��� � & � � B �
� �

�
� B � � B �

� 	��� � � B �
�
.

Since & - W �,X � � in the worst case, the requirements
of the index are W �,X � � � � B �

" S � �
�
�

for space, and
W � 	���R�,X � � � � B �

" S � �
�
� B � � B �

" S � 	��� � � B �
" S �
�

for query time. An example is shown in Figure 8 (
� - �

).
We merge every 2 regions of Figure 8(a) showing the result
in Figure 8(b).

Merging � regions does not always result in a region with
� B �

" S tuples. Depending on the distribution of the rank
values, it may be the case that as we cross the vectors that
define the � regions, some points move in and out of the top
�

positions multiple times. In this case, merging � regions,
results in a region with far less than

� B �
" S distinct tu-

ples. Instead of merging every � regions, we can merge so
that every region (except possibly the last one) contains ex-
actly

� B �
" S distinct tuples. This allows for more ag-

gressive reduction of space, without affecting the worst case
query time. We measure the effects of merging adjacent re-
gions on space, in Section 8.

If fast query time is the main concern, one can reduce the
query time by storing all separating vectors that cause H � � 9 �
to change. According to Lemma 6 a tuple can move from po-
sition � B S to � at most � times, therefore, each tuple can con-
tribute at most S B � B ����� B � - � � � B S � � �

changes
to H � � 9 � . Thus, storing at most W �,X � 6 � separating vectors
one could reduce the query time to W � 	���AX � 6 � . Effectively
in this case we are storing an ordered sequence of points in
each region ��# so there is no need for evaluating $ < on the el-
ements of the region; the ordered sequence (according to $ <)
can be returned immediately. Figure 8 presents an example
of this tradeoff as well. We materialize the separating points
causing a change in ordering for tuples in each region of Fig-

ure 8(a). The result is shown in Figure 8(c).

7 A Solution Based on R-trees

In this section we propose a variant of the range search
procedure of an R-tree index that is specifically designed to
answer top-k join queries. This provides a base-case for per-
formance comparison against our solution. The basic idea, is
to employ an R-tree index to prune away a large fraction of
the tuples that are bound not to be among the top

�
. We refer

to this modified R-tree as the TopKrtree.
Consider the

�
-dimensional space defined by the 2 rank

values associated with each tuple in
� �

, returned by the al-
gorithm DominatingSet. We build an R-tree on these points
using traditional R-tree construction algorithms [11, 2]. A
basic observation is that due to the monotonicity property of
the functions $ (D , given a Minimum Bounding Rectangle
(MBR) � at any level in that tree, the minimum and maximum
score values for all tuples inside � are bounded by the value
any scoring function in D gets at the lower left and upper right
corners of � . Following this observation we modify the R-
tree search procedure as follows. At each node in the R-tree,
instead of searching for overlaps between MBRs, the proce-
dure searches for overlaps between the intervals defined by
the values of the scoring function in the upper right and lower
left corners of the MBRs. The algorithm recursively searches
the R-tree and maintains a priority queue collecting

�
results.

Consider an R-tree with three MBRs, namely ��� , ��� , and
� 6 , and a top-k join query with 9 - � : � � : � � . This situation
is depicted in Figure 9(a). The largest score that a point in
an MBR can possibly achieve is the score given by the pro-
jection of the upper right corner of the MBR on vector 9 .
We will refer to this projection as the maximum-projection
for the MBR, and the MBR that has the largest maximum-
projection among all the MBRs of the same R-tree node as
the master MBR. Similarly, the lowest score is given by the
projection of the lower left corner (minimum-projection) of
the MBR. A simplified version of the algorithm, named Top-
KrtreeAnswer, is presented in Figure 10. For brevity, we will
assume that each MBR contains at least

�
tuples. There-

fore, we can present the algorithm guiding the search using

8

2r

r3

r1

r1

r1r3

2r

l

2

1

s

s

h

h

h

e=(p ,p)1 2

3t

2t
t1

1r

2r
2r
h

2

1

s

s

e=(p ,p)1 2

3r

1r
h

(a) (b)

Figure 9. A graphical representation for the Top-
KrtreeAnswer algorithm

Input: A number � and a preference vector �������)	� � !�
 .
Output: The answer-set � to the top-k query.

