
Identifying Converging Pairs of Nodes on a Budget

Konstantina Lazaridou
Department of Informatics

Aristotle University, Thessaloniki, Greece
konlaznik@csd.auth.gr

Konstantinos Semertzidis
Computer Science and Engineering Department

University of Ioannina, Greece
ksemer@cs.uoi.gr

Evaggelia Pitoura
Computer Science and Engineering Department

University of Ioannina, Greece
pitoura@cs.uoi.gr

Panayiotis Tsaparas
Computer Science and Engineering Department

University of Ioannina, Greece
tsap@cs.uoi.gr

ABSTRACT
In this paper, we consider large graphs that evolve over
time, such as graphs that model social networks. Given
two instances of the graph at two points in time, we ask
to identify the top pairs of nodes whose shortest path dis-
tance has decreased the most. We call these pairs converg-
ing. The straightforward way to address this problem is by
computing the shortest path distances of all pairs at both
instances and keeping the ones with the largest differences.
Since for large networks this is computationally infeasible,
we consider a budgeted version of the problem, where given
a fixed budget of single-source shortest path computations,
we seek to identify nodes that participate in as many con-
verging pairs as possible. We evaluate a number of different
approaches for our problem, that employ centrality-based,
dispersion-based, and landmark-based distance estimation
metrics. We also consider a classification-based approach
that builds a classifier that combines the above features for
predicting whether a node participates in one of the top con-
verging pairs. We present experimental results using real-
world datasets that show that we are able to identify the
large majority of the top converging pairs on a very small
budget.

Categories and Subject Descriptors
H.2 [Database Management]: Applications; E.1 [Data
Structures]: Graphs and networks

General Terms
Algorithms, Experimentation, Performance

Keywords
graphs, top-k, shortest paths

c© 2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

1. INTRODUCTION
A variety of natural or man-made complex systems can be

modeled as networks. Prominent examples include the In-
ternet, the Web, transportation networks, online social net-
works such as Facebook, Twitter and LinkedIn, biological
systems such as protein interactions or metabolic pathways,
the global economy, and many more. All these systems con-
sist of individual entities that are interconnected to form a
complex system. Understanding them is not possible with-
out understanding the underlying network. The network
carries a significant amount of information about the func-
tionality of the system as a whole as well as for its individual
entities [9].

A central piece of information revealed through the net-
work is that of proximity. Using the network structure, we
can determine how close two individuals are in a social net-
work, or how easy it is to navigate between different web
pages. There are several ways of measuring proximity, or
similarity, within the network (see, for example [6] for a re-
cent survey). A commonly used proximity measure is the
length of the shortest path distance between two nodes in
the graph. Although simple, the shortest path distance is
still the first notion of proximity we want to compute when
examining the relationship of two individual entities. In
many cases, it also provides an actionable piece of informa-
tion: It is the path by which we want to route information
between two individuals; the path we want to follow when
moving from one place to another in a traffic network; the
quickest way to create a connection within a professional
network.

A succinct characteristic of real-life networks is their con-
tinuous evolution. New nodes and edges are added, often
at an exponential pace. Even when observing a fixed set
of nodes, their relationship can change dramatically by the
addition of new edges among nodes in the set, or to other
nodes outside the set. As a result, new shortest paths are
created and the relationships between individuals are con-
stantly updated.

Identifying the pairs of nodes that came the closest to each
other is important in our understanding of the network, and
it may be crucial for some applications. For example, in
social networking sites such as Facebook or LinkedIn, if two
distant users come closer over time, this could imply the
appearance of similar interests or activities between them.

Hence, this further knowledge can help in making more suit-
able friendship recommendations. In economic networks,
the decrease of the shortest path between two major players
could signal a change of strategy, or have future implica-
tions for their growth. In a criminal or terrorist network, it
is critical to know which suspects have come closer to each
other; such moves may be indications of future actions or
coalitions.

There could be also an application of this problem in
protein-protein interaction networks, where the nodes are
proteins within a cell and they are connected by edges if
there is a possible interaction between them [3]. As new
experiments reveal new connections, for two given proteins,
the knowledge that they came closer together in the graph
makes them candidates for an upcoming interaction. Fur-
thermore, if a certain protein comes closer to multiple others,
they may be part of the same community [12], with all un-
derlying proteins having the same specific function within
the cell.

