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The problem of assessing the significance of data mining results on high-dimensional 0–1 datasets

has been studied extensively in the literature. For problems such as mining frequent sets and

finding correlations, significance testing can be done by standard statistical tests such as chi-square,

or other methods. However, the results of such tests depend only on the specific attributes and not on

the dataset as a whole. Moreover, the tests are difficult to apply to sets of patterns or other complex

results of data mining algorithms. In this article, we consider a simple randomization technique

that deals with this shortcoming. The approach consists of producing random datasets that have

the same row and column margins as the given dataset, computing the results of interest on the

randomized instances and comparing them to the results on the actual data. This randomization

technique can be used to assess the results of many different types of data mining algorithms,

such as frequent sets, clustering, and spectral analysis. To generate random datasets with given

margins, we use variations of a Markov chain approach which is based on a simple swap operation.

We give theoretical results on the efficiency of different randomization methods, and apply the swap

randomization method to several well-known datasets. Our results indicate that for some datasets

the structure discovered by the data mining algorithms is expected, given the row and column

margins of the datasets, while for other datasets the discovered structure conveys information that

is not captured by the margin counts.
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Pager Mill Rd. Suite 200, Palo Alto, CA 94304-1003; P. Tsaparas (contact author), Search Labs,

Microsoft Research, 1065 La Avenida Mountain View, CA 94043; email: tsaparas@cs.helsinki.fi.

Permission to make digital or hard copies part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specific per-

mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1556-4681/2007/12-ART14 $5.00. DOI 10.1145/1297332.1297338 http://doi.acm.org/

10.1145/1297332.1297338

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 14, Publication date: December 2007.



14:2 • A. Gionis et al.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—

Data mining

General Terms: Algorithms, Management, Experimentation

Additional Key Words and Phrases: Significance testing, randomization tests, 0–1 data, swaps

ACM Reference Format:
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1. INTRODUCTION

One of the most important considerations in data mining is deciding whether
the discovered patterns or models are significant. While traditional statistics
has long been considering the issue of significance testing, it has been given
less attention in the data mining community.

In statistics, the methods for significance testing are typically based either
on analytical expressions or randomization tests. In this article we focus on the
latter approach. We propose the use of swap randomization [Cobb and Chen
2003] for assessing data mining results on 0–1 datasets. The basic idea of swap
randomization is as follows. Given the dataset D, create random datasets with
the same row and column margins as D, run the data mining algorithm on
those, and see if the results are significantly different on the real data than on
the randomized datasets. If not, then we presume that the results are really
due to the row and column margins, and not due to interesting relations in the
data. Generating datasets with the same margins as the original is performed
by swaps, as shown in Figure 1: Take two rows u and v and two columns A and
B of the data table with u(A) = v(B) = 1 and u(B) = v(A) = 0, and change the
rows so that u(B) = v(A) = 1 and u(A) = v(B) = 0. This operation maintains
the row and column sums of the dataset, and all datasets with the same row
and column sums can be reached through a series of swaps [Ryser 1957; Cobb
and Chen 2003].

Swap randomization falls within the broad family of randomization testing
methods. Given a metric of interest (e.g., the number of frequent itemsets in the
data), randomization testing techniques produce multiple random datasets and
test the null hypothesis that the observed metric is likely to occur in the random
data. If the metric of interest in the original data deviates significantly from the
measurements on the random datasets, then we can reject the null hypothesis
and assess the result as significant. The key characteristic of the randomiza-
tion techniques is in the way that the random datasets are generated. Rather
than assuming that the underlying data follows a given distribution and sam-
pling from this distribution, randomization techniques randomly shuffle the
given data to produce a random dataset. Shuffling is meant to preserve some
of the structural properties of the dataset, for example, in a 0–1 matrix we may
want to preserve the total number of 1’s in the dataset, or the number of 1’s in
each column. In the case of swap randomization, the generated samples pre-
serve both the column and row margins. This constraint can also be thought of
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Fig. 1. A swap in a 0–1 matrix.

as a condition on the null hypothesis. We assess the results of a data mining
algorithm as significant and interesting if they are highly unlikely to be ob-
served in a random dataset that has the same row and column margins. Using
swap randomization we now can answer questions of the following type: Does
the observed structure convey any information that is unexpected, given the
margins?

Swap randomization is an extension of traditional randomization methods.
For instance, a chi-square test for assessing the significance of frequent itemsets
is a method based on studying the distribution of datasets where the column
margins are fixed, but the row margins are allowed to vary. Similarly, methods
that randomize the target value in prediction tasks keep the column margins
fixed (e.g., Megiddo and Srikant [1998]), but impose no constraint on the row
margins. These techniques are designed for assessing the significance of indi-
vidual patterns or models, and are not appropriate for assessing complex results
of data mining such as clustering or pattern sets. Swap randomization preserves
both row and column margins, and takes into account the global structure of
the dataset. A motivating example for why it is important to maintain both
column and row margins is given in the next section.

Swap randomization has been considered in various applications. An
overview is presented in a survey paper by Cobb and Chen [2003]. A very use-
ful discussion on using Markov chain models in statistical inference is Besag
[2004], where the case of 0–1 data is used as an example. The problem of creat-
ing 0–1 datasets with given row and column margins is of theoretical interest in
itself; see, among others Bezáková et al. [2006] and Dyer [2003]. Closely related
is the problem of generating contingency tables with fixed margins, which has
been studied in statistics (such as Chen et al. [2005]). In general, a large body
of research is devoted to randomization methods [Good 2000].

Our contributions in this article are twofold: (i) We describe the algorithmic
aspects of swap randomization when applied to large datasets, and (ii) we show
how this method can be applied in the data mining setting. In more detail, we
give a description of several different ways of generating random matrices with
given margins and discuss their performance. Swap randomizations are effi-
cient and can be applied to reasonably large datasets, as our experiments show.
We give extensive empirical results showing that some well-known datasets
appear to have very few interesting patterns or cluster centers, while other
datasets have a lot of structure.

The rest of this work is organized as follows. In Section 2 we present an
overview of the swap randomization method, and in Section 3 we discuss the
applications of the approach to specific data mining tasks. Section 4 describes
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how the random matrices with given margins are generated and provides re-
sults on the performance of the algorithms. In Section 5 we describe the ex-
perimental results. Section 6 discusses related work, and Section 7 gives some
concluding remarks.

2. OVERVIEW OF THE APPROACH

In this section we give an overview of the method. We explain the intuition
behind it, describe the algorithmic challenges it poses, and show how it can be
applied to testing the significance of results obtained by different kinds of data
mining algorithms.

2.1 The Randomization Approach

Let D denote a 0–1 matrix with m rows and n columns that represents our
dataset. We view the rows of the matrix as tuples in a database, and the columns
as items. The values 0–1 correspond to absence/presence of an item in the tuple.
A large range of datasets can be represented in this format.

Assume that we are interested in assessing the result obtained by a partic-
ular data mining algorithm A on input D. Let A(D) denote the result of the
algorithm. For simplicity, assume that it can be described by a single number.
For instance, for frequent set mining algorithms, it can be the number of sets
whose frequency exceeds a certain support threshold. Similarly, for a clustering
algorithm, it can be the error of the clustering solution.

In our randomization approach we generate k datasets D1, . . . , Dk , such that
each Dt , t = 1, . . . , k, is an m×n 0–1 matrix that has the same row and column
sums as the original matrix D. Each dataset Dt is assumed to be a uniform and
independent sample from the space of all m × n 0–1 matrices with the given
margins. The algorithm A is executed on each sampled dataset Dt , yielding
results X t = A(Dt) for t = 1, . . . , k.

The significance of the result A(D) of the algorithm A on the dataset D is
tested by comparing it to the set X = {X 1, . . . , X k} of the results of A on the
sampled datasets. If the output of the algorithm on the original data does not
deviate significantly from the values in X, then the result A(D) is not surprising
and its significance is small; otherwise, the result is considered to be statistically
significant.

The statistical significance of A(D) can be measured in a variety of ways.
Assuming that the sampled datasets are independent and that k is large enough
so that X gives an approximation of the real distribution, then the empirical
p-value of X 0 = A(D) is

1

k + 1
(min{|{t | X t < X 0}|, |{t | X t > X 0}|} + 1),

that is, the fraction of the random datasets in which we see a value more extreme
than the value in the real data. The empirical p-value we compute considers
both the cases where the value X 0 is very small and very large compared to the
values in X. Note that according to our definition the p-value takes values in
the interval [0, 0.5].

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 14, Publication date: December 2007.



Assessing Data Mining Results via Swap Randomization • 14:5

Fig. 2. Examples of two 0–1 datasets, D1 and D2. In both cases we are interested in the correlation

between columns (attributes) X and Y . The significance of the correlation result might depend on

the overall context of the dataset.

