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ABSTRACT
Online user reviews play a central role in the decision-making pro-
cess of users for a variety of tasks, ranging from entertainment and
shopping to medical services. As user-generated reviews prolifer-
ate, it becomes critical to have a mechanism for helping the users
(information consumers) deal with the information overload, and
presenting them with a small comprehensive set of reviews that
satisfies their information need. This is particularly important for
mobile phone users, who need to make decisions quickly, and have
a device with limited screen real-estate for displaying thereviews.
Previous approaches have addressed the problem by ranking re-
views according to their (estimated) helpfulness. However, such
approaches do not account for the fact that the top few high-quality
reviews may be highly redundant, repeating the same information,
or presenting the same positive (or negative) perspective.In this
work, we focus on the problem of selecting acomprehensiveset of
few high-quality reviews that cover many different aspectsof the
reviewed item. We formulate the problem as a maximum coverage
problem, and we present a generic formalism that can model the
different variants of review-set selection. We describe algorithms
for the different variants we consider, and, whenever possible, we
provide approximation guarantees with respect to the optimal so-
lution. We also perform an experimental evaluation on real data in
order to understand the value of coverage for users.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Selection Process];
H.2.8 [Database Management]: Database applications—Data Min-
ing

General Terms
Algorithms, Experimentation, Theory
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1. INTRODUCTION
Online user reviews are an invaluable resource for making in-

formed decisions for a variety of tasks such as purchasing products,
booking flights and hotels, selecting restaurants, or picking movies
to watch. Sites likeYelp.com andEpinions.comhave created
a viable business as review portals, while part of the popularity and
success ofAmazon.com andTripAdvisor.com is attributed
to their extensive user reviews. The benefit of user reviews is that
they are voluminous and comprehensive: multiple people, with dif-
ferent needs, different viewpoints, and different experiences review
the same item, composing collectively a picture that is richin detail
and diverse in perspective.

At the same time, this information abundance can be overwhelm-
ing to the users. InAmazon.com, for popular products such as
digital cameras, there are typically several hundreds of reviews,
many of which are fraudulent, uninformative, or repetitive. Typ-
ical online users do not have the patience to go through all ofthem
to sort out the ones with useful information content. To address
this problem, most online portals allow the users to rate reviews ac-
cording to their helpfulness, and there has been substantial amount
of research in automatically estimating the quality of a review [19,
29, 9, 10, 32, 17, 15, 20].

Such approaches produce a score for each review, or an ordered
list of reviews. However, they do not account for the redundancy in
the content of the reviews, or the fact that some important aspects of
the reviewed item may not be covered at all by the top results.For
example, all top reviews may be highly informative about thelong-
range zoom of a new camera, but mention nothing about how easy
it is to use, or to carry. Similarly, for a restaurant, the most helpful
reviews may be detailed about the quality of the food, but mention
nothing about the ambiance of the place, or how kid-friendlyit is.

Furthermore, an ordered list of reviews does not necessarily rep-
resent all different viewpoints (e.g., positive vs. negative) of the
item reviewed. There is experimental evidence [9] that users tend
to consider helpful (and vote them as such) the reviews that agree
with the average item rating. As a result the top reviews are more
likely to represent a single viewpoint. Users usually need to ex-
plicitly filter on the review rating in order to get a diverse set of
opinions.

Therefore, ordering reviews according to their user-defined, or
algorithmically-estimated quality does not guarantee that there is a
small set of reviews that covers the different aspects of an item with
diverse viewpoints. The need for such compact and comprehensive
information becomes critical in the case of mobile phone users. In
mobile phones, screen real-estate and time resources are even more
sparse, and users need helpful information to make quick decisions
as they do not have the luxury to carefully go through multiple re-
views. Instead, they want to quickly browse through a few reviews



and get a well rounded view of how good a product is, whether
they are likely to enjoy a film, or whether the restaurant thatis two
blocks away has good vegetarian dishes. Therefore, the few re-
views that they will read should have high information content and
cover the aspects of an item with diverse opinions.

In this paper we consider thereview set selectionproblem where
given a set of reviews for a specific item, we want to select a com-
prehensive subset of small size. The notion of comprehensiveness
is defined with respect to the attributes of the product and the view-
points of the reviews. Given a review of a specific item, we assume
that we have the following information: (a) the attributes of the
item that are discussed in the review; (b) the quality of the review;
(c) the viewpoint of the review (e.g., positive or negative). The se-
lected subset should cover as many attributes of the item as possi-
ble, while containing reviews of high quality, which offer different
viewpoints for the attributes of the product. We formalize this in-
tuition as amaximum coverageproblem, and we show how we can
extend existing algorithms for maximizing coverage to address our
requirements.

In this paper we make the following contributions:

• We formulate the review set selection problem as a cover-
age problem and we define a generic formalism that can be
used to model the different variations of our problem. The
GROUP-COVERAGE problems we define in Section 2 are
novel, and have not been previously studied.

• We provide a theoretical analysis of the coverage problems
we consider, and describe efficient algorithms for review se-
lection. Whenever possible, we provide approximation guar-
antees for the proposed algorithms.

• We perform an experimental analysis of the algorithms on
real data, and we study the value of coverage to users by
conducting a user study on Amazon Mechanical Turk.

The rest of the paper is structured as follows. In Section 2, we de-
fine the coverage formalism, and model our selection problem. In
Section 3, we provide a theoretical analysis of the different cover-
age variants we consider; we give algorithms for each one of these
variants in Section 4. In Section 5, we present the experimental
analysis. In Section 6, we present the related work, and we con-
clude in Section 7 with a discussion about possible extensions of
our framework.