In this paper, we address the following problem. Given
two snapshots of an evolving network, we ask for the k pairs
of nodes whose shortest path distance has decreased the
most between the two snapshots. We call such pairs of nodes
converging. There is a simple polynomial-time solution to
our problem: Compute the all-pair shortest path distances
in the two graph instances and find the pairs with the largest
distance change. However, even if we used fast algorithms
that approximate shortest path computation, e.g., [20], it
would still require time quadratic in the size of the graph
for just producing the pairs. Given that real graphs have
size in the order of thousands or millions, we need solutions
that scale linearly with the size of the graph.

Despite its significance, the problem of identifying the top-
k converging pairs has received limited attention. The only
related work we are aware of is the work in [14] which pro-
vides an approach based on the endpoints of the new edges
in the second snapshot. In this paper, we address the prob-
lem from a different perspective, by predicting the nodes of
the converging pairs. We formally define good candidate
nodes as those nodes that belong to a cover of the set of the
top-k converging pairs. We also introduce a novel budget
formulation of the problem, where to achieve the required
result, we are given a fixed budget of m � n single-source
shortest-path computations. We propose a suite of algo-
rithms for identifying good candidate nodes based purely on
the structural properties of the two graph instances. These
algorithms are based on node centrality, node dispersion and
landmark-based distance estimations. Then, we build a clas-
sifier that combines the proposed algorithms to effectively
identify the approach that is the most appropriate for each
setting. By further extending the classifier to include fea-
tures of the graph, such as the graph density, we were able to
build a “global” classifier that works on any graph. The clas-
sifier takes advantage of our novel method of characterizing
good candidate nodes.

Our experiments with four real datasets show that we can
identify most of the converging pairs with a budget equal to
a very small percentage of the graph nodes. For example,
for the Internet links dataset, with a budget of just 0.5%
of the nodes, we are able to locate over 90% of the top-
k converging pairs for various values of k. Furthermore,
our classifiers are successful in identifying converging pairs
and match the performance of the best algorithm for each

dataset.
In summary, in this paper we make the following contri-

butions:

• We formalize the problem of finding the top-k con-
verging pairs in a graph under budget constraints as a
problem of finding a vertex cover of an appropriately
defined graph over the set of these pairs.

• We propose a suite of methods for identifying candi-
date nodes that best cover the set given a fixed budget
of shortest path computations.

• We show how to combine our techniques into a single
algorithm that makes use of all the proposed features.

• We perform extensive experiments that show that our
techniques work well in practice, being able to find
the top-k converging pairs with only a small number
of shortest path computations. Compared to the ap-
proach in [14] our algorithms are more effective in iden-
tifying converging pairs, while having strong budget
guarantees.

The rest of this paper is structured as follows. In Sec-
tion 2, we present related work. In Section 3, we introduce
the problem of identifying the top-k converging pairs and
formulate it as a vertex cover problem. In Section 4, we
present a suite of algorithms for identifying candidate nodes
for the converging pairs. Experimental results are presented
in Section 5. Finally, in Section 6, we provide conclusions
and directions for future work.

2. RELATED WORK
Dynamic social network analysis has received a lot of at-

tention, including research on community evolution, e.g., [2],
and on graph generation models, e.g., [15]. In this paper,
we focus on a different aspect. Given two graph instances,
we ask what are the pairs of nodes that came closer to each
other. This problem is different from the problem of in-
crementally maintaining shortest path distances in dynamic
graphs, e.g., [7, 23]. Here we just want to identify the k
pairs of nodes whose shortest path distance has changed
the most, without re-estimating the distances for all pairs.
Recent work also addresses the problem of monitoring the
proximity of nodes in bipartite time-evolving social graphs
[21]. The authors propose pre-computing and storing all pair
distances for a small number of nodes so as to incrementally
update distances and maintain the top-k most closely con-
nected pairs, or the most central nodes. In contrast here,
we consider general graphs (non bipartite) and search for
the top-k pairs with the largest decrease in their shortest
path distance.