Another measure for quantifying the significance of the value X 0 is captured
by the Z score

Z = |X 0 − X̂ |
σ̂

,

where X̂ = E[X 1, . . . , X k] is the empirical mean of the set X and σ̂ 2 =
Var[X 1, . . . , X k] is the empirical variance. Large values of Z indicate that X 0

deviates a lot from the mean of the results obtained on the random datasets.
The Z -score can strictly be used to compare the value X 0 against values drawn
from a Gaussian distribution. In many of the cases we consider in this article,
the distribution of values in X is clearly not Gaussian. We use the Z-score as a
rough indicator, but stress that it should always be used with caution.

2.2 Why Maintain Row and Column Margins?

As mentioned in the Introduction, randomization is widely used as a signif-
icance testing method. For example, in control studies in medical genetics
it is customary to estimate the interestingness of discovered patterns by a
permutation test. In such a test the target variable, namely, the variable
describing whether a patient belongs to the case or to the control group, is
permuted randomly, and the original data analysis is repeated. The findings
on the real data are accepted only if they are stronger than on, say, 99% of the
randomized datasets.

However, in many data mining tasks the goal is not to predict a single vari-
able. For example, pattern discovery and clustering look at the structure of the
whole dataset. One could, of course, think of randomizing each column of the
dataset independently, as implied, for example, in the work of Megiddo and
Srikant [1998], but this method ignores some of the structure of the dataset.

As an example, consider the datasets D1 and D2 in Figure 2. In both datasets
variables X and Y are positively correlated, and the itemset {X , Y } occurs
more often than the independence assumption would imply. As the columns
of X and Y are the same for both datasets, any measure of the importance
of the association between X and Y that takes only the columns of X and Y
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into account will give the same results for D1 and D2. However, in dataset D1,
we see that X and Y cooccur in all types of rows, whereas in dataset D2 the
cooccurrence of X and Y happens exclusively in very dense rows. Thus, inD2 the
high frequency of the pair {X , Y } is not necessarily due to a correlation between
X and Y , but rather to the fact that X and Y tend to occur on rows that have lots
of 1’s. For example, if X and Y are two items in a market-basket dataset, then
their cooccurrence in D2 would be due to customers that buy almost all items.
This finding is not as interesting, as it does not convey information specific to
items X and Y .

Consider the datasets E1 containing 10 copies of D1, and E2 containing 10
copies ofD2. The columns for X and Y are the same in both datasets, and in both
cases the frequency of the pair is 60. When we generate 1000 random datasets
with the margins of E1, the maximum and average frequencies of {X , Y } were
59 and 52.4, and the standard deviation was 2.5. All values were smaller than
60, yielding an empirical p-value of 0.001. For E2 the corresponding numbers
are 69, 63.2, and 2.0. In only 70 cases was the frequency 60 or less, giving an
empirical p-value of 0.07. Thus, we can conclude that in E1 the pair {X , Y } is
strongly overrepresented, while in E2 it occurs less often than one would expect.
This indicates that the context of the pair of variables has a strong effect on the
significance of the frequency of a pair.

The previous example demonstrates the basic concept underlying swap ran-
domization: It takes the bias of row and column counts into account by ran-
domizing over datasets with the same row and column margins as the original
dataset. As a result, the notion of interestingness we consider is conditioned on
the knowledge of the marginal sums. We are interested in assessing informa-
tion in the dataset that is not conveyed by the marginal sums of the data table.
This is the structure that we define as being interesting.

As an additional example, consider a dataset whose margin counts satisfy a
power-law distribution. The “heavy-tail” property of such a distribution implies
that there exist rows and columns in the dataset with very high margin counts.
It is possible that on such a dataset, a data mining algorithm discovers patterns
that are the direct consequence of the power-law distribution. For instance,
columns with high margin counts will tend to form pairs that are much more
frequent than pairs of columns with very small margin counts. Alternatively,
it is possible that a set of rows and columns with high margin counts is more
likely to form clearly distinguished biclusters. Using the framework of swap
randomization, one can assess whether a quantity of interest is immediately
implied by the power-law distribution on the margin counts, and thus whether
it is common to all datasets with the same margin distribution.

In general, a randomization procedure can be viewed as a random process
which, given a dataset D, selects a dataset D1 from some class CD of datasets
containing D. In swap randomization, the class CD is the set of all datasets
having the same row and column margins as D. Varying the class CD defines a
different randomization approach. In the independent permutation approach,
the class CD contains all datasets with the same column sums as D. The row
sums are allowed to vary, so we expect the distribution to be fairly uniform. As
a consequence, the two methods differ significantly. A data mining result may
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be deemed significant by the independent permutation method, but still be
explained purely by the row and column margins. We will see such an example
in the empirical section.

Maintaining row and column margins assumes that both row and column
sums are in some way interesting quantities. For example, consider ecologi-
cal presence/absence data of species and locations, where rows to species and
columns to locations. Then the column sums correspond to the commonness
of species, and row sums correspond to the species diversity of locations: Both
quantities are of fundamental interest in ecology, and hence maintaining them
exactly makes sense. Similarly, consider a document dataset where rows cor-
respond to documents and columns to words. Then row counts measure the
number of different words in the document, and column sums indicate how
widely used is the word. In this case it is clear that the distributions of the row
and column sums are important properties of the dataset: In many cases they
explain a lot of the observed structure of the data. Generating random datasets
that maintain these sums makes it possible to see whether some structure is
unexpected, given the margins.

There are other techniques of randomization. For example, instead of requir-
ing that the row and column margins are maintained exactly, we could require
that they are maintained approximately. One possible condition is to require
that the L1-distance between the row margins of D and D1 is bounded. Another
randomization procedure could be obtained by requiring that the distribution
of row and column margins is approximately the same in D and D1.

2.3 Limitations of the Approach

Summarizing the previous section, we believe that comparison of datasets with
the same margins provides a good method for assessing the significance of
the discovered patterns. However, what constitutes an interesting pattern is
not well defined and often can be very subjective. Therefore, we do not claim
that swap randomization is a panacea for assessing all potential notions of
interestingness. In fact, through the framework of swap randomization the
concept of interestingness takes a very precise definition: Interesting patterns
are those that are not likely to appear in datasets with the same margins as
the input dataset. Having a precise definition of interestingness is certainly a
desirable property, but it is possible that there are many other intuitive concepts
of interestingness that are not captured by this definition.

Consider a binary dataset in which half of the rows contain only 1’s and the
other half only 0’s. This particular dataset is the unique dataset with those exact
margins, and, according to the swap randomization framework, no pattern will
be considered interesting even though the dataset has very interesting struc-
ture. The point here is that we must remember that swap randomization does
nothing more than compare datasets with the same margins. In this particular
example, the technique reports that there is no interesting structure, given the
margins of the dataset. In fact, one can argue that all the interesting structure
of the dataset is expected given the margins, since this is the only dataset with
these margins.
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Another limitation of the swap randomization framework, as presented in
this article, is that it is applied only to data with 0–1 values, which denote
absence or presence of an attribute value. Many datasets can be modeled as
0–1 matrices; examples include market-basket data, word occurrences in docu-
ments and access logs, data from scientific applications such as biology, ecology,
paleontology, and more. However, many other datasets require more general
representations. Two important cases widely studied in the literature are nu-
merical data and categorical data.

For numerical data one possible extension is generate datasets in which the
sums of the entries of all rows and all columns are fixed. This is the problem
of sampling from the space of contingency tables and it has been studied ex-
tensively in the statistics literature [Chen et al. 2005; Cobb and Chen 2003;
Diaconis and Gangolli 1995; Snijders 1991]. One basic technique is to sample
by performing a random walk on the Diaconis chain [Diaconis and Saloff-Coste
1995], which is a generalization of the basic swap move shown in Figure 1. A
move on the Diaconis chain consists of randomly selecting two rows i and j
and two columns k and l , and adding the values 1, −1, −1, and 1 at the entries
(i, k), (i, l ), ( j , k), and ( j , l ) (respectively) of the current matrix, as long as no
entry becomes negative.

In order to apply the framework to numerical data, in addition to the tech-
nical modifications, it must be verified that it is meaningful to maintain row
and column sums. For instance, it arguably makes sense to maintain row and
column sums in a dataset in which the presence or absence information of
words in documents is replaced with counts. On the other hand, it is clearly
not meaningful to maintain row and column sums in a dataset with the nu-
merical attributes age, income, and num of children. Similarly, the swap ran-
domization framework does not seem to be applicable to data with categorical
attributes, even if these attributes have a binary domain. Consider a dataset
with attributes gender, education, and employment status. It is not clear how
to perform the basic swap moves, or what are the margins we wish to maintain.

2.4 Generating Matrices with Given Margins

Generating random 0–1 datasets with given row and column sums is a technical
challenge. This problem has been studied extensively in statistics [Chen et al.
2005; Cobb and Chen 2003], theoretical computer science [Bezáková et al. 2006;
Dyer 2003], and in various application areas [Kashtan et al. 2004; Milo et al.
2002].