2. COVERAGE PROBLEM FORMULATION
We now show how to formulate the review set selection problem

as a maximum coverage problem and we define different variants
of the problem that we will consider. Consider a given itemx, e.g.,
a product, that has a set of attributesA = {a1, a2, ..., am}. Let
R = {r1, ..., rn} be a set of reviews for itemx. We assume that
each reviewr is associated with a subsetAr ⊆ A of attributes of
x: these are the attributes that are discussed in reviewr for itemx.
We also say that reviewr coversattributea if a ∈ Ar. We useRa

to denote the set of reviews inR that cover attributea.
Now, letS ⊆ R denote a subset of reviews. We assume acov-

erage scoring functionf(S , a) that assigns a score to attributea
given the subsetS . Intuitively, the scoring function measures the
the benefit we obtain from covering attributea with setS . Let
AS denote the union of attributes covered by the reviews in setS ,
AS = ∪r∈SAr. We define the functionf such thatf(S , a) = 0
for all attributesa 6∈ AS . Therefore, in order to definef , given a
setS , we only need to specify the valuef(S , a) for the attributes
a ∈ AS .

We now define the following genericcoverageproblem, parametrized
by the coverage scoring functionf .

PROBLEM 1 (COVERAGE(f )). Given a set of attributesA and
a set of reviewsR for an itemx, an integer budget valuek, and a
coverage scoring functionf , find a subset of reviewsS ⊆ R of size
|S| = k that maximizes

F (S) =
∑

a∈A

f(S , a)

We will refer to functionF (S) as thecumulative coverage scor-
ing function, and it is defined with respect to the coverage scoring
functionf .

This broad definition allows us to define different coverage prob-
lems by varying the coverage scoring functionf . In the simplest
case, the scoring functionf assigns the same score to all attributes
covered by the setS . We usefu to denote this scoring function
and we have thatfu(S , a) = 1 for all a ∈ AS . We useFu

to denote the corresponding cumulative scoring function, and we
denote the COVERAGE(fu) problem as UNIT-COVERAGE. The
UNIT-COVERAGE problem asks for a set ofk reviews that cover
as many attributes as possible; it is also known in the literature as
the MAX -COVERAGEproblem [12].

Assume now that we are given a quality functionq : R → [0, 1]
that maps a reviewr to a real numberq(r) that measures thequal-
ity, or helpfulness, of the review. This value may be present in
our data (for example, via users voting for the quality of different
reviews), or it may be inferred algorithmically. Given the quality
values, we would like our selected subset to contain reviewsthat
have high quality, while at the same time cover as many different
attributes of a product as possible. The coverage scoring function
should then give higher score to a pair(S , a) if the attributea is
covered by a review of high quality. LetSa denote the set of re-
views inS that covera, that is,Sa = S ∩ Ra Given the quality
functionq, we define the coverage scoring functionfq, as follows:

fq(S , a) = max
r∈Sa

q(r)

That is, the coverage score of attributea is the highest review qual-
ity among the reviews that covera. Note that the scoring func-
tion fu (and the COVERAGE(fu) problem) is a special case of the
fq (and COVERAGE(fq)) when q(r) = 1 for all reviews. Simi-
lar to before, we useFq to denote the cumulative scoring function
with respect tofq . We refer to the COVERAGE(fq) problem as the
QUALITY -COVERAGEproblem.

Assume now that we can partition the reviews intog groups,
R = {R1, ...,Rg}. In our work, we assume that each groupRi

contains reviews of the same viewpoint. Wheng = 2 we have a
positive and a negative viewpoint, while forg > 2 we have a finer
granularity of viewpoints. Given this partition, we now require the
selected subset to represent all different groups.

For a subsetS of reviews, letSi = S ∩ Ri denote the set of
reviews inS that belong to groupRi. Let f denote abasescoring
function that is applied to each group (e.g., this can be eitherfu, or
fq). We define the group coverage scoring function as follows:

fg(S , a) = min
i=1...g

f(Si, a) (1)

By using the min operator in the definition of thefg function in
Equation 1, we guarantee that the score of an attribute that is not
covered by all groups is zero. Therefore, in order to obtain benefit
for a given attribute we need the attribute to be covered by all dif-
ferent groups. Again, we useFg to denote the cumulative coverage
scoring function, and we will refer to the COVERAGE(fg) problem



as the GROUP-COVERAGEproblem. To the best of our knowledge
this is the first time that the GROUP-COVERAGE problem is de-
fined. Maximum coverage with groups has been considered in [7]
but in this case they require that only one review can be selected
from each group.

We will define the group coverage functionfg usingfu or fq
as the base scoring functions. When necessary to discriminate be-
tween the two, we will usefgu to denote the group coverage func-
tion defined with respect tofu, andfgq to denote the group cov-
erage function defined with respect tofq. We useFgu andFgq to
denote the corresponding cumulative functions, and GROUP-UNIT-
COVERAGE and GROUP-QUALITY -COVERAGE to denote the cor-
responding problems.

The COVERAGE(fg) problem requires that the selected subsetS
covers each attributea from all possible viewpoints. We can relax
this requirement, by replacing the min operator in thefg function,
by a sum operator. We thus have the following scoring function:

fs(S , a) =
∑

i

fq(S
i, a) (2)

We useFs to denote the corresponding cumulative scoring func-
tion, and we refer to the COVERAGE(fs) as the SOFT-COVERAGE

problem. Similar to before, we define scoring (cumulative) func-
tionsfsu (Fsu) andfsq (Fsq) depending on the choice of the basis
function. We will refer to the corresponding problems as SOFT-
UNIT-COVERAGEand SOFT-QUALITY -COVERAGE.

3. ANALYSIS OF COVERAGE
We will now analyze the complexity of the different variantsof

the COVERAGEproblem.
For the simple unit coverage scoring functionfu, the UNIT-

COVERAGE problem corresponds to the MAX -COVERAGE prob-
lem. In the MAX -COVERAGE problem, given a universe of ele-
mentsA = {a1, ..., am}, and a collection of setsR = {r1, ..., rn},
and an integer budget valuek, we are looking for a setS ⊆ R
of sizek, such that the set of elements inA that are covered by
the sets inS is maximized. This is identical to the definition of
the COVERAGE(fu) problem where the elements are attributes, and
the sets are reviews. The MAX -COVERAGE problem is known to
be NP-hard [12]. Since functionsfq, fg andfs containfu as a
special case, it follows that the QUALITY -COVERAGE, GROUP-
COVERAGEand SOFT-COVERAGEproblems are also NP-hard.