Another line of research addresses graph augmentation
problems that ask to find a set of edges to add to a graph so
as the graph satisfies specific properties including ones in-
volving shortest path distances. In the context of social net-
works, recent work considers augmentation problems within
the context of improving content propagation. The authors
of [22] ask which edges to add or delete in a graph so as to
improve the information dissemination process and in par-
ticular to increase the leading eigenvalue of the adjacency
matrix of the graph. Other recent work addresses the prob-
lem of recommending edges to add so as to maximize content

spread but in addition ensure that the recommendations are
also relevant [4]. The authors of [18] study the problem of
selecting a k-size subset of the non-existing or ghost edges
of a graph such that if they are added to the graph will
minimize the average all pairs shortest path distances. The
authors of [19] study the same problem as in [18] but the
added edges are selected from a given set of candidate edges
(e.g., the edges added between two snapshots). Different to
this work, we do not assume that we can select edges to de-
crease the shortest paths, but rather that edges have already
been added as part of the evolution of the network, and we
want to find the pairs that were most affected.

The work most closely related to ours is that of [14] that
studies essentially the same problem. However, their work
does not impose a budget constraint on the shortest path
computations. Algorithmically, their work focuses on the
endpoints of new edges and relies on identifying critical edges
that lie in the shortest paths of many pairs. Such notions
necessitate the use of betweenness measures [9], which in
general are expensive to compute. In comparison, our work
introduces the idea of allocating a fixed budget of m short-
est path computations, as well as the formalization of good
candidate endpoints as the ones belonging to the maximum
cover of the top-k converging pairs. The latter can also form
the basis for building effective classifiers for the problem. We
compare with the approach in [14] in our experiments.

There is a rich literature in using landmarks for shortest
path estimation in large graphs, e.g., [20, 23, 25]. Various
approaches for selecting landmarks have been proposed, in-
cluding the ones used here. However, the problem addressed
in our work is different from previous work in that we want
to estimate shortest path changes rather than actual short-
est paths. It is interesting to consider additional methods
for selecting landmarks, such as the approach proposed in
Orion [25] that maps graphs into a multi-dimensional Eu-
clidean coordinate space, but it is beyond the scope of this
work.

A different point of view in the point-to-point distance
estimation problem, which bears some similarity with our
approach, is considered in [5]. They propose the use of ma-
chine learning techniques for predicting the distance between
two nodes of a graph. Aiming to answer real-time point-to-
point distance queries, they propose to use linear functions
that combine vertex-based attributes, such as the closeness
centrality with landmark-based attributes, while incorporat-
ing different approaches on selecting lower bound and upper
bound landmarks.

Finally, there is a large body of research on link prediction
(e.g., [16]) that asks to predict which pairs of nodes will be
connected in future snapshots. In this work, we are given
the future snapshot, and we are interested in the efficient
computation of converging pairs of nodes, not predicting
direct links.

3. PROBLEM DEFINITION
We consider undirected (weighted) graphs that change

over time. Let Gt = (Vt, Et) denote the graph at time in-
stant t. As is the most common case with social networks,
we consider only node and edge insertions. Thus, a dynamic
graph can be seen as a sequence of slices S1, S2, . . . St , . . . ,
of node and edge insertions. Gt = (Vt, Et) is the graph that
results by aggregating all slices up until t.

For two nodes u, v, and time instant t, we use dt(u, v) to

denote their shortest path distance in Gt. We call a pair
of nodes u, v ∈ Vt, connected if u, v belong to the same
connected component of Gt.

Now assume two graph instances, Gt1 = (Vt1 , Et1) and
Gt2 = (Vt2 , Et2), with t2 > t1. Take two connected nodes
u, v in Gt1 that are at distance dt1(u, v). When considering
the graph Gt2 the addition of new nodes and edges can only
decrease the distance between u, and v. Let ∆t1,t2(u, v) =
dt1(u, v)− dt2(u, v) denote the decrease in distance between
u and v. We are interested in identifying the pairs of con-
nected nodes for which we have a sharp decrease in distance,
that is ∆(u, v) is large. We focus on connected nodes since
the distance between non-connected nodes is infinite, and
thus, in this case, the problem comes down to finding the
disconnected components that got connected.

More formally, we define our problem as follows.

Problem 1 (top-k converging pairs). Given two
graph instances Gt1 and Gt2 , at time instants t1 and t2,
respectively, t2 > t1, and a value k, find the k connected
pairs u, v of nodes in Gt1 with the largest ∆t1,t2(u, v) value
among all pairs of connected nodes in Gt1 . We call these
pairs of nodes the top-k converging pairs.

There is a simple polynomial-time solution for our prob-
lem. We compute the shortest paths of all (connected) pairs
of nodes in Gt1 and Gt2 and we find the ones that have
the largest decrease. Regardless of how fast we compute the
shortest paths – there are fast algorithms for approximate
shortest path computation, e.g., [20] – just outputting the
paths for all pairs requires time O(n2), where n is the num-
ber of nodes in Gt1 . For networks with millions of nodes
this is impractical both in terms of storage and time. We
need solutions that scale linearly with the number of nodes
in the graph.