1 procedure TopKrtreeAnswer()
2 let ���� be a priority queue with space for exactly � values;
3 ProcessRtreeNode(root of rtree, �);
4 return(�);

5 procedure ProcessRtreeNode(node � , �)
6 if (� is a leaf)
7 for (all tuples � in this node)
8 insert � in � ;
9 else
10 let � range over all the MBRs in � ;
11 let �	������������� �!��"$#&% maximum projection of MBR �

on preference vector ��' ;
12 let ��(*),+����� ��% minimum projection of MBR � �����

on preference vector �-' ;
13 for (each subtree rooted at each MBR . of �)
14 if (maximum projection of MBR .0/1� (*),+�����)
15 ProcessRtreeNode(. , �);
16 return(�);

Figure 10. The TopKrtreeAnswer algorithm

only the master MBR at each R-tree level. Accounting for
the case where multiple MBR’s are required1 is immediate by
maintaining a list of candidate MBRs ordered by their max-
imum projections at each level. This resembles the type of
search performed while answering nearest-neighbor queries
using R-trees [15]. In the algorithm presented in Figure 10
the MBR with the largest maximum-projection is always the
candidate to search and expand further for obtaining the an-
swer to the top-k query. This is rectangle � � in Figure 9(a),
since its maximum-projection �32� is the largest among the
three MBRs. In this case, we can safely prune away all MBRs
with maximum-projection less than the minimum-projection
of the master MBR. In our example we will not examine
the tuples in � 6 , since all these tuples have scores less than
the minimum score of all the tuples in � � . However, the al-
gorithm will examine all MBRs with maximum-projection

1This could happen if the search using only the master MBR does not
yield � results in the leaf R-tree level for a top-k join query.

greater than the minimum-projectionof the master MBR. The
range of projections of such MBRs overlap, and the answer
to the top-k query may be a collection of tuples coming from
all those MBRs. Therefore, in order to get the correct answer
we must examine all the MBRs whose projections on vector
9 overlap with the projection of the master MBR.

Note that there are many cases in which the TopKrtree
accesses more MBRs than really necessary. Consider Fig-
ure 9(b), showing a top-2 query with 9 - � : � � : � � . Evidently,
the answer to this query is the set of tuples

� � � � � � � , both con-
tained in ��� . Observe that even though ��� has the largest
maximum-projection (that is �42 �) none of its tuples (e.g., � 6)
are contained in the top-2 answer. Thus, all the computations
involving � � are useless in this case.

8 Experimental Evaluation

We implemented our proposal and conducted a series of
experiments to evaluate the efficiency of our techniques. We
also implemented the TopKrtree to compare against RJI. We
start this section by describing the datasets we used in our
evaluation. Then, we experimentally examine the properties
of the algorithms proposed herein and assess the efficiency of
our solutions in a variety of settings.

8.1 Description of Experiments

We implemented the algorithms described herein in C++
under SunOS v5.8, and run the experiments on a SUN Blade
1000 server with two UltraSPARC-III processors.

In order to test the proposed algorithms we used both syn-
thetic and real datasets. The synthetic ones are generated by
sampling uniform, Gaussian, and Zipfian distributions. The
size of the join result for all the synthetic datasets was 10,000-
1,000,000 tuples. The datasets are generated as follows.
Uniform: Rank values for each rank attribute in the uniform
dataset (denoted unif) lie in the range [0,100].
Gaussian: Rank values for each rank attribute in the Gaus-
sian dataset (denoted gauss) are generated with mean value
400 and standard deviation 5. (In our experiments we varied
the standard deviation, but the results were similar, and we
omit them for brevity.)
Zipfian: Rank values for each rank attribute in the zipfian
data set are produced using a generalized zipfian distribution.
The generalized zipfian distribution is defined as $65�7�S � � � ,
where $ 5 is the occurrence frequency of the � -th value (sorted
on decreasing frequency of occurrence), and � is a parame-
ter controlling the skew of the distribution. We produced two
datasets, one with skew parameter 0.1 (Zipf0.1), and the other
one with skew 2 (Zipf2).
Real: Our data sets are generated by parsing 8VH &:9 and; &:9 pages from the web, and constructing two data sets
recording various statistics for each page (such as the in and
out degree in terms of number of links to/from a page, the size

9

Figure 12. Rank value distribution for the join result
and dominating points for the gauss dataset

of each page, etc). Our first data set, which we refer to as
real web is the outcome of the join of two data sets named
real web indegree and real web outdegree recording the in
and out degree for a collection of web pages (the join takes
place on the page id). This data set consists of 370,000 tu-
ples. Our second data set, real xml, is the outcome of the join
of two data sets named real xml size and real xml outdegree
recording the size and outdegree of a collection of XML doc-
uments collected from the web uniformly at random (the join
takes place on document id). This set consists of 160,000 tu-
ples. The statistical properties of the collections we joined to
produce the two real datasets are reported in Table 1.