Since getting an optimal solution is hard, we turn to approxima-
tion algorithms. IfOPT(X) is the benefit of the optimal solution
for a maximization problem on an input instanceX, andALG(X)
is the benefit of algorithmALG on instanceX, we say thatALG

is anα-approximation algorithm, ifOPT(X)
ALG(X)

≥ α for all possible
input instancesX.

The MAX -COVERAGE(UNIT-COVERAGE)problem is known to
have a simple(1 − 1/e)-approximation algorithm [12]. The algo-
rithm proceeds ink iterations, where in each iteration a new review
is added to the result set. The algorithm chooses the next review
to be added in a greedy fashion each time selecting the reviewthat
covers most of the attributes that have not already been covered.
The proof for the approximation factor relies on the fact that the
cumulative scoring functionFu that we want to maximize ismono-
toneandsubmodular. Let 2R denote the powerset of the setR.
The functionF : 2R → < is monotone if for everyS ,T ∈ 2R,
such thatS ⊆ T , F (S) ≤ F (T ). The functionF is submodular,
if it has thediminishing returnsproperty: for everyS ,T ∈ 2R,
such thatS ⊆ T , and everyr ∈ R,

F (S ∪ {r}) − F (S) ≥ F (T ∪ {r})− F (T )

That is, theincremental gainof adding an element to a set de-
creases as the size of the set increases. When looking for a subset
of reviews of sizek that maximizes a submodular functionF , the
greedy algorithm that each time adds the reviewr that maximizes
the incremental gain to the existing set is(1− 1/e)-approximate.

It is very easy to show that all cumulative functions are mono-
tone. The functionFu is known to be submodular. We can prove
the following lemma for functionFq.

LEMMA 1. The functionFq(S) =
∑

a∈AS
fq(S , a) is sub-

modular.

We omit the proof due to space constraints. The submodularity
of Fq is also discussed in [4]. The submodularity ofFs follows
directly from that ofFq. The review setsRi for the different groups
are disjoint. Therefore, the gain inFs of adding reviewr ∈ Ri

to a multi-group set of reviewsS is the same as the gain inFq of
adding reviewr to the setSi. Since we know thatFq is submodular
it follows thatFs is also submodular.

We can prove that theFg function isnot submodular.

LEMMA 2. The functionFg(S) is not submodular.

PROOF. We consider the case where thefg function is defined
with respect tofu, and we assume that there are just two groups
{R1,R2}. For a given set of reviewsS , we useAS to denote the
set of attributes that are covered by at least one review inS , that is,
fu(S , a) = 1. LetCS ⊆ AS denote the set of attributes inAS for
which fg(S , a) = 1, that is, they are are covered by a review from
both groups, and letUS ⊆ AS denote the set of attributes inAS

for whichfg(S , a) = 0, that is they are covered by reviews of only
one of the two groups. We say that the attributes inCS are fully
covered, while the attributes inUS arepartially covered. Without
loss of generality, we assume that all attributes inUS are covered
(only) by reviews in groupR1.

Consider now another set of reviewsT ⊇ S , such thatCT =
CS , andUT ⊃ US , and assume that the attributes inUT \ US are
covered (only) by reviews in groupR1 Let r ∈ R2 be a review
from group 2, such thatAr = UT . We haveFg(S ∪ {r}) −
Fg(S) = |US |. On the other hand,Fg(T ∪ {r}) − Fg(T ) =
|UT | > |UT |. It follows thatFg(S) is not submodular.

In fact, we can show that the GROUP-COVERAGEproblem con-
tains as a special case the DENSESTk-SUBGRAPH(DKS) problem
for bipartite graphs. In the DKS problem, given a bipartite graphG
we want to find a set ofk vertices, such that the number of edges
in the induced subgraph is maximized. The approximation-ratio of
the DKS is unresolved. It is known that there is no Polynomial-
Time Approximation Scheme (PTAS), and the best known approx-
imation algorithm has approximation ratioO(n1/4) [3]. It is not
known if there is aO(nε) approximation algorithm forε ≥ 0. A
constant factor approximation for the COVERAGE(fg) would imply
a constant factor approximation for DKS.

To reduce GROUP-COVERAGEto the DKS problem, we consider
again the case of two groups (g = 2), where all reviews have uni-
form quality. We create a bipartite graphG = (V1, V2, E), where
the left sideV1 contains one node for each reviewr ∈ R1 in group
1, whileV2 contains one node for each reviewr ∈ R2 in group 2.
We create an edge(r1, r2), if reviewsr1 andr2 share a covered at-
tribute, that isAr1 ∩Ar2 6= ∅. The edgee = (r1, r2) is associated
with the edge attribute-setAe = Ar1 ∩ Ar2 . Then, the GROUP-
COVERAGE becomes the problem of findingk vertices inG, such
that the cardinality of the union of the edge attribute-setsin the in-
duced subgraph is maximized. In the special case where each edge
is associated with exactly one attribute, and all edge attribute-sets
are disjoint, this is exactly the DKS problem on a bipartite graph.



4. ALGORITHMS FOR COVERAGE
We now present our algorithms for the different variants of the

COVERAGE problem. For the coverage scoring functionsfu, fq,
andfs, since the resulting cumulative functionsFu, Fq, andFs are
submodular, we use a greedy algorithm that is easy to implement,
and it is theoretically proven to produce a solution that is aconstant-
factor approximation of the optimal.

Let ∆S(r) = F (S ∪ {r}) − F (S) denote the incremental gain
in the cumulative score functionF when adding reviewr to the set
S . The algorithm proceeds ink iterations, incrementally building
the review set, by adding one review at the time. LetSi denote
the set of reviews constructed in iterationi, whereS0 = ∅. At
iteration i, given the set of reviewsSi−1, we compute for each
reviewr ∈ R\Si−1 the incremental gain∆Si−1

(r) and we select
the one with the maximum value to generateSi. The outline of the
greedy algorithm is shown in Algorithm 1 and it is parametrized by
the scoring functionf (and the corresponding cumulative function
F ).