To address this issue, we want to reduce the number of
nodes for which we need to compute the shortest paths. We
view a shortest path computation (SP computation) as a
unit of computational cost, and we assume that we have a
fixed computational budget that we can use for our task.
This is the number m of SP computations we can perform,
which is dictated by our resources and our application. We
want to retrieve as many of the top-k converging pairs as
possible, under the budget constraints.

We will first establish what is the minimum possible num-
ber of shortest path computations. Let P denote the set of
the top-k converging pairs that we want to compute. As-
sume that we are given a set C such that for every pair
(u, v) ∈ P , either u ∈ C, or v ∈ C. If we compute all short-
est paths for the nodes in C in Gt1 and Gt2 , and we keep
the top-k ones with the highest ∆t1,t2 value, then we obtain
again the set P . The space and time requirements for this
algorithm is O(n|C|). Note that the size of the set C is at
most k, so the complexity of the problem would be linear
in the size of the graph. The set C is a cover for the set of
pairs in P .

To formalize the definition of the set C, given Gt1 , Gt2

and k, we define a new graph Gp
k = (V1, P), defined over

the nodes V1 of graph G1, V1 ⊆ Vt1 , such that there is an
edge between two nodes u and v in Gp

k, if and only if, (u, v)
is a top-k converging pair. The set C described above is a
vertex cover of the graph Gp

k, since for every edge (u, v) ∈ P
of Gp

k at least one of the endpoints of the edge belongs to C.
That is, every edge is covered by at least one vertex. Given

a vertex cover of the graph Gp
k, we can obtain the set P of

the top-k converging pairs efficiently.
Obviously, when tackling Problem 1, we do not have ac-

cess to graph Gp
k, or its cover, i.e., the set C. Actually, even

if we knew graph Gp
k, obtaining a vertex cover C of mini-

mum size is an NP-hard problem. However, using Gp
k, we

can now reformulate our problem as follows.

Problem 2 (budgeted path cover). Given two graph
instances Gt1 and Gt2 , at time instants t1 and t2 respec-
tively, with t2 > t1, a value k, and a budget m, find a set of
nodes M ⊆ Vt1 of size m such that the number of edges of
Gp

k covered by M is maximized.

We note again that we do not have access to the graph
Gp

k. Problem 2 is a harder version of Problem 1, where our
computational budget is limited. However, the definition of
Problem 2 dictates our approach for solving Problem 1. Our
goal is to identify a set of candidate nodes M that are likely
to be in the cover of Gp

k. Towards this end, we have a fixed
computational budget which is defined by the number m of
nodes for which we can compute the single-source shortest
paths distances in Gt1 and Gt2 .

Note that even if we had access to the graph Gp
k find-

ing the minimum vertex cover, or the set of m nodes that
maximize coverage is an NP-hard problem. However, it is
known [24] that the greedy algorithm that each time selects
the node that covers the largest number of the uncovered
edges provides a solution with a logarithmic approximation
ratio, that works well in practice. The greedy algorithm also
has an approximation ratio for the max-coverage problem,
where given a budget of m vertices we want to find the ones
that maximize the coverage of edges. In our experiments,
when we want to compare against a “good” solution, we use
the vertex cover produced by the greedy algorithm. We will
often refer to the greedy solution as the cover of the Gp

k

graph.

4. ALGORITHMIC TECHNIQUES
We now outline a generic algorithm for finding the top-

k converging pairs. As an intermediate step, our algorithm
addresses Problem 2, finding a set M of nodes that cover the
largest number of the top-k converging pairs. We propose a
suite of algorithms for solving Problem 2. In the following,
we shall use the term candidate nodes and candidate end-
points interchangeably to denote the nodes in M .

4.1 Finding the Top-k Converging Pairs
In Algorithm 1, we describe a generic algorithm for find-

ing the top-k converging pairs. The algorithm relies on the
function ComputeCandidateEndpoints that returns a set
M of candidate endpoints of size m. We discuss the candi-
date generation below. The number of candidate endpoints
m is small and thus it is feasible to compute all shortest
path distances between M and the nodes in Vt1 in graphs
Gt1 and Gt2 . Given these distances, we can compute the
∆t1,t2(u, v) values for the pairs in M × Vt1 and select the
top-k pairs with the highest values.