In this article we use a Markov chain approach to the problem of sampling.
Starting from the original dataset, we make a small random local move which
interchanges a pair of 1’s with a pair of 0’s and does not change the row and
column sums, thus producing a new dataset with the same margins. Such a
local move is called a swap, and a sequence of swaps is performed until the data
is sufficiently mixed to provide a random sample. In the swap randomization
framework we want to compare the input dataset with random datasets that
have the same margins. Since we have no reason to assume that any of these
datasets is more likely than the others, we would like to sample uniformly from
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the set of all possible datasets. Uniform sampling avoids introducing any sam-
pling bias to the significance test. In the language of Markov chains we want to
ensure that the stationary distribution of the chain is the uniform distribution.

The state space of the Markov chain consists of all datasets with the given
margins. There is a transition between two datasets if there is a swap that
transforms one to the other. The Markov chain is reversible, that is, a swap
can be undone by a single (reverse) swap. However, the chain is not regular, as
some datasets (states) have more neighbors than others. This implies that the
stationary distribution of the chain is not the uniform distribution. Therefore, a
straightforward application of swapping does not guarantee uniform sampling.

The problem of nonuniformity can be fixed in at least two ways: (i) by us-
ing the Metropolis-Hastings algorithm [Hastings 1970; Metropolis et al. 1953],
which is a well-studied method for converting one Markov chain with station-
ary distribution π to another with stationary distribution π ′; and (ii) by adding
multiple self-loops in order to guarantee that all states have the same degree.

For applying the Metropolis-Hastings algorithm, one needs to compute the
degree of any given state of the chain, that is, the number of all valid swaps for
a given 0–1 matrix. We give a simple formula for computing the degree at each
state, and we show how to maintain this quantity incrementally. The complexity
of incremental maintenance of the state degree is O(min{m, n}) for an m × n
matrix, making the algorithm somehow inefficient. On the other hand, adding
self-loops does not require computing any additional expensive information; so
while more steps are needed for convergence, the time complexity of each step
is, in expectation, constant, making it a very efficient algorithm in practice.

3. USING THE FRAMEWORK

In this section we describe how the swap randomization framework can be
applied to different data mining tasks, such as finding frequent sets and corre-
lations, clustering, and spectral analysis. Our methodology allows us to inves-
tigate the significance of the patterns that exist in a given dataset, at different
levels of granularity.

First, we are able to characterize the significance of global aspects of the
dataset. If the number of frequent sets, or the number of highly correlated
pairs contained in the dataset, is not significant with respect to that found in a
randomly rearranged dataset, then we can conclude that the dataset does not
contain any interesting global structure of frequent sets, or of highly significant
correlations.

Additionally, we can also look at individual itemsets. In this case we are
interested in identifying itemsets whose frequency is smaller or larger in the
sampled datasets when compared with the original dataset. If the frequency
of an itemset drops in the sampled dataset, it is implied that the frequency
cannot be explained by the margins of the dataset. If the frequency increases,
a possible explanation is that the items in the itemset are anticorrelated in the
original dataset.

The aforesaid observations also apply when mining simple association rules.
Recall that the accuracy (confidence) of a rule (X ⇒ B) is defined as f (X B)

f (X )
,
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where f (X B) and f (X ) are the frequencies of X ∪ {B} and {X }, respectively.
Assume now that X is a singleton set. Since f (X ) remains fixed, the confidence
of the rule is proportional to the frequency f (X B). Therefore, the significance
of the rule (X ⇒ B) is determined by the significance of the pair {X , B}. In the
general case that the set {X } consists of more than one item, our observation
that the confidence of (X ⇒ B) depends only on the frequencies of f (X B) and
f (X ) still holds. Thus, we can assess the significance of the rule (X ⇒ B) by
keeping track of the frequencies of the sets X ∪ {B} and {X } on the sample
datasets that we generate during the swap randomization process. Overall, for
the framework of swap randomization, the case of association rules is subsumed
by the analysis of frequent itemsets.

Swap randomization can be applied to testing the significance of clustering
results. Given a clustering algorithm like k-means and a target number of
clusters k, we compare the clustering error in the original dataset with that in
the sampled datasets. If the difference is large, then we can deduce that the
dataset has meaningful cluster structure. This simple approach turns out to
yield very clear results on synthetic datasets with known cluster structure, as
we will see in Section 5.

To obtain some intuition of how clustering structure is related to row and
column margins, consider the very simple and rather contrived dataset D which
has n rows, n columns, and k “pure” clusters. Here, by pure clusters we mean
that the data matrix is block diagonal with k blocks of 1’s, each of size n

k × n
k ,

and the rest of the matrix entries are 0’s. Therefore all the row and column
margins are n

k , and there is a perfect clustering into k clusters with error 0. On
the other hand, it is true that a random dataset with the same margins as D has
no clustered structure; each entry of the data matrix of such a random dataset
appears to be almost random with probability 1

k , and the error of clustering into

k clusters is roughly O( 1
k (1 − 1

k )n2).
A different notion of global structure is captured in the singular values and

vectors of the data matrix. Singular vectors capture linear trends in the dataset.
The corresponding singular values capture the strength of the linear trend, that
is, the tendency of rows or columns to align with corresponding singular vectors.
The strongest linear trends can be used to construct a low-dimensional approx-
imation of the dataset with provable approximation error. In randomly gener-
ated data, the strongest linear trends should be determined by the marginals
of the dataset. This is usually the first singular value. The remaining dataset
has no structure; thus we expect the remaining singular values to be small.
If the original data contains some linear structure, then the top singular val-
ues (especially the nonprincipal ones) should be higher than those of random
datasets with the same margins.

4. SAMPLING DATASETS WITH GIVEN ROW AND COLUMN MARGINS

4.1 Basics

We now describe the process of sampling a matrix from the space of all m × n
0–1 matrices with given margins.
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Fig. 3. A swap in the graph representation GD .

Let D be a 0–1 dataset with m rows and n columns. We denote by ri the
sum of the ith row of D, i = 1, . . . , m, and by c j the sum of the j th column,
j = 1, . . . , n. An equivalent way to represent the input matrix D is as a bipartite
graph GD = (R, C, E), with |R| = m and |C| = n. Vertex i ∈ R corresponds to
the ith row of D, vertex j ∈ C to the j th column of D, and (i, j ) ∈ E if and only
if D(i, j ) = 1 for all i and j . The degrees of the vertices of the graph are ri for
i ∈ R, and c j for j ∈ C.

The main idea is to start from the graph GD corresponding to the original
dataset and to perform a local swap that leaves the margins unchanged. When
many such swaps have been performed, the resulting graph can be considered
as a random dataset drawn randomly from the stationary distribution.

In more detail, a local swap in a bipartite graph G = (R, C, E) can be defined
by four vertices, i, j , k, and l of G, such that i, k ∈ R and j , l ∈ C, and (i, j ) ∈ E,
(k, l ) ∈ E, (i, l ) �∈ E, (k, j ) �∈ E. A new dataset G ′ = (R, C, E ′) is then formed
by updating the edges of G = (R, C, E) as follows.

E ′ ← E \ {(i, j ), (k, l )} ∪ {(i, l ), (k, j )}
In other words, we remove the current edges {(i, j ), (k, l )} and add new edges
{(i, l ), (k, j )}. Visually, a local swap is depicted in Figure 3 for the graph repre-
sentation and in Figure 1 for the matrix representation.

Formally, a local swap is a step on a Markov chain M = {S, T }, where the
state space S is the set of all graphs with the given degree sequences, and T
is the set of transitions defined by swaps. In other words, the set T contains
all pairs of graphs (G, G ′) such that it is possible to obtain G ′ from G (or vice
versa) by performing a single swap.

4.2 Naı̈ve Nonuniform Approach

Algorithm 1 shows a straightforward implementation of this Markov approach.

Algorithm 1. Naı̈ve

Input: Graph GD, number of random walk steps kn

Output: Graph G with the same degree sequences as GD

1: G ← GD

2: while kn > 0 do
3: G ′ ← Find adjacent (G)

4: G ← G ′

5: kn ← kn − 1

6: end while
7: Return G
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Finding the next transition (G, G ′) ∈ T from graph G, that is, executing line
3 of algorithm Naı̈ve, is not a completely straightforward task. The simplest
way is to pick a pair of edges in G, reject if the edges are not swappable, and
repeat until a pair of swappable edges is found. This is shown in Algorithm 2.
Alternatively, one could store all swappable pairs in a structure and select
one uniformly at random. The selection process becomes faster, but there is
additional cost of updating the data structure at each step.

Algorithm 2. Find adjacent

Input: Graph G
Output: Graph G ′ that differs from G in exactly one swap (i.e., (G, G ′) ∈ T )

repeat
Select edges (i, j ), (k, l ) ∈ E(G) uniformly at random

until (i, l ) �∈ E(G) and (k, j ) �∈ E(G)

E(G ′) ← E(G) \ {(i, j ), (k, l )} ∪ {(i, l ), (k, j )}

Given graph G, the algorithm Find adjacent generates a graph G ′ uniformly
at random among all graphs G ′ such that (G, G ′) ∈ T . The reason is that there
exists an one-to-one correspondence between the set of such graphs G ′ and the
set of swappable pairs of edges: Each graph G ′ is mapped to exactly one unique
swappable pair, and for each swappable pair there exists a unique graph G ′.
Algorithm Find adjacent clearly samples uniformly at random from the set of
swappable pairs: Each swappable pair is sampled with probability proportional
to 2/|E|2.