Algorithm 1 The GREEDY algorithm

Input: Set of reviewsR = {r1, ..., rn}; Set of attributesA =
{a1, ..., am}; Integer budget valuek; Scoring functionf .

Output: A set of reviewsS ⊆ R of sizek.
1: S0 = ∅
2: for all i = 1, ..., k do
3: for all r ∈ R \ Si−1 do
4: Compute∆Si−1

(r)
5: end for
6: ri = argmaxr∈R\Si−1

∆Si−1
(r)

7: Si = Si−1 ∪ {ri}
8: end for
9: returnSk

Applying the GREEDYalgorithm to the GROUP-COVERAGEprob-
lem is not straightforward. Due to the requirement that eachat-
tribute should be covered by at leastg reviews (one from each
group), adding a single reviewr to a review setS incurs no ben-
efit, unless there are alreadyg − 1 reviews inS from all other
groups that cover the same attribute(s) asr. For an attributea, we
have thatfg(S , a) > 0 if and only if the setS contains atuple
t = (r1, ..., rg) of g reviews, such that reviewri belongs to group
Ri, and all reviews int cover attributea. In this case, we say that
the tuplet fully covers attributea. For the attributes inAt that are
not fully covered, we say that they arepartially covered by tuplet.

We propose a greedy algorithm for the GROUP-COVERAGEprob-
lem that selects tuples of reviews instead of individual reviews, thus
guaranteeing that at each step it incurs non-zero gain, if this is pos-
sible. LetT = R1 × · · ·×Rg denote the set of all possible tuples.
Given a set of reviewsS , and a tuplet ∈ T , let ∆S(t) denote the
incremental gain of adding the reviews in tuplet to the setS . Also
letCS(t) = |t\S| denote the number of reviews contained int that
are not inS ; CS(t) captures thecostof adding tuplet to the setS .
The tuples with cost within the remaining review budget arecandi-
date tuples. The algorithm proceeds greedily, at each step adding
to the output review setS the candidate tuplet that maximizes the
gain-to-cost ratio∆S(t)/CS(t). We also experimented with max-
imizing just the gain∆S(t) of the newly introduced tuple, but this
algorithm performed worse experimentally, so we omit any further
discussion.

When adding a tuple in our set, we obtain an immediate gain, but
we also create a potential for future gains, by introducing attributes
that are only partially covered. We take into account the potential

of a tuple in order to break ties between tuples with equal gain.
For example, if we have a two tuplest1, t2 which both have the
same gain-to-cost ratio, but the set of attributes partially covered
by reviews int1 is larger than that oft2, then we should prefert1
over t2 since we expect future additions to give higher gains at a
lower cost.

Formally, for a tuplet, letUt denote the set of attributes that are
partially covered by tuplet. We define thepotentialof t with re-
spect toS asPS(t) = |Ut \ AS |, that is, the number of attributes
partially covered byt that are not already partially or fully covered
by S . We use the potential to break the ties between tuples with
the same gain-to-cost ratio. We observed experimentally that this
modification can improve the performance of the algorithm signif-
icantly.

Algorithm 2 outlines the new greedy algorithm. In line 8 of the
algorithm we find thesetof tuples that have the maximum gain-to-
cost ratio, and then in line 9, we select the one with the maximum
potential. If there are still ties, we break them by selecting a tuple
arbitrarily.

Algorithm 2 Thet-GREEDY algorithm.

Input: Set of reviewsR = {r1, ..., rn} and groups{R1, ...,Rg};
Set of attributesA = {a1, ..., am}; Integer budget valuek;
Scoring functionfg

Output: A set of reviewsS ⊆ R of sizek.
1: ComputeT = R1 × · · · × Rg

2: S = ∅
3: while |S| < k do
4: b = k − |S|
5: for all t ∈ T do
6: Compute∆S(t), CS(t), PS(t)
7: end for
8: T = argmaxt:CS(t)≤b ∆S(t)/CS(t)
9: t = argmaxt∈T PS(t)

10: S = S ∪ t
11: end while
12: returnS

5. EXPERIMENTAL ANALYSIS
In this section we perform an experimental analysis of our al-

gorithms. The goals of the analysis are two-fold: to quantitatively
compare the different algorithms over different measures,and un-
derstand when each algorithm performs better; to qualitatively com-
pare the algorithms by performing a user study.

5.1 Datasets
For our analysis we use real data which are publicly available

from the Bing shopping portal. The Bing shopping portal aggre-
gates reviews from multiple sites such as Amazon and CNET. We
consider a collection of 4,362 products, over three categories: Digi-
tal Cameras, Cell Phones, andMP3 Players. This amounts to 129,783
reviews in total.

For each review, we have the content of the review, the rating
of the review for the product, and thehelpfulnessvotes for the re-
view, from the users in the site. A helpfulness vote can be either
positive or negative. We use the fraction of positive votes over
the total number of votes as a measure of thequality of the re-
view. We intentionally choose to make the quality of a reviewto be
algorithm-independent, so as to understand the effect of our selec-
tion algorithms without having to account for the effects ofquality
estimation. In a real application scenario, where not all reviews



have sufficient number of helpfulness votes (or any at all), some al-
gorithm for estimating the quality of the review [19, 29, 9, 10, 32,
17, 15, 20] can be utilized to obtain a quality value.

From the collection of products and reviews, we prune away
products that have less than 20 reviews so as to make the selec-
tion process meaningful. We also prune reviews with less than 10
votes in total, since for these reviews we consider that we donot
have sufficient evidence to determine the quality of the review.