8.2 Evaluating the RJI Construction Algorithm

In the first set of experiments we evaluate the effectiveness
of the pruning strategies presented in Section 4. We measure
the number of elements in set

���
after the execution of the

algorithm (labeled Dom) and the number of separating points
represented in RJI (labeled Sep). Figure 11 depicts the sizes
of the Dom and Sep sets as a function of

�
, for the uniform

(Figure 11(a)) and Gaussian (Figure 11(b)) datasets. We also
show the same graphs for the zipfian (Figure 11(c)) and real
(Figure 11(d)) datasets.

We report the size of each set as a percentage of the size
of the join result. Observe that the number of points that our
algorithm has to consider, namely the number of dominat-
ing points, is significantly smaller than the size of the entire
join in all cases. In our experiments this number is less than
6% of the join size. Figure 12 gives a visual representation
of the join result (depicted in light color) and the Dom set
(shown in dark color) for the gauss dataset. (For this exam-
ple the join result has 50,000 tuples, and

�
=100.) Therefore,

this pruning step is extremely effective in reducing the size
of the problem. Moreover, the number of separating points
RJI stores is in most cases only a fraction of the number of
dominating points. Consequently, the size of the RJI index
remains small compared to the join result. The graphs indi-
cate that the sizes of the Dom and Sep sets grow gracefully

(a) varying the join result size (b) varying
�

Figure 14. Breakdown of the time to construct the RJI
index for the unif dataset

with parameter
�

.

In our second set of experiments we explore the perfor-
mance of the algorithm when the size of the join result in-
creases. The size of the datasets we use range from 50,000 to
1,000,000 tuples. Figures 13(a)(b) report the size of Dom and
Sep, for the uniform dataset, as a function of the size of the
join result. The corresponding numbers for the Zipf2 dataset
are reported in Figures 13(c)(d). One can observe that the
sizes of the above sets remain relatively stable as the join re-
sult size increases (for the same value of

�
and data distri-

bution). It is evident that the pruning applied by algorithm
DominatingSet is effective. Keeping the size of the dominat-
ing set small as the join result increases, decouples the time
required to build the RJI index from the size of the join result.

Figure 14 provides a breakdown of the total time required
to build an RJI index into three components, namely, the time
to compute the Dom set (tDom), the time to compute the
Sep set (tSep), and finally the time to populate the B-tree in-
dex (tBLoad). (We only provide the graphs for the uniform
dataset. The rest of the datasets exhibit similar behavior and
the corresponding graphs are omitted for brevity.)

According to Figure 14(a) as the join result size increases,
more time is required to compute the set of dominating
points, while the time spent on the other two components in-
creases minimally. This is because, although the number of
dominating points remains relatively stable with increasing
join result size, the algorithm still has to make a complete
pass over the join result to identify the dominating points.
This explains the proportional increase in construction time
with respect to the join result size. The effect of varying the
parameter

�
in the construction time of our index is illus-

trated in Figure 14(b). As
�

increases the index construction
time is dominated by the time required to identify separating
points. This includes the time to compute all the separating
vectors (and points), sort them, and determine which of those
to store in the B-tree index. As

�
increases, more dominat-

ing points affect the composition of set � (in Figure 6) and
more separating points are introduced, increasing the corre-
sponding time component.