Now, in order for the Markov chain to sample graphs uniformly at random
from the set S, the following conditions have to hold:

(1) The state space S is connected under the transitions of M.

(2) The Markov chain M has a uniform stationary distribution.

(3) Starting from GD, a sufficiently large number of local swaps should be
performed so that the chain mixes. We would like to know how many such
swaps should be performed, namely, the mixing time of the chain.

Connectedness. The Markov chain is connected. One can move from any
state of the chain to any other state using swaps [Ryser 1957; Cobb and Chen
2003].

Uniformity. First notice that the Markov chain M is reversible. Now, for each
graph (state) G ∈ S, we define d (G), namely the degree of the Markov chain
M at G, to be the number of different graphs (states) G ′ such that (G, G ′) ∈
T . From the theory of Markov chains, it is well known that the stationary
distribution of a reversible chain is proportional to the degree at each state
in the underlying transition graph. Therefore, in order to obtain a uniform
distribution, all states of the Markov chain must have the same degree. A simple
construction shows that this is not true in general for the Markov chain M.
Therefore, the Naı̈ve algorithm (Algorithm 1) does not converge to the uniform
distribution.
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Mixing time. The mixing time of the Markov chain we defined previously
has been the object of theoretical study [Cobb and Chen 2003], but without any
conclusive results. It is estimated that running the chain for a number of steps
in order of the number of 1’s in the matrix is sufficient for convergence. We
do not deal with theoretical aspects of convergence, but study it empirically in
the experimental section. See Besag [2004] for a discussion on convergence and
p-values.

4.3 The Self-Loop Method

Straightforward application of the Markov chain approach does not produce
uniform sampling. There are two ways to fix this bias and obtain uniform dis-
tribution. The first is by adding self-loops, as shown in Algorithm 3. Algorithm
Self loop works as Naı̈ve does. It samples pairs of edges until it finds a swap-
pable pair. Its difference from Naı̈ve, however, is that in Self loop all steps
are counted and decrease the counter; thus nonswappable pairs of edges are
counted as self-loops. The reason that Self loop leads to uniform distribution
is that when self-loops are counted, the degree of each G ∈ S becomes fixed and
equal to |E|2. Each pair of edges, swappable or nonswappable, contributes one
to the degree of all states.

Algorithm 3. Self loop

Input: Graph GD, number of random walk steps ks

Output: Graph GD, number of random walk steps ks

1: G ← GD

2: while ks > 0 do
3: Select edges (i, j ), (k, l ) ∈ E(G)

4: if ((i, l ) �∈ E(G) and (k, j ) �∈ E(G)) then
5: E(G ′) ← E(G) \ {(i, j ), (k, l )} ∪ {(i, l ), (k, j )}
6: end if
7: ks ← ks − 1

8: end while
9: Return G

4.4 The Metropolis-Hastings Approach

The second way of sampling from the uniform distribution is by using the
Metropolis-Hastings algorithm [Hastings 1970; Metropolis et al. 1953], which
is a standard method for converting a Markov chain with stationary distribu-
tion π to another Markov chain with stationary distribution π ′. In our case,
π (G) ∼ d (G) and we want π ′(G) ∼ 1, so the Metropolis algorithm becomes
as shown in Algorithm 4. For some swap that takes the algorithm from state
(graph) G to state G ′, if the state G ′ has higher degree, then the algorithm
performs the swap with probability d (G)

d (G ′) . The algorithm assumes knowledge of
the degree d (G) for each graph G ∈ S. We will discuss soon how d (G) can be
computed.
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Algorithm 4. Metropolis-Hastings

Input: Graph GD, number of random walk steps km

Output: Graph G with the same degree sequences as GD

1: G ← GD

2: while km > 0 do
3: G ′ ← Find adjacent(G)

4: G ← G ′, with probability min{1, d (G)
d (G′) }

5: km ← km − 1

6: end while
7: Return G

4.5 Running Time

We now analyze the running time of the algorithms. We will prove some results
on the complexity of the approaches, including a result that characterizes the
degree of a state in the Markov chain. The conclusion in this section is that the
Self loop algorithm is always more efficient than the Metropolis-Hastings.

First, we assume that we can sample edges in constant time and that we can
test whether a pair of edges is swappable in constant time. The former task can
be performed by keeping all edges in an array, while the latter can be performed
by keeping in memory the data D in the matrix form, or by storing all edges in
a hash table.

The running time of Find adjacent is a random variable and depends on the
number of swappable edges for each graph (state) G. Recall that the number
of swappable pairs of graph G is d (G). Therefore, the probability of finding a
swappable pair of edges is precisely d (G)

|E|2 , thus the expected time for staying in

G is |E|2
d (G)

. Without counting the self-loops, the probability of visiting graph G
is d (G)

2|T | , which is precisely the stationary distribution of algorithm Naı̈ve at G.

Thus, the expected running time of algorithm Find adjacent is

TF =
∑
G∈S

|E|2
d (G)

· d (G)

2|T | = |E|2
2

· |S|
|T | . (1)

Notice that |T |/|S| = O(|E|2), since the degree of each graph G in S is at most
|E|2. On the other hand, the following lemma is immediate.

LEMMA 4.1. For bipartite graphs G = (U, V , E) in which the maximum
degree is o(|E|), we have |T |/|S| = �(|E|2).

PROOF. Notice that the random walk leaves the degrees at each vertex
unaffected in all states. Given any state (graph G) in S, consider an edge
(i, j ) ∈ E(G). Any other edge (k, l ) ∈ E(G) can be swapped with (i, j ) unless
either l ∈ �(i) or k ∈ �( j ) (or both), where �(i) are the neighbors of i in the
bipartite graph. Thus, the number of edges that should be excluded from swap-
ping with (i, j ) is o(|E|), yielding a total number of at least (|E| − o(|E|)) · |E|
swappable pairs. Since each state inS has degree �(|E|2), the lemma follows.
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COROLLARY 4.2. For bipartite graphs G = (U, V , E) whose degree distribu-
tion follows a power law with α > 2 we have |T |/|S| = �(|E|2).

PROOF. For simplicity assume that |U | = |V | = n. For power laws with
exponent α > 2 we have |E| = O(n) in expectation and the maximum degree is

n
1

α−1 = o(n) (e.g., see Newman [2003]). Thus, the conditions of Lemma 4.1 are
satisfied.

The preceding results imply that for some important classes of datasets (such
as graphs with bounded degrees or degrees that follow a power-law distribution)
the expected time TF of the Find adjacent algorithm is constant. Thus, for those
classes of data, the running time of algorithm Naı̈ve is TN = TF · kn = O(kn).
Similarly, for the Self loop algorithm the overall running time is TS = O(ks).
Furthermore, the expected time spent in each state for performing self-loops
(before moving out to a new state) is constant.

We now turn to the running time of Metropolis-Hastings. This running
time can be written as TM = T 0

D + km(TF + TD), where TF is the running time
of Find adjacent, TD is the time needed to compute d (G ′) given that d (G) is
already computed, and T 0

D is the time needed to compute d (G) for the first time.
Next we explain how to compute d (G) and how to update the computation for
d (G ′). The time needed for the update is linear with respect to min{m, n}.

THEOREM 4.3. Let G = (U, V , E) be a bipartite graph represented as a binary
matrix D with m = |U | rows and n = |V | columns. Let ri be the “left” degree of
node i ∈ U, c j be the “right” degree of node j ∈ V , and define M = DDT . Then,
the number of graphs G ′ that are yielded from G with one local swap is equal to

d (G) = J (G) − Z (G) + 2K22(G), (2)

where

J (G) = 1

2

(
|E|(|E| + 1) −

∑
i∈U

r2
i −

∑
j∈V

c2
j

)
(3)

is the number of disjoint pairs of edges,

Z (G) =
∑

(i, j )∈E

(ri − 1)(c j − 1) (4)

is the number of “Z” structures

{(a, b), (c, d ), (c, b) ∈ E, with a, b, c, d all distinct},
and

K22(G) =
∑
i,k∈U
i �=k

(
M (i, k)

2

)
= 1

2

∑
i,k∈U
i �=k

M (i, k)2 − M (i, k) (5)

is the number of K2,2 cliques of G.

PROOF. Eq. (2) follows from the observation that every disjoint pair of edges
is a swappable pair unless it is part of a Z structure. However, the value J (G)−
Z (G) underestimates the number of swappable pairs: In each K2,2 there are 2
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disjoint pairs of edges and 4 Z’s, since each pair participates in two Z structures.
Therefore, we need to add 2 for each K2,2 to obtain the correct count, resulting
in Eq. (2).