For the attribute extraction we use the attributes extracted from
the Bing search engine for the "Product Scorecard". There are 96
total possible attributes for categoryDigital Cameras, 84 attributes
for categoryCell Phones, and 68 attributes for categoryMP3 Play-
ers. The attributes include a broad range of characteristics ofthe
products such as “ease of use”, “battery life”, “sound quality”, “im-
age quality”, “screen” and more. To avoid spurious attribute refer-
ences, we consider that a review covers an attribute if it is men-
tioned at least twice in the review, and we only keep attributes that
are covered by at least two reviews of the product. On averageeach
review covers 4 attributes, and there are 20.7 distinct attributes per
product. We note that our selection algorithms are independent of
the attribute extraction algorithm. Any off-the-shelf (such as [13,
14, 6]), or custom-built attribute extraction algorithm can be used.

We use the product ratings to define groups of reviews. We con-
sider the case where we have two groups: positive reviews, and
negative reviews. Ratings take discrete values between 1 and 5.
Following the convention in the Amazon.com site, we consider a
review to be positive if the rating is 4 or 5, and negative if itis 3
or less. To avoid the effect of outliers, we create a group only if
it contains at least three reviews. Otherwise we assume a single
group.

5.2 Algorithms
We consider six different algorithms one for each variationof the

COVERAGE problem. The algorithms are all greedy, as described
in Section 4. More specifically we have the following algorithms.

GREEDY-U, GREEDY-Q, GREEDY-SU, GREEDY-SQ: The greedy
Algorithm 1 that optimizes theFu, Fq, Fsu andFsq cumulative
score functions respectively.

GREEDY-GU, GREEDY-GQ: The greedy Algorithm 2 that opti-
mizes theFgu andFgq cumulative score functions respectively.

In addition to the greedy algorithms we also compare againstthe
following baselines.

TOPQLTY : Sort the reviews according the their quality and select
the top-k reviews. To aid the TOPQLTY algorithm in the com-
parisons with the greedy algorithms with respect to coverage, we
break ties in quality using the number of attributes coveredby the
reviews.

TOPLEN: Sort the reviews according to length, and select the top-k
reviews. This is meant to serve as a natural basic baseline. Longer
reviews are also expected to be of higher quality and cover more
attributes.

RANDOM: The RANDOM algorithm selects randomlyk reviews.
This is meant to serve as a sanity check in order to calibrate the re-
sults of the other algorithms. We perform 1000 runs for the RAN-
DOM algorithm, and take the average performance of the algorithm.

For all the runs we set the value ofk to be 5. We consider this to
be a reasonable number of reviews that can give a thorough picture
of a product. Furthermore, in the mobile applications we envision,
where the screen and time resources are limited, we do not expect
the user to be able to read more than five reviews.

5.3 Quantitative Evaluation
The goal of this section is to study how our algorithms perform

with respect to coverage metrics, and compare them against the
baseline algorithms, and each other. As coverage metrics, we con-
sider all the different coverage scoring functions that we defined.
For the following, we use UCOV to denote theunit coveragevalue
of theFu function; QCOV to denote thequality coveragevalue of
theFq function; GUCOV to denote thegroup coveragevalue of the
Fgu function; GQCOV to denote thegroup quality coveragevalue
of theFgq function; SUCOV to denote thesoft coveragevalue of
theFsu function; and SQCOV to denote thesoft quality coverage
value of theFsq function. For a given set we also compute theav-
erage review qualityQLTY of the set. Note that for each metric
there is a corresponding greedy algorithm that aims at maximizing
this metric. We call this thetargetmetric of the greedy algorithm.

In order to be able to aggregate or compare values across differ-
ent products, we normalize the coverage values by the maximum
possible coverage value that can be obtained if we include inour
setall of the reviews (i.e., setk = n). For the QLTY metric the
maximum is achieved by the TOPQLTY algorithm. Table 1 shows
the average normalized measures for all algorithms, and thestan-
dard deviation. For the RANDOM algorithm, we compute for each
product the average over the 1000 random samples, and then we
compute the average of the averages, and the standard deviation
over the averages.

The following high-level observations emerge from the analysis
of Table 1. First, all algorithms perform on average better than the
random baseline (with the exception of TOPQLTY on GUCOV),
although there are cases where the values are within the standard
deviation interval.

Second, each greedy algorithm achieves the best value on the
target metric (the value in bold), although for some metrics(e.g.,
UCOV) there are other algorithms that are close. This indicates
that the greedy heuristics, although not optimal, do a good job at
optimizing the function at hand.

Third, the normalized coverage values are high. The greedy al-
gorithms achieve at least 83% of the maximum possible for their
target metric, and as high as 98% for the GREEDY-U on the unit
coverage metric. This indicates that our premise that thereis a
small subset of reviews that covers the attributes of a product and
the different viewpoints of the reviews is valid in practice, and thus
it makes sense to look for such a set.

We investigate further the results in Table 1, and we perform
some statistical tests to better quantify the difference between the
different algorithms. For each algorithm, each metric, andeach
product we compute theempiricalp-valueof the output value against
the RANDOM algorithm. Let COVALG denote the value of algorithm
ALG for the coverage metric COV. Let COVi denote the value of
the i-th random trial of the RANDOM algorithm. We define the
empiricalp-value of the COVALG measurement as

p(COVALG) =
1

NS

NS∑

i=1

I (COVi ≥ COVALG)

whereNS is the number of RANDOM samples (NS = 1000) in our
experiments, andI is an indicator function that is 1 if the predicate
is true and zero otherwise. Thep-value is the fraction of random
trials for which the RANDOM algorithm achieves a value on COV

greater or equal than COVALG. We consider the value COVALG to be
statistically significant if thep-value is less than 0.05, meaning that
we can reject thenull hypothesisthat the value was generated by a
random process with confidence greater than 95%.