4.2 Candidate Endpoint Generation
We now describe the algorithms for generating candidate

endpoints, that is, identifying nodes that best cover the top-
k converging pairs, i.e., the edges of Gp

k. Our algorithms take

Algorithm 1 Generic top-k Algorithm.

Input: Graph snapshots Gt1 = (Vt1 , Et1), Gt2 = (Vt2 , Et2),
k, m

Output: The set of the top-k converging pairs

1: M ← ComputeCandidateEndpoints(Gt1 ,Gt2 , m)
2: D1 ← m × n-dimensional array with shortest path di-

stances in Gt1 between the nodes in M and Vt1 .
3: D2 ← m × n-dimensional array with shortest path di-

stances in Gt2 between the nodes in M and Vt2 .
4: ∆t1,t2 ← D1 −D2.
5: return the top-k pairs (i, j) with the highest values in

∆t1,t2 .

as input the two graph instances, Gt1 and Gt2 , and the value
m, and produce as output a set M ⊂ Vt1 of m nodes. We
want to select M such that M covers the largest number of
the top-k converging pairs. The size m of M is determined
by our resource budget: it is the number of nodes for which
we can afford to compute the single-source shortest paths in
Gt1 and Gt2 .

We consider the following approaches in selecting the nodes
for the set M :

• Centrality-based: In this case, we select nodes based
on their degree or the change in their degree.

• Dispersion-based: In this case, we select nodes that
are highly dispersed in the graph Gt1 , that is, they
are far apart from each other. These nodes are likely
to participate in a large number of top-k converging
pairs, since they were far apart in the first place.

• Landmark-based: In this case, we select a small
sample L ⊂ Vt1 of the nodes in Gt1 to act as land-
marks. We select the candidate endpoints based on
the changes of their shortest path distances from these
landmarks.

• Hybrid: In this case, we use again a landmark-based
approach, but instead of sampling randomly the set of
landmarks L, we use a dispersion-based approach to
guide our choice.

• Classification-based: In this case, we use features
provided from the previous algorithms to build a clas-
sifier that predicts whether a node is a good candidate
endpoint.

• The Incidence family of algorithms: In this case,
we consider some of the algorithms in [14] for selecting
the candidate endpoints.

We now discuss each of the above approaches in detail.

4.2.1 Centrality-based selection
With this approach, we use the centrality of nodes in the

graph Gt1 to guide us in the selection of candidate nodes.
The motivation is that nodes central in graph Gt1 are likely
to be part of the shortest paths for many nodes. Thus they
seem a reasonable choice as candidate endpoints. Further-
more, we consider also nodes that had a large increase in
their centrality, either in absolute terms or relative to the
original value.

A simple and easy to compute centrality measure is the
node degree. Formally, let degt(u) denote the degree of
node u in graph Gt. The algorithm Degree ranks nodes in
descending order of degt1

(u) and selects the top-m nodes.
The algorithm DegDiff ranks nodes in descending order of
degt2

(u) − degt1
(u) and selects the top-m nodes. Finally,

the DegRel ranks nodes in descending order of (degt2
(u)−

degt1
(u))/degt1

(u) and selects the top-m nodes.

4.2.2 Dispersion-based selection
With this approach, we want to select as candidates the

m nodes in Gt1 that are the furthest apart from each other.
That is, we want M to contain the most dispersed set of
nodes. We define this in two different ways.

The first approach is to select nodes such that the average
distance between all pair of selected nodes is maximized:

M = arg max
S⊆Vt1
|S|=m

1(
m
2

) ∑
vi,vj∈S

dt1(vi, vj) (1)

This approach tends to select nodes in the perimeter of the
graph.

Alternatively, we can select nodes such that the minimum
distance between any two pairs of the selected nodes is max-
imized:

M = arg max
S⊆Vt1
|S|=m

min
vi,vj∈S

dt1(vi, vj) (2)

This approach tends to select nodes that “cover” the graph.
Even if we had the pairwise distances between all nodes,

finding the optimal set of nodes for both cases is an NP-
hard problem (for example, see [13] for a recent discussion
on this topic). We thus use a greedy algorithm that at each
step selects the node that maximizes the dispersion with
respect to the nodes selected so far. We refer to the algo-
rithm that maximizes the average distance as MaxAvg and
to the algorithm that maximizes the minimum distance as
MaxMin.