We now explain how to derive Eqs. (3)–(5). In order to compute the number
of pairs of disjoint edges, consider a single edge (i, j ). This edge forms a disjoint
pair with all other edges (|E|−1), except those that have an endpoint at i (ri −1)
or j (c j −1), that is, with |E|+1−ri − c j other edges. Therefore, summing over
all edges and dividing by two to avoid double-counting, we obtain

J (G) = 1

2

∑
(i, j )∈E

(|E| + 1 − ri − c j )

= 1

2

(
|E|(|E| + 1) −

∑
i∈U

∑
j∈V :(i, j )∈E

ri −
∑
j∈V

∑
i∈U :(i, j )∈E

c j

)

= 1

2

(
|E|(|E| + 1) −

∑
i∈U

r2
i −

∑
j∈V

c2
j

)
.

For the computation of the number of Z structures, it suffices, to observe that
there is a one-to-one mapping between a Z structure and the edge in the middle
of the Z . A given edge (i, j ) creates (ri − 1)(c j − 1) Z structures with the edges
incident to i and j . Summing over all edges we obtain Eq. (4).

For the number of K2,2’s we observe that the value of the entry M (i, k) is the
cardinality of the set Vik = { j : (i, j ) ∈ E ∧ (k, j ) ∈ E}. Any pair of elements in
the set Vik forms a K2,2 with nodes i, k. There are ( M (i,k)

2
) such pairs. Summing

over all pairs i, k ∈ U we obtain Eq. (5).

COROLLARY 4.4. Given graphs G and G ′ such that (G, G ′) ∈ T , d (G ′) can be
calculated from d (G) in time O(min{m, n}).

PROOF. Without loss of generality assume that min{m, n} = m, and that we
are using the m × m matrix M = DDT . Otherwise we can use the n × n matrix
M ′ = DT D. Using Eq. (2) we have

d (G ′) = d (G) − �Z + 2 �K22.

Graphs G and G ′ differ only by one swap; so, matrices D(G) and D(G ′) differ
only in four positions, and matrices M (G) and M (G ′) differ only in two rows
and two columns. Therefore �Z can be computed in constant time and �K22

in O(m) time.

We note that Metropolis-Hastings still needs to run the Find adjacent al-
gorithm for finding a candidate swap pair. Although the way that the algo-
rithm moves between states is different (neighboring states are not chosen
uniformly at random), and thus it may guarantee faster convergence, we be-
lieve that most likely this does not offset the additional cost incurred by the
computation of the degrees. Thus we prefer to experiment with the Self loop
algorithm. We note that it may be possible to maintain the number of swap-
pable pairs in linear time, thus eliminating the cost of the Find adjacent al-
gorithm. However, this is a nontrivial task, and still does not guarantee that
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Table I. The Datasets

Dataset # of rows # of cols # of 1’s dens. (%)

ABSTRACTS 128820 25335 10449902 0.32

ABSTRACTS
′ 128803 5918 7150992 0.94

COURSES 2405 5021 65152 0.54

KOSARAK 990002 41270 8019015 0.02

PALEO 124 139 1978 11.48

RETAIL 88162 16470 908576 0.06

the Metropolis-Hastings algorithm would be faster. Recall also that in many
cases, the cost of Find adjacent is constant in expectation.

5. EMPIRICAL RESULTS

We perform experiments with many of the well-known datasets used in the data
mining community. A description of the datasets we are using is as follows: AB-
STRACTS contains document-word information on a collection of project abstracts
submitted for funding by NSF. ABSTRACTS

′ is a pruned version of ABSTRACTS,
where we keep only words of medium frequency (with frequency between 200
and 8854). COURSES is a student-course dataset of courses completed by com-
puter science students of the University of Helsinki. RETAIL is a market-basket
dataset collected in a Belgian supermarket [Brijs et al. 1999]. KOSARAK is a
click-stream dataset from a Hungarian news website. Finally, PALEO, the small-
est dataset, contains information of species fossils found in specific palaeon-
tological sites in Europe [Fortelius 2006]. Exact information of the datasets,
including sizes and the density of 1’s, are shown in Table I.

Swap randomization maintains the row and column margins of the datasets.
Figure 4 shows the distribution of the row and column sums for datasets
KOSARAK, RETAIL, and PALEO. We see typical power-law shapes for KOSARAK. For
RETAIL, the column sums seem to have the power law, while the row sums
have slightly different shapes. In PALEO the rows (fossil sites) and columns
(species) have been selected so that very small row or column counts do not
appear.

5.1 Convergence and Performance

We have tested extensively the convergence properties of the swapping Markov
chain for various datasets. Designing diagnostics for the convergence of a
Markov chain is an open research question, so our tests can provide evidence
only that the chain is mixed and by no means do they constitute a proof. See
Besag [2004] and Besag and Clifford [1991, 1989] for detailed discussions on
how p-values can be obtained from this type of chain.

An example is shown in Figure 5. For each of our datasets, we measure the
number of frequent itemsets for a given threshold. The y-axis in Figure 5 shows
the number of frequent itemsets in the sampled datasets, divided by the number
of frequent itemsets in the original dataset. The x-axis shows the number of
steps in the Markov chain scaled by the number of 1’s in the corresponding
dataset, namely, position x = i shows a sample after iL steps, where L is the
number of 1’s in the corresponding dataset. We see that in almost all cases the
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Fig. 4. Distribution of row and column sums in KOSARAK, RETAIL, and PALEO datasets. Log-log scale.

chain mixes quite rapidly: Already after L steps (4L in the case of KOSARAK) the
number of frequent sets has stabilized.

Similar convergence evidence was obtained for all our measures: frequencies
of specific itemsets, number of correlations above a certain threshold, clustering
errors, etc. In all of the experiments presented in the following sections we have
run the chain with a very large number of steps in order to ensure convergence.
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Fig. 5. Convergence: The x-axis is the number of steps (× the number of 1’s in the data); the

y-axis is the number of frequent itemsets in the sampled datasets, divided by the number of

frequent itemsets in the original dataset.

Table II. Running Times Needed to Perform Swap

Randomization on the Different Datasets

Dataset time

ABSTRACTS 12m53s

ABSTRACTS
′ 9m11s

COURSES 3.35s

Dataset time

KOSARAK 8m38s

PALEO 0.100s

RETAIL 1m1.5s

We report the clock time (in s) needed to perform a number of

swaps equal to 5 times the number of the 1’s in the dataset.

Additionally, the swaps can be performed quite efficiently. Table II shows the
running time for the different datasets, using a simple Perl implementation on
a 3GHz Pentium machine with 2GB of memory. The reported times are for
performing 5L swaps. In most cases a much smaller number of swaps can be
used. For comparison, the time needed to cluster the COURSES and PALEO datasets
into 5 clusters by using a simple implementation of the K-means algorithm are
60 s and 1 s, respectively. Thus, the time needed for swapping is small compared
to the need for running the data mining algorithm on the samples.

5.2 Frequent Itemsets

In this section we assess the results of frequent itemset mining using swap
randomization. Table III shows the number of frequent sets for the datasets
described in Section 5. We compute the collections of frequent sets in the orig-
inal data, in random data under swap randomization, and in random data
under independent permutations of columns (i.e., only column margins are
maintained). The collections are denoted by F , Fs, and Fp, respectively. The
minimum support thresholds were chosen so that the number of frequent sets
is not exceedingly large. Frequent items, that is, frequent sets of size 1, are
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Table III. The Number of Frequent Itemsets

ABSTRACTS, minsupp = 5000

|X | |F | mean(|Fs|) std(|Fs|) mean(|Fp|) std(|Fp|)
≥2 1128 1004.8 4.8 698.6 3.7

≥3 226 188.7 2.5 75.6 2.0

ABSTRACTS
′, minsupp = 600

|X | |F | mean(|Fs|) std(|Fs|) mean(|Fp|) std(|Fp|)
≥2 4854 839.5 19.2 22.5 4.0

≥3 223 0.0 0.0 0.0 0.0

COURSES, minsupp = 400

|X | |F | mean(|Fs|) std(|Fs|) mean(|Fp|) std(|Fp|)
≥2 9687 442.2 12.5 149.1 2.9

≥3 9412 259.7 11.4 46.8 2.3

≥4 8479 62.8 5.9 1.2 0.5

≥5 6669 3.1 1.3 0.0 0.0

KOSARAK, minsupp = 5000

|X | |F | mean(|Fs|) std(|Fs|) mean(|Fp|) std(|Fp|)
≥2 1436 5644.5 60.8 266.0 1.3

≥3 977 5013.8 59.5 88.8 0.9

≥4 417 3629.6 52.5 7.1 0.3

≥5 95 1864.6 35.2 0.0 0.0

≥6 8 589.2 16.0 0.0 0.0

PALEO, minsupp = 7

|X | |F | mean(|Fs|) std(|Fs|) mean(|Fp|) std(|Fp|)
≥2 2828 266.7 14.8 227.7 11.7

≥3 2058 9.8 5.4 4.9 3.3

≥4 898 0.0 0.2 0.0 0.0

RETAIL, minsupp = 200

|X | |F | mean(|Fs|) std(|Fs|) mean(|Fp|) std(|Fp|)
≥2 1384 1616.1 12.3 860.3 6.8

≥3 489 569.0 9.1 168.2 3.2

≥4 78 79.2 3.7 7.6 1.0

|X |: the minimum cardinality of the itemset we include to the count. |F |: the number of

frequent sets of cardinality at least |X | in the original data; |Fs|: the expected number

of frequent sets in swapped data and its standard deviation; |Fp|: the expected number

of frequent sets in random data with the same column margins as the original data

and its standard deviation. The expectations and standard deviations were computed

on 500 experiments.

omitted from the table since they do not change by swapping or permuting the
columns. In the case of swapped and permuted datasets, we show the mean
values (and standard deviations) of 500 randomized versions of the datasets.