UCOV QCOV GUCOV GQCOV SUCOV SQCOV QLTY

GREEDY-U 0.98 (0.04) 0.90 (0.09) 0.27 (0.24) 0.26 (0.24) 0.73 (0.11) 0.70 (0.12) 0.83 (0.11)
GREEDY-Q 0.97 (0.05) 0.96 (0.06) 0.21 (0.26) 0.21 (0.27) 0.70 (0.12) 0.73 (0.12) 0.92 (0.07)

GREEDY-GU 0.72 (0.27) 0.66 (0.26) 0.84 (0.14) 0.77 (0.17) 0.62 (0.15) 0.55 (0.16) 0.80 (0.12)
GREEDY-GQ 0.71 (0.27) 0.70 (0.28) 0.82 (0.15)0.83 (0.15) 0.61 (0.15) 0.58 (0.16) 0.86 (0.11)
GREEDY-SU 0.95 (0.07) 0.87 (0.11) 0.77 (0.17) 0.70 (0.18)0.86 (0.10) 0.79 (0.13) 0.80 (0.11)
GREEDY-SQ 0.95 (0.07) 0.93 (0.08) 0.71 (0.20) 0.72 (0.19) 0.84 (0.10) 0.84 (0.11) 0.89 (0.08)

TOPQLTY 0.74 (0.19) 0.77 (0.17) 0.14 (0.23) 0.15 (0.25) 0.52 (0.18) 0.58 (0.18) 1.00 (0.00)
TOPLEN 0.88 (0.11) 0.84 (0.13) 0.31 (0.30) 0.31 (0.30) 0.68 (0.14) 0.68 (0.15) 0.85 (0.11)

RANDOM 0.61 (0.11) 0.54 (0.12) 0.16 (0.08) 0.14 (0.07) 0.43 (0.11) 0.40 (0.11) 0.77 (0.08)

Table 1: Mean and standard deviation of the performance measures for the different algorithms

We compute thep-values for all algorithms, all metrics, and all
products. Then, for each algorithm and each metric, we compute
the fraction of products for which we have ap-value greater than
0.05. This is the fraction of products for which there is a probability
at least 5% that a random selection ofk reviews can produce a
metric value greater or equal to that of the algorithm. We call this
thenull-hypothesis fraction(or simply the fraction).

Table 2 shows the null-hypothesis fraction for all algorithm and
metric pairs. We observe that all algorithms achieve fraction zero,
or close to zero, for their target metric. Therefore, the performance
of the algorithms cannot be viewed as a random artifact. The few
products for which we have highp-value for the GREEDY-U and
GREEDY-Q algorithms correspond to cases where the number of
attributes to be covered is small, and they can be covered with one
or two reviews.

We observe higher fraction values for the other algorithm-metric
combinations. High null-hypothesis fraction values correspond also
to low normalized coverage metric values in Table 1. These are
the metrics for which the algorithm performs worse. We have the
highest fraction (worst performance) values for the greedycover-
age algorithms GREEDY-U and GREEDY-Q when evaluated against
the group coverage metrics GUCOV and GQCOV, and the group
coverage algorithms GREEDY-GU and GREEDY-GQ when evalu-
ated against the UCOV and QCOV metrics. In these cases, we have
high p-values for more than 50% of the products, and for as many
as 83.6% of the products for the case of the GREEDY-Q algorithm
against the GUCOV metric. This is expected since the target met-
ric of the algorithm, and the evaluation metric are qualitatively very
different, and optimizing one does not offer any guaranteesfor the
other. On the other hand, for metrics that are related, such as UCOV

and QCOV the corresponding greedy algorithm performs well on
both metrics. The soft coverage metrics (and the corresponding al-
gorithms) sit somewhere in between these two extremes and asa
result we obtain relatively good performance for these metrics for
all greedy algorithms, while the corresponding greedy algorithms
perform relatively well on all metrics.

To better understand the relationship between the different algo-
rithms and metrics we perform pairwise comparisons betweenthe
different algorithms. What we want to understand is whethersome
of the algorithms we consider are redundant and their results could
be obtained by some of the other variations. For example for the
UCOV metric, the performance of the GREEDY-Q is very similar
to that of the GREEDY-U; is it the case that we can obtain similar
coverage with the GREEDY-Q algorithm?

To measure the similarity between the different algorithmswe
compute the average pairwise intersection of the output reviews.
The results are shown in Table 3. The resulting matrix is asymmet-
ric since there are cases that one algorithm may output less thank

results. Entry(ALGi, ALGj) contains the average (over products)
fraction of reviews in the returned results of algorithm ALGi that
appear in the results of algorithm ALGj . The table indicates high
overlap between pairs of algorithms that have similar underlying
intuition such as the different quality versions of the greedy heuris-
tics, or the soft and non-soft counterparts. The intersection can be
as high as 81%. However, this similarity is not statistically signif-
icant. For a coverage metric COV, and the corresponding greedy
algorithm ALG that optimizes this metric, let

−−−−→
COVALG denote the

vector of COV values of algorithm over all products. We performed
a pairedt-test between

−−−−→
COVALG and

−−−−−→
COVALG′ for every other algo-

rithm ALG′ to determine if the vectors come from a distribution
with the same mean. The significance tests indicate that thisis not
the case with confidence 95%. Therefore, the similarity between
the algorithms is not statistically significant.

Finally, it is interesting to understand the relationship between
coverage and quality. From the TOPQLTY row of Tables 1 and 2
we see that high quality does not guarantee high coverage. The
TOPQLTY algorithm achieves very low coverage values (and high
null-hypothesis fraction values) for all metrics. For the GUCOV

metric, the performance of TOPQLTY is actually worse than that
of RANDOM. Surprisingly the TOPLEN algorithm performs bet-
ter than TOPQLTY with respect to all coverage metrics. One pos-
sible explanation is that longer reviews are more likely to cover
more attributes. On the flip side, the greedy coverage algorithms
have high null-hypothesis fraction (low performance) values for
the QLTY metric. The algorithms that perform best are GREEDY-
Q, GREEDY-SQ and GREEDY-GQ that take quality into account in
their optimization criterion. Out of these GREEDY-GQ performs
the worst, probably due to the hard constraint it imposes on cover-
ing every attribute from both groups.

The disconnect between quality and coverage implies that inour
set selection we need to balance between these two competingmet-
rics. In the following section we study how the preferences of the
users align between these two metrics.