4.2.3 Landmark-based selection
With this approach, we make use of a set L ⊂ Vt1 of `

nodes that we call landmarks and compute the distances of
all nodes in Gt1 and Gt2 from the nodes in L. We select our
candidates based on how close they came to the landmarks
in graph Gt2 .

Specifically, let L = (w1, . . . , w`) be an ordered set of
landmark nodes of graph Gt1 , with ` � |Vt1 |. We associate
with each node u ∈ Vt1 , two `-dimensional vectors, DL1(u)
and DL2(u), where DL1(u)[i] = dt1(u,wi) and DL2(u)[i] =
dt2(u,wi). The vector ∆Lt1,t2(u) = DL1(u)−DL2(u) cap-
tures the change in the shortest path distance from u to the
landmarks in L.

We now select as candidate endpoints the nodes that came
“closest” to the landmarks L in the graph Gt2 . To measure
the degree of distance change, we use the L1 and L∞ norms
of the vector ∆Lt1,t2(u).

‖∆Lt1,t2(u)‖1 =
∑̀
i=1

∆Lt1,t2(u)[i] (3)

‖∆Lt1,t2(u)‖∞ =
`

max
i=1

∆Lt1,t2(u)[i] (4)

Table 1: Shortest-path computations for different ap-
proaches

Approach Candidate Generation top-k Pairs
Degree-based 0 2m
Dispersion-based m m
Landmark-based 2` 2m− 2`
Hybrid 2` 2m− 2`
Classification-based 3 · 2` 2m− 3 · 2`

In the SumDiff algorithm, we select the m nodes with the
largest L1-norm, while in the MaxDiff algorithm, we select
the m nodes with the largest L∞-norm. The intuition is that
these are nodes that became more central in the graph Gt2

and thus are likely to participate in many changed shortest
paths. The SumDiff algorithm is somewhat related in mo-
tivation to the greedy algorithm for finding the minimum
vertex cover. The node with the largest L1-norm value is
the node that covers the most of the distance changes in the
(`× n)-matrix ∆Lt1,t2 .

4.2.4 Hybrid selection
With the hybrid approach, we attempt to get the best

of both worlds by combining the dispersion-based approach
with the landmark based approach. Specifically, we use the
dispersion-based techniques to select the ` landmarks, and
then apply the landmark based approach.

This hybrid approach is motivated by two factors. First,
in order to obtain the landmark distances in the graphs Gt1

and Gt2 , we need to pay a cost of ` shortest path computa-
tions in each graph. When selecting a set of random land-
marks this cost comes with no payoff since it is unlikely that
the randomly selected nodes will cover any of the converging
pairs. Using the nodes selected from the dispersion based
algorithm guarantees that we will obtain some benefit from
the landmark selection. Second, intuitively, it seems that
dispersed nodes should work better as landmarks since they
cover different parts of the graph, and thus we can better
capture the fact that a node came closer to some part of the
graph.

Depending on the algorithm that we use for the land-
mark selection policy, and the norm we use for measur-
ing the change in the distance to the landmarks, we get
four different algorithms, namely the MaxAvg-SumDiff
(masd), MaxAvg-MaxDiff (mamd), MaxMin-SumDiff
(mmsd) and MaxMin-MaxDiff (mmmd) algorithms.

4.2.5 Classification-based selection
Our goal in the candidate endpoint generation is to iden-

tify nodes that are likely to cover the largest number of
converging pairs. We can think of most of the previous algo-
rithms as methods for identifying features that characterize
good candidates. A natural extension of the above approach
is to combine all these features into a single algorithm us-
ing a classifier that will try to predict whether a node is a
“good” endpoint or not. The benefit of such an approach
is that it combines multiple features instead of one, and it
automatically finds the appropriate features to use for each
dataset without manual inspection. However, we need to
allocate resources for training the classifier.