Table III clearly demonstrates the differences between the randomization
methods. All datasets seem to contain many interesting frequent itemsets when
compared to the corresponding datasets with permuted columns. The sizes of
the frequent set collections are always considerably smaller in the permuted
data than in the original data. On the other hand, different datasets show
very different behaviors with respect to swapping. In ABSTRACTS and RETAIL

the number of frequent sets remains about the same under swap randomiza-
tion, whereas in ABSTRACTS

′, COURSES, and PALEO the numbers decrease signifi-
cantly. Finally, there is a considerable increase in the number of frequent sets
in KOSARAK.
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Interpreting the results, we can conclude that the structure captured by fre-
quent itemsets in ABSTRACTS and RETAIL can be attributed mainly to the row
and column margins, and thus is preserved in random datasets where the mar-
gins are preserved. On the other hand, in the datasets ABSTRACTS

′, COURSES,
and PALEO, the structure captured by frequent sets is more interesting, since
it disappears under swap randomization. Note that with respect to frequent
itemsets, the main difference between datasets ABSTRACTS and ABSTRACTS

′ is
the elimination of very frequent words from ABSTRACTS. Thus any frequent set
structure in ABSTRACTS is mostly due to the stop words. Associations between
stop words (e.g., frequently occurring pairs such as “of the,” “a,” and “of”) cap-
ture mostly the syntactic structure in the document rather than the semantic
one. They are typically considered as less interesting, since they are expected
to occur in most documents that share the same syntactic structure. This is
accurately identified by swap randomization.

The increase in the number of frequent sets in the case of KOSARAK implies
that many sets of items are anticorrelated with each other. A possible expla-
nation for this phenomenon lies in the structure of the data. KOSARAK consists
of anonymized click-stream data from a news portal: The link structure of the
websites can cause negative correlations between groups of pages.

Table IV shows in more detail what happens to the number of frequent pairs
in KOSARAK, RETAIL, and PALEO datasets under swap randomizations and per-
mutations of the columns, for different values of the frequency threshold. We
observe for the PALEO dataset that the number of frequent pairs is higher in
the original dataset than in the swapped data for moderate and large values
of the frequency threshold. This indicates that cooccurrences of variables are
more common in the original data. When the frequency threshold is very small,
there are more frequent pairs in the swapped data. The reason for this is that
in the limit, almost every pair tends to occur in the swapped (or permuted)
dataset.

For the KOSARAK and RETAIL datasets the results cannot be given for arbitrar-
ily small frequencies because the task of finding frequent pairs becomes pro-
hibitively expensive. For moderate values of the threshold we observe in both
cases that swapped data has more frequent pairs; the ratios stay remarkably
similar for different thresholds. Only for the largest threshold in KOSARAK do
we obtain a frequent pair that is more frequent than in the swapped data. This
behavior can probably be explained by the existence of disjoint dense blocks of
1’s in the data; we have conducted simple experiments and simulations show-
ing that in such datasets the behavior of the number of frequent pairs has
such a trend. We continue the discussion on the behavior of pair frequencies in
Section 5.3.

Although the number of frequent itemsets is indicative of the structure that
is contained in the data, it is not informative with respect to what the actual
itemsets contained in the collections are, and how the collections relate to each
other. It may well be the case that collections have about the same size, yet
are completely disjoint. In the following we present some results on how the
itemset collections change under swap randomization. Our results are meant
to be indicative of the behavior of the swap randomization, and to help guide
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Table IV. Number of Frequent Sets of Size 2 for KOSARAK, RETAIL,

and PALEO Datasets for Different Values of Frequency Threshold

KOSARAK dataset

original swapped permuted

minsupp # of 2-sets mean std mean std

1500 4003 5322.7 24.2 1087.5 4.1

1750 3083 3939.5 13.5 850.2 3.9

2000 2423 3136.9 11.2 702.4 3.1

2500 1567 2118.3 8.2 508.5 2.5

3000 1161 1541.7 6.9 385.6 1.7

4000 660 934.3 3.7 243.9 1.5

5000 459 630.7 2.9 177.3 0.9

10000 139 195.9 1.2 74.7 0.5

20000 45 61.2 0.4 29.0 0.1

30000 28 37.0 0.1 19.0 0.1

40000 17 25.9 0.4 12.0 0.1

50000 14 18.7 0.5 8.0 0.0

100000 4 6.0 0.0 4.0 0.0

300000 1 0.0 0.0 0.0 0.0

RETAIL dataset

original swapped permuted

minsupp # of 2-sets mean std mean std

200 895 1046.7 7.1 692.1 5.6

250 640 722.0 5.4 467.1 4.7

300 471 517.3 4.8 342.7 3.7

400 284 311.5 3.2 208.5 2.7

500 191 208.8 2.3 142.2 2.2

600 137 151.9 1.8 92.8 1.5

800 71 80.3 1.9 50.8 1.1

1000 49 51.4 1.0 35.9 1.0

2000 20 17.6 0.5 13.0 0.0

3000 10 11.0 0.2 7.0 0.0

4000 7 7.0 0.0 7.0 0.0

PALEO dataset

original swapped permuted

minsupp # of 2-sets mean std mean std

1 4262 6884.4 44.2 6669.1 40.7

2 3092 4198.7 32.7 3939.4 39.2

3 2394 2403.0 24.7 2197.6 32.9

4 1799 1354.5 22.3 1211.6 24.1

5 1384 768.0 19.1 674.9 18.1

6 1017 439.7 16.1 383.5 14.8

7 770 257.0 12.3 223.3 10.3

8 577 151.9 8.9 131.7 8.1

9 425 91.7 7.1 78.8 6.5

10 289 55.9 5.6 47.1 5.2

15 39 4.7 1.9 3.6 1.6

20 11 0.2 0.4 0.1 0.4

Minsupp: the frequency threshold; original: the number of frequent pairs

in the original data; swapped: the average number of frequent pairs in

swapped datasets in its standard deviation; permuted: the average number

of frequent pairs in permuted datasets and its standard devitation. The

expectations and standard deviations were computed on 200 experiments.
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Table V. Changes in the Collections of Frequent Sets

Dataset |F | |Fs| std |F∩Fs |
|F |

|F\Fs |
|F |

ABSTRACTS 1128 1004.8 4.8 0.767 0.233

ABSTRACTS
′ 4854 839.5 19.2 0.083 0.917

COURSES 9687 442.2 12.5 0.042 0.958

KOSARAK 1436 5644.5 60.8 0.724 0.276

PALEO 2828 266.7 14.8 0.045 0.955

RETAIL 1384 1616.1 12.3 0.882 0.118

D: the dataset; F : the frequent itemset collection in the dataset; Fs: the

frequent itemset collection in the swapped dataset; std: the standard devi-

ation in the size of the frequent itemset collection in the swapped dataset;
|F∩Fs |

|F | : the fraction of itemsets that are preserved in the collection; |F\Fs |
|F | :

the fraction of frequent itemsets that disappear from the collection. The

values involving swapped data are expectations on 500 experiments.

future analysis. A formal statistical analysis of the statistical significance of
individual itemsets is beyond the scope of this article.

Table V shows the average fraction of itemsets in the original dataset that are
preserved or disappear after swap randomization. For the datasets ABSTRACTS,
KOSARAK, and RETAIL where the size of the collection remains relatively stable
(or in the case of KOSARAK increases), the mean fraction of preserved itemsets is
around 70%, confirming our intuition that the original collection did not contain
much interesting structure. This is especially pronounced in the case of the RE-
TAIL data, where on average 88% of the frequent itemsets are preserved. For the
remaining datasets, the mean fraction of preserved itemsets drops below 9%.

The swap randomization method can be used also to suggest unexpected
itemsets in the data, namely, sets that are very frequent in the original data
but very rare in the swapped data. For example, {dissertation, doctoral,
promising} is common in the ABSTRACTS

′ data (support 682), but rare in the cor-
responding swapped data (mean support 2.4). Similarly, the set {differential,
equations, partial, solutions} has support 679 in the original data, while
its mean support in swapped data is less than 0.4. The most “dull” itemset is
the set {address, result}, with supports 691 and 691.6 in the original and
swapped data, respectively.

Figure 6 shows how the frequencies of individual itemsets of size 3 change
in the ABSTRACTS

′ datasets under swap randomizations. We see that all the fre-
quencies decrease by at least a factor of 10, and that there are fairly large dif-
ferences in the decrease. Some sets with original frequency of about 650 have
frequency less than 10 in the swapped version, while others have a frequency
of more than 60. This means that the average column and row sums for rows in
which these sets occur have to be quite different. The differences also suggest
that the ratio f (X )/ fs(X ), where f (X ) is the frequency of X in the original
data and fs(X ) the frequency in the swapped data, might be a useful descriptor
of the itemset.