5.4 Qualitative Analysis
In the previous section we investigated how the algorithms per-

form under different coverage measures, and how they compare to
each other. We will now perform a user study to understand how
useful the selected sets are to actual users. Our goal is to deter-
mine whether the set of reviews produced by a given algorithm
for a given product would enable the users to make an informed
buy/not-buy decision on the product.

To this end, we ran an experiment with a set of workers from
Amazon’s Mechanical Turk. For our task we selected a set of 25
products from our dataset for which we can create a positive and
negative group. This was necessary in order to have a fair com-



UCOV QCOV GUCOV GQCOV SUCOV SQCOV QLTY

GREEDY-U 0.98% 3.43% 74.59% 70.49% 7.38% 9.02% 88.24%
GREEDY-Q 6.37% 0.49% 83.61% 77.87% 23.77% 11.48% 40.20%

GREEDY-GU 57.35% 56.86% 0.00% 0.82% 51.64% 61.48% 91.67%
GREEDY-GQ 61.27% 54.90% 0.00% 0.00% 54.10% 50.82% 60.78%
GREEDY-SU 13.24% 17.16% 1.64% 3.28% 0.00% 2.46% 89.71%
GREEDY-SQ 17.65% 3.43% 14.75% 9.84% 0.82% 0.00% 53.43%

TOPQLTY 83.33% 51.96% 90.16% 86.89% 80.33% 59.02%1.47%
TOPLEN 48.53% 34.80% 68.85% 61.48% 42.62% 35.25% 67.65%

Table 2: Null hypothesis fraction for the different algorithms and different performance measures

GREEDY-U GREEDY-Q GREEDY-GU GREEDY-GQ GREEDY-SU GREEDY-SQ TOPQLTY TOPLEN

GREEDY-U 100% 67.78 % 65.29 % 54.13 % 82.99 % 66.04 % 31.20 % 50.90 %
GREEDY-Q 57.48 % 100% 44.90 % 64.04 % 53.28 % 80.96 % 51.22 % 49.21 %

GREEDY-GU 61.58 % 50.29 % 100% 76.67 % 80.92 % 66.95 % 28.01 % 46.31 %
GREEDY-GQ 44.18 % 63.12 % 69.97 % 100% 62.29 % 81.09 % 37.39 % 46.22 %
GREEDY-SU 75.77 % 57.18 % 79.00 % 66.95 % 100% 73.18 % 28.18 % 48.24 %
GREEDY-SQ 53.66 % 78.38 % 58.86 % 79.41 % 66.94 % 100% 43.94 % 49.78 %

TOPQLTY 23.82 % 47.16 % 23.53 % 35.10 % 24.51 % 42.25 % 100% 34.61 %
TOPLEN 39.80 % 46.08 % 39.41 % 44.31 % 42.25 % 48.63 % 34.61 % 100%

Table 3: Average result intersection between different algorithms

parison among all the algorithms. We created a HIT (Human In-
telligence Task) for every algorithm and product combination. In
each HIT we present the worker with the name of the product, a
link to a web page describing the product, and the review set out-
put by the algorithm. For each review we display the text of the
review and the rating of the product. We then asked the workers to
evaluate the set of reviews produced by each of the algorithms in
terms of how informed they felt in making a buy/not-buy decision
after reading the set of reviews. More specifically the userswere
asked to select one of the options of “perfectly informed”, “well
informed”, “somewhat informed” or “not informed at all”. Weas-
signed each one of these options a score from 0 (“not informed
at all”) up to 3 (“perfectly informed”) and we requested 18 work-
ers for each algorithm-product combination. For each algorithm,
the review set consists of 5 reviews for each product (k = 5). To
eliminate spam and minimize noise, out of these 18 workers we
kept the 5 which spent the most time during their task (and thus we
were relatively certain that they had done a thorough job in reading
the reviews).

The first column of Table 4 shows the average user satisfaction
score for each algorithm, computed over all workers and overall
products. The higher the score (with a maximum of 3.00) the
more informed the users felt after reading the reviews. Our first
observation is that the performance of all algorithms is compara-
ble. Surprisingly, the TOPQLTY does not perform as well as one
would expect. In our experiment, selecting the top-5 reviews with
the highest quality does not produce informative reviews. This
could possibly be attributed to a perceived redundancy in the re-
sults of the TOPQLTY algorithm. The algorithm that performs
best is the TOPLEN algorithm, indicating a user preference towards
more lengthy reviews. With the exception of the GREEDY-GU
and GREEDY-GQ algorithms, our greedy heuristics perform well;
they outperform the TOPQLTY algorithm, and achieve performance
close to that of the TOPLEN. This result indicates that coverage is
important to the users, and it should be accounted for when select-
ing a small set of reviews to present. The “soft” versions of the
algorithms perform slightly better (although the difference is rather

small) indicating that representing different viewpointsin the re-
sults is a desirable property. The GREEDY-GU and GREEDY-GQ
algorithms performed the worst among our greedy algorithms. This
is mostly due to the hard requirement of covering attributesfrom
both viewpoints, which results in a more restrictive selection. As
a result these algorithms perform worse compared to their “soft”
counterparts, i.e., GREEDY-SU and GREEDY-SQ respectively.

To further study the tradeoff between coverage and quality we
also performed an additional Mechanical Turk experiment, where
we asked the users to compare our greedy algorithms against the
TOPQLTY algorithm. In the task we showed the users two sets
of reviews, and asked them to select the one that they felt gave
them more information about the product. We assigned the task
to 18 workers, out of which we selected again the 5 best as be-
fore, and we measured the average difference of workers thatpre-
fer the greedy algorithm over the TOPQLTY algorithm minus those
that prefer TOPQLTY over the greedy. The results we obtain are
shown in the second column of Table 4, and are consistent with
the average user satisfaction. The greedy algorithms are preferred
over TOPQLTY and TOPLEN wins the comparisons with the high-
est margin. In this experiment, the value of introducing thereview
quality in the greedy optimization stands out more clearly.These
experiment confirm our finding that coverage and viewpoint diver-
sity are important to the users, together with review quality.