10

dataset min max mean median std.dev. skew
real web indegree 1 100288 6.17 1 152.70 520.47
real web outdegree 1 826 7.02 3 14.92 10.48

real xml size 10 500608 4641.09 1071 20814.03 12.49
real xml outdegree 1 5520 13.18 4 46.62 29.89

Table 1. The statistical properties of the real web and real xml datasets

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300 350 400 450 500

pe
rc

en
t o

f j
oi

n
re

su
lt

si
ze

top-K

Dom unif
Sep unif

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300 350 400 450 500

pe
rc

en
t o

f j
oi

n
re

su
lt

si
ze

top-K

Dom gauss
Sep gauss

0

0.01

0.02

0.03

0.04

0.05

0.06

0 50 100 150 200 250 300 350 400 450 500

pe
rc

en
t o

f j
oi

n
re

su
lt

si
ze

top-K

Dom zipf0.1
Dom zipf2

Sep zipf0.1
Sep zipf2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200 250 300 350 400 450 500

pe
rc

en
t o

f j
oi

n
re

su
lt

si
ze

top-K

Sep real_xml
Sep real_web
Dom real_xml

Dom real_web

(a) unif (b) gauss (c) zipf0.1 and zipf2 (d) real web and real xml

Figure 11. The effect of � on the size of Dom and Sep. The size of the join result for the synthetic data is 50,000 tuples.

(a) Dataset unif (b) Dataset real web

Figure 15. Time to answer top-k queries, varying �

8.3 Answering top-k Queries

In the following paragraphs we examine the time required
by the RJI index to answer top-k join queries, and we com-
pare it against the time required by TopKrtree. All times are
averages of all queries in our workload. We also analyze the
space requirements of RJI in comparison with that required
by the solution using R-trees. Both indices are disk resident.
For these experiments, we reduce the space requirements of
our index by merging regions as described in Section 6.2, so
that each region contains exactly

� �
tuples.

The graphs in Figures 15(a)(b) compare the performance
of the two indices as

�
increases for datasets unif and

real web. Each point in the graphs represents the average
response time of 500 top-K queries distributed uniformly at
random over the space of all possible queries. The experi-
ments show that RJI consistently outperforms TopKrtree in
these data sets, answering queries up to 17 times faster. The
trends in performance gains are similar as

�
increases be-

yond the range of values shown. This performance advantage
is pronounced as the size of the datasets indexed increases
(the graphs presenting response time for top-k queries with
increasing dominating set size are omitted due to space lim-
itations). The large difference comes from the fact that Top-

Krtree accesses a considerable amount of tuples that prove
to be useless. These results, experimentally confirm our an-
alytical expectations. Our RJI design provides worst case
performance guarantees in contrast with R-trees that in the
worst case have to touch every tuple (linear in the size of the
indexed data set). Similar behavior is also exhibited by the
other synthetic and real datasets.

Figure 16, compares the total size (space occupied by both
index nodes and data nodes), in terms of bytes, required by
the RJI and the R-tree as a function of

�
. (In these experi-

ments the size of the join result for the synthetic datasets is
50,000 tuples.) In all cases the total size required by the RJI
index is significantly smaller than that required by the R-tree
index. Recall that the R-tree is storing the entire set of domi-
nating points, which in many cases is a superset of the set of
points needed to answer the top-k join queries. In addition, R-
trees require more space due to the overhead they impose by
representing MBRs as two dimensional rectangles. In con-
trast, the RJI index only stores the points that are useful in an-
swering the top-k join queries. Furthermore, by merging ad-
jacent regions we are able to reduce the storage requirements
considerably since adjacent regions have a large number of
points in common.

The experiments show that RJI consistently requires less
space for indexing and at the same time is capable of answer-
ing top-k join queries much faster than the R-tree solution.
For the synthetic datasets, RJI can answer queries up to 17
times faster, while occupying 10%-50% of the R-tree space
(Figures 16(a)(b)). In the case of the real web and real xml
datasets the overall trends are similar. The storage require-
ments of our index are 3-10 times less than the R-tree ap-
proach (Figures 16(c)(d)), and at the same time RJI answers
queries up to 15 times faster. For all the above datasets, the
space and time trends remain consistent as

�
increases be-

yond the range shown in the figures.