5.3 Correlations

We now study how correlations between items (columns) change under swap
randomization. We compute correlation between two columns using the Pearson
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Fig. 6. Frequencies of itemsets of size 3 in ABSTRACTS
′ dataset and its swapped versions.

correlation coefficient, which returns a value between −1 (perfectly anticorre-
lated) and 1 (perfectly correlated). Computing all pairwise correlations between
the columns in the data tables is computationally expensive for most of our
datasets. Instead, we focus on the k columns with the highest column degree,
for k = 100. The rationale is that items appearing frequently are usually more
interesting and we want to study their correlations. Furthermore, this allows
for an interesting comparison with the randomization technique that permutes
columns independently. Since the column counts are large, our experiments
give an indication as to how the row counts affect the significance of the pair.

Table VI and Figure 7 show our results for different datasets. We com-
pute the maximum and minimum correlation values, as well as the number
of pairs whose correlation exceeds a certain threshold, for different thresholds.
We present the values for the original data, as well as the mean value, and the
Z -score for both swapped and independently permuted data. The statistics are
taken over 100 different samples.

From the results we make the following observations. As expected, when
randomizing the dataset, strong correlations, either positive or negative, tend
to disappear for both methods of randomization. However, the way in which
this happens differs between the two methods. For the independent permu-
tation model, the correlations concentrate very sharply and almost symmetri-
cally around zero. For swap randomization, negative correlations disappear at a
much faster rate, for example, for RETAIL and ABSTRACTS they disappear almost
completely. On the other hand, the number of positive correlations remains
relatively high, indicating that to some extent the correlations in the dataset
(especially low ones) can be explained by the row and column margins. This
becomes especially clear when one compares the mean values for the swap and
independent model in the RETAIL and ABSTRACTS datasets. On the other hand,
for the COURSES and ABSTRACTS

′ datasets we observe that positive correlations
drop significantly faster.

Figure 7 shows the histograms of the correlations for three of the datasets:
KOSARAK and RETAIL, which had somewhat unintuitive results for the number

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 14, Publication date: December 2007.



Assessing Data Mining Results via Swap Randomization • 14:25

Table VI. Statistics for Correlation Values

Swapped Permuted

Measure Original mean Z mean Z
ABSTRACTS Dataset

max 0.47 0.06 11.19 0.01 514.2

min −0.10 −0.01 11.90 −0.01 137.5

≥0.03 1941 667.67 7.28 0.00 —

≥0.02 2649 3573.88 5.22 0.00 —

≥0.01 3363 4904.27 7.91 0.86 3342

≤−0.01 776 6.41 21.19 0.66 775

≤−0.03 310 0.77 23.58 0.00 —

ABSTRACTS
′ Dataset

max 0.51 0.03 14.89 0.01 592.5

min −0.05 −0.00 15.15 −0.01 54.58

≥0.03 760 5.76 18.35 0.00 —

≥0.02 1391 37.32 11.10 0.00 —

≥0.01 2379 3455.31 6.50 1.20 2342.6

≤−0.005 1033 5.20 22.97 174.49 63.3

≤−0.01 691 1.92 37.24 0.59 844.4

COURSES Dataset

max 0.91 0.24 57.19 0.08 114.38

min −0.53 −0.03 75.25 −0.07 77.05

≥0.30 565 0.00 — 0.00 —

≥0.10 2025 1611.06 10.86 0.01 20209.9

≥0.03 2923 3214.10 6.55 365.9 149.9

≤−0.01 1373 20.23 244.29 1574.1 5.8

≤−0.03 1058 1.18 886.30 332.4 40.7

RETAIL Dataset

max 0.40 0.11 87.16 0.01 303.1

min −0.02 −0.01 18.32 −0.01 11.46

≥0.03 219 113.83 15.04 0.00 —

≥0.02 537 480.17 4.02 0.00 —

≥0.01 1513 2100.27 14.32 15.92 352.73

≤−0.005 458 2.65 257.85 307.3 9.24

≤−0.01 92 0.00 — 1.88 65.3

PALEO Dataset

max 0.87 0.41 10.77 0.15 14.6

min −0.42 −0.24 7.98 −0.05 29.55

≥0.20 1011 145.00 70.16 0.13 632.8

≥0.10 1430 839.81 24.44 2.79 475.1

≥0.03 1756 1968.30 6.37 275.26 95.5

≥0.01 1841 2319.17 13.51 1084.38 33.6

≤−0.01 2984 2159.15 22.20 1195.8 4.56

≤−0.10 2204 593.15 80.70 0.00 —

A row of type max contains the value of the largest correlation, while a row of type,

say ≥0.01, contains the number of correlation pairs with value greater than 0.01.

The empirical p statistic in all the given results is 1%.

of frequent pairs, and PALEO, a nicely behaving dataset (as a comparison). We
observe that permutation of columns gives nicely symmetric distributions of
the correlations; this, of course, is no surprise. Swapping the KOSARAK dataset
results in some negative correlations, while for the retail dataset the shape
of the histogram spreads somewhat. Figure 7 is an example of the power of
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Fig. 7. Distribution of correlations in KOSARAK, RETAIL, and PALEO datasets; the 100 most frequent

variables from each dataset: (a) original KOSARAK; (b) swapped KOSARAK; (c) permuted KOSARAK; (d)

original RETAIL; (e) swapped RETAIL; (f) permuted RETAIL; (g) original PALEO; (h) swapped PALEO; (i)

permuted PALEO. For each pair of variables the correlation was computed in 100 replications of

swapping and permutation, and the swapped and permuted panels show the histograms of the

averages over the replications.

randomization tests: panel (b), for example, seems as if it would indicate inter-
esting structure in the dataset. However, this structure can be explained by the
row and column margins of the data in the sense that random datasets with
the same margins have similar structure.

5.4 Clustering

Our results on assessing the clustering structure of datasets are shown in
Table VII. We perform our clustering experiments using Matlab’s k-means de-
fault function. We obtain results only for datasets of small and medium sizes;
our largest datasets cannot be clustered by Matlab’s k-mean function. For each
dataset, we measure the clustering error for the original dataset for clustering
with k = 10 and k = 20, which is shown in the third column of Table VII. The
clustering error is measured as the sum of square of distances from each point
to its representative cluster center, and is computed by the default Matlab k-
means function. Then we sample 100 sampled datasets, which we cluster with
the same parameters. We compute the mean and standard deviation of the clus-
tering error in the sampled datasets, which are shown in the fourth and fifth
columns of Table VII. The sixth column (Z ) reports the distance in standard
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Table VII. Results on Clustering

Dataset k E mean std Z p
S1 10 1777.3 3669.9 11.1 170.43 0.01

20 1660.7 3303.2 11.3 145.33 0.01

S2 10 4075.4 4084.4 11.6 0.77 0.22

20 3686.2 3691.3 12.1 0.42 0.36

COURSES 10 17541.6 24405.1 30.2 227.09 0.01

20 16062.0 23588.4 31.9 235.92 0.01

PALEO 10 1040.7 1401.7 4.8 74.74 0.01

20 800.1 1193.9 5.9 67.09 0.01

RETAIL 10 23920.9 24086.0 135.2 1.22 0.10

20 22276.3 22481.1 235.3 0.87 0.18

k: number of clusters used in k-means; E: clustering error in the original dataset;

mean: mean clustering error in the sampled datasets; std: standard deviation of the

clustering error in the sampled datasets; Z : distance of E from mean, measured in

standard deviations; p: empirical p-value.

deviations between the error in the original dataset and the mean error in
sampled datasets. Finally, the last column records the empirical p-value as
described in Section 2.1.

In addition to experiments on real datasets, we also verify the method on
synthetic ones, which we generate as follows: We first generate k cluster centers
to be d-dimensional binary vectors, where each entry is 0 or 1 with probability
1
2
. Then for each cluster center we generate n

k points, where for each point we
first copy all the entries of its cluster center and then each entry is inverted
with probability e. For both of the datasets S1 and S2 shown in Table VII we
use n = 1000, d = 20, and k = 10. For S1 we use e = 0.1, while for S2 we use
e = 0.45. In other words, the clustered structure of S2 is hugely corrupted with
noise. We see that our results indicate that S1 has indeed a clustered structure,
while this is not the case for S2. Notice that even though both datasets have a
ground truth of 10 clusters, we obtain similar results for running the k-means
algorithm with k = 20, that is, when the ground-truth number of clusters is
not known. For the real datasets, we see again that all datasets have clustered
structure except for RETAIL.

5.5 Singular Values

We compute the top-20 singular values for the randomized sets, and compare
the average value of each singular value with the corresponding one of the
original dataset. We observed that in most cases, the first singular value of
the random datasets is relatively large, compared to the first singular value of
the original data. The explanation is that the first singular value captures the
linear trend that is defined by the degree sequences. In contrast, the nonprin-
cipal singular values are significantly smaller in random datasets. Thus, we
conclude that swap randomization destroys linear trends in the data.