6. RELATED WORK
The set selection problem we consider in this paper is closely

related to the quality estimation, and ranking of reviews. Ranking
can be viewed as another way to obtain a small set of reviews by
selecting the top-k best reviews and we compare our algorithms
against a ranking approach. There has been substantial amount of
research in this area [19, 29, 9, 10, 32, 17, 15, 20]. In all of these
works, the output is a score for each review, or an ordering ofthe
reviews. Our work is different in that we are trying to selecta set
of reviews that collectively perform well, rather than score each
individual review.



User Satisfaction Average Difference
over TOPQLTY

GREEDY-U 2.10 1.02
GREEDY-Q 2.10 1.74

GREEDY-GU 1.98 0.20
GREEDY-GQ 1.94 0.46
GREEDY-SU 2.13 0.78
GREEDY-SQ 2.11 1.44

TOPLEN 2.26 2.84
TOPQLTY 1.98 0.00

Table 4: Average results in our user study.

There is also substantial amount of work on opinion summariza-
tion [14, 13, 31, 22, 21, 23]. The overall goal is to extract aspects
(or features) of an product, and a short piece of text that summa-
rizes the opinions on the different aspects. This is different from
our approach where we want to find a subset of reviews that best
captures the different aspects of a product. Our work is to a large
extent complimentary to this work.

The most related work to ours is a recent work by Lappas and
Gunopoulos [16] where they consider the problem of finding a
small set of reviews that coverall product attributes, while pre-
serving the distribution of positive and negative reviews.This is
similar to our problem definition, However, our formulationis dif-
ferent from that in [16], since we look for a set of fixed size, and
our goal is to cover attributes from both the positive and negative
viewpoint, rather than preserve the viewpoint distribution. This dif-
ference leads to a different optimization problem, and as a result,
to different algorithmic challenges.

Our problem is also related toquery result diversificationwhere
the goal is to produce a ranking of the query results that cover as
many query intentsas possible. There is substantial amount of
work in this area [1, 8, 11, 30, 2, 25, 28, 26, 27]. In this case,
the goal is to return search results that are as orthogonal aspossible
and still relevant to the input query. This goal is usually formulated
as an optimization problem that tries to maximize two competing
measures: relevance and diversity. In our setting maximizing diver-
sity is not an end in itself; we are content with non-orthogonal re-
views as long as they collectively have high coverage of attributes.
In the case of the GROUP-COVERAGE problem, we want reviews
from different viewpoints to work together to cover the attributes
of the item, which is substantially different from the traditional di-
versification setting.

At a high level the problem we consider is similar to work on
document summarization via sentence extractionwhere the goal is
to pick a set of sentences that summarize a given document. De-
spite this high-level similarity, there are fundamental differences in
the problem definition. Traditional document summarization (e.g.,
MMR [5] and Mead [24]) focus on designing scoring functions
for candidate sentences: every sentence is scored independently
of other sentences and the output contains a collection of highly
scored sentences. These scoring functions do not take into account
the interaction between sentences. In our case, we select sets of
reviews rather than scoring each review separately.

The combinatorial version of the document-summarization prob-
lem has been only considered lately by Liu et al. [18]. In thiscase,
the goal is to pick a set of sentences that collectively coveras many
document topics and, at the same time have the minimum possi-
ble topical overlap. This formulation is different from theone we
consider here: we do want high-coverage reviews, but we do not

want them to be necessarily orthogonal to each other, and we also
want to represent all possible viewpoints. As a result, the objective
function and the corresponding optimization problem we consider
are different from the one considered by Liu et al. [18]. Overall,
although some special cases of the COVERAGEproblem have been
considered in the past for review-corpora management, our work is
the first to provide and analyze the formalism in its full generality,
including the GROUP-COVERAGEproblem.

7. DISCUSSION AND CONCLUSIONS
In this paper we studied the problem of selecting a small sub-

set of reviews from a large collection of reviews for a product,
such that we cover the different attributes of the product with high
quality content that represents different viewpoints. We provide a
generic framework for formulating coverage problems that capture
these requirements. We proposed algorithms for these problems,
and studied their theoretical properties. We performed experiments,
and showed that our algorithms achieve performance that is statis-
tically significant. Our user study indicates that attribute coverage
and viewpoint diversity are properties that appeal to users.

There are several interesting extensions of our work, and con-
nections with different domains. First, in this paper we work with
product reviews, but our generic framework can be applied toother
domains as well. One such domain is news and updates. In this set-
ting, we have a collection of articles about a specific event,or sto-
ryline. Each article covers specific aspects of the event, has some
quality, and a specific viewpoint (e.g., conservative vs. progres-
sive). We want to select a small subset of articles of high quality,
that cover as many aspects of the event as possible and present all
different viewpoints. This problem can be naturally modeled using
the coverage formalism we introduced in this paper. This formula-
tion can also be applied to the case that instead of articles we have
tweets, or facebook updates about a specific event, person, or URL.

Another interesting extension of our work is the case where the
attributes of the product that we want to cover are not statically
predefined, but rather defined dynamically by the user. In this case,
we are looking for the smallest set of reviews that covers allthe
specified attributes. We can easily modify our framework to handle
this case, and the same greedy algorithms are still applicable to
the minimization problem. For some of these algorithm we can
again obtain approximation guarantees. Note that the user-defined
attributes could be in the form of queries, rather than be selected
from a fixed pool of attributes. It is not clear what results should be
returned by a search engine when handling acollectionof queries,
rather than a single query. Our work provides a possible approach
for addressing this question.

Finally, our formulation allows for additional complexitythat we
did not explore in this paper due to size limitations. First,it is easy
to incorporate the importance of attributes in our optimization cri-
teria, if such information is available. Second, in our formulation
we assumed that each review belongs to a specific group, for exam-
ple positive or negative. It is though possible that the samereview
covers some attributes positively, and some attributes negatively.
Our framework can be easily extended to handle this case, andour
greedy group algorithms naturally generalize to this case.
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