11

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06

nu
m

be
r

of
 e

le
m

en
ts

size of join result

Dom top-500 unif
Dom top-100 unif

Dom top-50 unif

0

2000

4000

6000

8000

10000

12000

14000

2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06

nu
m

be
r

of
 e

le
m

en
ts

size of join result

Sep top-500 unif
Sep top-100 unif
Sep top-50 unif

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06

nu
m

be
r

of
 e

le
m

en
ts

size of join result

Dom top-500 zipf2
Dom top-100 zipf2
Dom top-50 zipf2

0

100

200

300

400

500

600

700

2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06

nu
m

be
r

of
 e

le
m

en
ts

size of join result

Sep top-500 zipf2
Sep top-100 zipf2
Sep top-50 zipf2

(a) size of Dom (b) size of Sep (c) size of Dom (d) size of Sep

Figure 13. The Dom and Sep sizes as a function of the join result size for data sets unif and Zipf

(a) Dataset unif (b) Dataset �
T : $ � (c) Dataset real web (d) Dataset real xml

Figure 16. Overall space (index and data) required to answer top-k queries, varying �

9 Conclusions

We have considered a novel type of join index support-
ing efficiently queries ranking (based on user specified pref-
erences) the join of two relations. Our index structure, called
RJI, answers fast top-k queries on the join of two relations for
a large family of functions used to compute the score of tu-
ples in the join result. We showed that only a fraction of the
join result requires representation in our index and proposed
efficient algorithms to construct an RJI providing worst case
guarantees on its performance. We have presented an exten-
sive experimental evaluation that proves the validity of our
approach, and shows that RJI considerably outperforms al-
ternative solutions.

This work raises various questions for further exploration.
First, it would be worthwhile to study extensions of our index
scheme to more than a pair of relations. This would involve
generalizing RJI in dimensions more than two. In addition in-
cremental maintenance of our index is important and the cen-
ter of our current work is in this direction.

Acknowledgements
We would like to thank Davood Rafiei and Laurent Mignet

for providing us with the real web and real xml datasets re-
spectively. We would also like to thank Faith Fich for helpful
discussions.

References

[1] R. Agrawal and E. Wimmers. A Framework For Expressing
and Combining Preferences. Proceedings of ACM SIGMOD,
pages 297–306, June 2000.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R* - tree: An Efficient and Robust Access Method for Points

and Rectangles. Proceedings of ACM SIGMOD, pages 220–
231, June 1990.

[3] N. Bruno, L. Gravano, and A. Marian. Evaluating Top-k
Queries Over Web Accessible Databases. Proceedings of
ICDE, Apr. 2002.

[4] K. Chang and S.-W. Huang. Minimal Probing: Supporting Ex-
pensive Predicates for Top-k Queries. Proceedings of ACM
SIGMOD, June 2002.

[5] Y. chi Chang, L. Bergman, V. Castelli, C. Li, M. L. Lo, and
J. Smith. The Onion Technique: Indexing for Linear Opti-
mization Queries. Proceedings of ACM SIGMOD, pages 391–
402, June 2000.

[6] D. Donjerkovic and R. Ramakrishnan. Probabilistic Optimiza-
tion of Top-N Queries. Proceedings of VLDB, Aug. 1999.

[7] R. Fagin. Combining Fuzzy Information from Multiple Sys-
tems. PODS, pages 216–226, June 1996.

[8] R. Fagin. Fuzzy Queries In Multimedia Database Systems.
PODS, pages 1–10, June 1998.

[9] R. Fagin and E. Wimmers. Incorporating User Preferences in
Multimedia Queries. ICDT, pages 247–261, Jan. 1997.

[10] L. Gravano and S. Chaudhuri. Evaluating Top-k Selection
Queries. Proceedings of VLDB, Aug. 1999.

[11] A. Guttman. R-trees : A Dynamic Index Structure for Spatial
Searching. Proceedings of ACM SIGMOD, pages 47–57, June
1984.

[12] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Efficient
Execution of Multiparametric Ranked Queries. Proceedings
of SIGMOD, June 2001.

[13] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Joining Ranked
Inputs in Practice. pages 950–961, Hong Kong, China, Aug.
2003.

[14] A. Natsev, Y.-C. Chang, J. Smith, C.-S. Li, and J. S. Vitter.
Supporting Incremental Join Queries on Ranked Inputs. Pro-
ceedings of VLDB, Aug. 2001.

[15] N. Roussopoulos, S. Kelly, and F. Vincent. Nearest Neighbor
Queries. Proceedings of ACM SIGMOD, pages 71–79, May
1995.

[16] P. Valduriez. Join Indexes. ACM TODS, Volume 12, No 2,
pages 218–246, June 1987.

12