Since the sum of squares of the singular values is equal in the original and
swapped data, there should be a “crossing point” when plotting the singular
values of both datasets in decreasing order (see Figure 8). This actually suggests
an interesting heuristic for estimating the correct number of dimensions when
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Fig. 8. Singular values of the original and sampled datasets (mean out of 100 samples) for synthetic

datasets. The crossing point of the two lines at position 10 corresponds to the number of clusters

planted in the data.

projecting to low-dimensional spaces. The index of the first singular value that
is significantly lower than the corresponding random one is probably a good
indicator that the structure contained in the remaining singular vectors is no
more interesting than that contained in a random matrix.

Finding a good low-dimensional approximation of the data is an important
problem in many aspects. First, it provides a concise description of our data.
Second, as already mentioned in Section 3, principal singular vectors capture
the strongest linear trends in the data. Each vector defines a direction along
which the data points are aligned. Since the vectors are orthogonal, projecting
along these directions usually results in a natural clustering of the data points,
and thus each singular vector corresponds to a different cluster. One important
problem in this setting is to identify the number of dimensions on which to
project. We want to eliminate vectors that capture noise, and maintain only the
ones that model the actual structure in the dataset.
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We observe that in many cases the crossing point in the singular-values
plot can help guide this decision. For example, the PALEO data is conjectured to
contain three clusters and the crossing point for this data is indeed at position 3.
We experiment further with the aforementioned idea on synthetic data in which
we can plant a known number of clusters. The data was generated with the
procedure described in the previous section. Note that in the case where no
noise is added in the data generation, the number of singular vectors is equal to
the number of planted clusters. The addition of noise does not add structure, so
we expect the new singular values to be insignificant according to our measure.
Figure 8 shows indeed that for a dataset with 10 clusters, the crossing point is
at position 10, for noise levels ranging from 10% to as high as 30%.

6. RELATED WORK AND ADDITIONAL COMMENTS

Defining the significance of discovered patterns has attracted a lot of attention
in data mining. In one of the first known papers, Brin et al. [1997] considered
measuring the significance of associations via the chi-square test. A lot of other
measures have been proposed to capture the interestingness of patterns, such
as DuMouchel and Pregibon [2001], Jaroszewicz and Simovici [2001], Liu et al.
[2001, 1999], Megiddo and Srikant [1998], and Xiong et al. [2004]. Megiddo
and Srikant [1998] use ideas from statistical significance testing to estimate
the number of false discoveries and rank the set of the association rules found.
Liu et al. [2001] present an algorithm to identify “nonactionable” association
rules, that is, rules that are significant but covered by other, more specific rules.
DeMouchel and Pregibon [2001] apply statistical filtering for association rules
using a Bayesian framework. Recently, Webb [2007, 2006] built upon some of
the existing approaches and presented two generic approaches for discovering
significant rules while filtering false discoveries. A comprehensive presentation
and comparison of the methods that capture interestingness of patterns can be
found in Tan et al. [2002].

The problem is also very well studied in statistics, and there is a significant
amount of work for sampling from the space of contingency tables [Chen et al.
2005; Cobb and Chen 2003; Diaconis and Gangolli 1995; Snijders 1991], as well
as several studies that give asymptotics on the exact number of such tables,
such as Wang and Zhang [1998]. The algorithmic properties of some of these
methods are discussed in Bezáková et al. [2006]. A good survey on the topic is
provided by Chen et al. [2005].

In theoretical computer science the subject has drawn attention in the con-
text of providing bounds for the mixing of the Markov chain. Very recently,
Bezáková et al. [2006] gave a polynomial-time algorithm for sampling binary
0–1 matrices with given margins. The algorithm is based on a different Markov
chain than that based on swaps.

The problem of generating random matrices with fixed margins has also been
studied in many application areas, such as ecology [Sanderson 2000] and biol-
ogy [Kashtan et al. 2004], and analysis of complex networks [Milo et al. 2002].

In using the swap randomization framework, Di is obtained from D by mak-
ing a sequence of swaps. As a single swap has only very limited effect on the
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dataset, one might look for implementations of A that take advantage of the
incremental characteristics of the datasets for which A is being used. This is
fairly straightforward, for example, for frequent sets, but we have not pursued
this idea further.

Finally, we remark that it is possible to directly generate random datasets
that do not preserve exact row and column sums but on expectation. This in-
volves setting each entry (i, j ) equal to 1 with probability ric j /L, and equal to 0
otherwise. This expectation model has the drawback that the fraction ric j /L has
probability interpretation only if max{ri, c j } ≤ L. The advantage of this model
is that the generation process has fixed complexity (quadratic), which is likely
faster than the Metropolis-Hasting algorithm. Furthermore, it is amenable to
formal analysis. Experimenting with this model, we found that it gives similar
results as the swap method, but sometimes is slightly inaccurate. For instance,
such inaccuracies were observed in the KOSARAK dataset in which both the row
and column sums follow power-law distribution. Additionally, the savings in
running time are not significant.

7. CONCLUSIONS

We have studied the algorithmic properties of swap randomization, and de-
scribed how it can be used in assessing results of data mining algorithms. We
gave an algorithmic treatment of the swap randomization method, showing
some results on the computation of the number of immediately reachable states
in the Markov chain, and we showed that the Self loop algorithm is always
more efficient than the Metropolis-Hastings method for this problem. Our
work shows that swap randomization is efficient in practice, and that it can be
used for large datasets.

We have conducted extensive experiments on the use of swap randomization.
The results show large differences in the amount of structure that is present
in different datasets. For example, when viewed through clustering or frequent
sets, the RETAIL dataset apparently has very little structure, apart from its very
skewed degree distribution for columns and (slightly less) for rows. The num-
ber of frequent sets in the real dataset is about the same as in the randomized
versions, and clustering the original and randomized versions yields about the
same error. On the other hand, several of the other datasets clearly have lots
of second-order structure, as evidenced by the dramatic drop in number of fre-
quent sets and strong correlations when moving to the randomized version of
the data.

Swap randomization is a technique that maintains the first-order statistics of
the data. Thus, it should not be used to study the significance of discoveries that
depend only on the first-order statistics of the data, namely, the row and column
margins; power laws are an example of these types of statistics. An interesting
question is whether it is possible to generate, from a dataset D, random datasets
having the same margins as D while keeping also some second-order statistics
(e.g., the frequency of certain variable pairs) fixed. It can be shown that one
can indeed efficiently generate datasets that have the given row and column
margins, and additionally maintain counts { f (X i)}, where the sets X i are pairs
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and the collection {X i} is acyclic. Maintaining frequencies of sets in general is
NP-hard [Mielikäinen 2003; Calders 2004].

There are also other types of statistics that might be interesting to maintain
in 0–1 data. We have already remarked on the possibility of maintaining the
counts approximately. Another option would be to maintain the counts of small
subgraphs, such as cliques K2,2 or K2,3 [Tomkins 2006].

Availability. Software for swap randomization can be found at http://
www.cs.helsinki.fi/hiit bru/software/swaps/.
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MIELIKÄINEN, T. 2003. On inverse frequent set mining. In Proceedings of the 2nd Workshop on
Privacy Preserving Data Mining (PPDM), IEEE Computer Society, 18–23.

MILO, R., SHEN-ORR, S., ITZKOVIRZ, S., KASHTAN, N., CHKLOVSKII, D., AND ALON, U. 2002. Network

motifs: Simple building blocks of complex networks. Sci. 298, 824–827.

NEWMAN, M. 2003. The structure and function of complex networks. SIAM Rev. 45, 2, 167–256.

RYSER, H. J. 1957. Combinatorial properties of matrices of zeros and ones. Canadian J. Math. 9,

371–377.

SANDERSON, J. 2000. Testing ecological patterns. Amer. Sci. 88, 332–339.

SNIJDERS, F. 1991. Enumeration and simulation methods for 0–1 matrices with given marginals.

Psychometrika 56, 397–417.

TAN, P.-N., KUMAR, V., AND SRIVASTAVA, J. 2002. Selecting the right interestingness measure for

association patterns. In Proceedings of the 8th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Edmonton, Alberta, Canada, 32–41.

TOMKINS, A. 2006. Private communication.

WANG, B. Y. AND ZHANG, F. 1998. Precise number of (0, 1)-matrices in u(r, s). Discrete Math. 187,

211–220.

WEBB, G. 2006. Discovering significant rules. In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 434–443.

WEBB, G. 2007. Discovering significant patterns. Mach. Learn., to appear.

XIONG, H., SHEKHAR, S., TAN, P.-N., AND KUMAR, V. 2004. Exploiting a support-based upper bound

of pearson’s correlation coefficient for efficiently identifying strongly correlated pairs. In Pro-
ceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Seattle, WA, 334–343.

Received January 2007; revised June 2007; accepted July 2007

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 3, Article 14, Publication date: December 2007.