An important question in this setting is how to determine
the positive class for the classifier. What do we mean by

Table 2: Dataset Characteristics

Dataset
No of nodes No of edges diameter max ∆t1,t2 not-connected
Gt1 Gt2 Gt1 Gt2 Gt1 Gt2 Gt1

Actors 1,851 1,886 45,584 56,981 5 5 3 0
Internet links 21,835 25,526 83,857 104,824 12 11 6 80

Facebook 4,436 4,734 25,197 31,498 12 11 7 27
DBLP 15,391 17,992 38,866 48,618 17 15 9 3,864

“good” endpoint? For this task we make use of the vertex
cover of the graph Gp

k, that we obtain with the greedy al-
gorithm. This is a collection of nodes that concisely cover
the changed paths, and thus it is reasonable to use them
as the positive class for our classification task. As features,
we use features employed by our algorithms such as the de-
gree of the nodes in Gt1 , and Gt2 , the degree difference,
and the relative degree difference, the L1 and L∞ norm of
the distances to random landmarks and landmarks selected
accordingly to the MaxMin and MaxAvg algorithms. We
train one such classifier for each dataset as described in the
experiments. We refer to this classifier, as the local classifier
of the dataset.

We also consider a classifier that can operate on any dataset.
For this classifier, we extend the feature set with features
characteristic of the dataset. In particular, we consider the
density, and the maximum degree of the two graph snap-
shots. The resulting classifier, termed global classifier, once
trained, can be used to generate candidate endpoints for the
top-k converging pairs for any two snapshots of any graph.

For the classification, we use logistic regression. The ben-
efit of the logistic regression algorithm is that it outputs a
probability for a node to belong to a given class, in our case
to the vertex cover. We sort the nodes in decreasing order
of this probability and we output the top-m nodes.

4.2.6 Incidence Algorithm
To the best of our knowledge, the first paper that ad-

dresses the problem of identifying the top converging pairs
in evolving social networks, is [14]. In this paper, the nodes
that receive new edges in the second timestamp are called
active and are considered as the most probable nodes to
participate in the top converging pairs. The Incidence Al-
gorithm is introduced, where after constructing the set of
the active nodes A, a number of |A| shortest path computa-
tions is performed on both instances of the graph, in order
to obtain the pairs with the maximum distance difference.

There are two variations of the Incidence Algorithm. In
the first one, called Selective Expansion, the neighbors of
the endpoints in A are also considered as candidates. Every
neighbor is evaluated according to the number of its impor-
tant edges. For this purpose, the notion of edge importance
in a social network is introduced, which is an estimate of the
edge betweenness centrality, computed using a randomly se-
lected set of shortest path trees. In our experiments, we
used the actual edge betweenness centrality, giving an ad-
vantage to the Incidence algorithm. In this variation, the
algorithm proceeds iteratively, inserting to A new neighbors,
and executing Incidence, until there are no more new pairs
discovered.

The second variation of the Incidence Algorithm proposes
a number of rank strategies for the active nodes, in order
to choose the top few of them that are likely to participate

in the converging pairs. The rank policies are divided to
degree-based and betweeness-based. Among other strate-
gies concerning weighted social graphs (which we do not
consider in our work), the authors of [14] rank the active
nodes using four different policies: their degree in Gt2 , their
degree difference between the two graph instances, the sum
of the importance of the edges that a node received in Gt2

and finally the difference of the last measure among Gt1 and
Gt2 .

4.3 Complexity
Recall that the value m is not only the number of can-

didate endpoints, but also the computational budget we
have in terms of time and space, that determines how many
single-source shortest-path computations we can afford to
perform on graphs Gt1 and Gt2 . Therefore, all algorithms
perform exactly 2m shortest path computations. Table 1
demonstrates how these computations are allocated in the
different phases of the algorithm, for different selection poli-
cies. The first phase concerns the shortest path computa-
tions required for selecting the candidate endpoints. The
second phase involves the computation of the single-source
shortest-paths for the candidate endpoints, in both snap-
shots. For the generated pairs, we compute the decrease in
their shortest paths, and select the k ones whose distance
decreased the most.

Note that the dispersion based methods need to compute
shortest paths only in the graph Gt1 , in order to select the
candidate endpoints. We still need to compute the shortest
paths on Gt2 though, in order to output the top-k pairs.
Also the classifier requires 3 · 2` shortest path computations
for computing the landmarks in three different ways, in order
to produce the features.

5. EXPERIMENTAL EVALUATION
In this section, we compare the performance of the various

algorithms and classifiers in terms of identifying the actual
top-k converging pairs for various values of the available
budget m.

5.1 Datasets and Setting
To evaluate the performance of our algorithms, we need to

be able to compute the true top-k converging pairs. There-
fore, we use datasets of manageable size, for which it is fea-
sible to compute all-pairs shortest paths. We consider the
following four real datasets:

• The Actors dataset, where the nodes are actors and
there is a connection between two film actors if they
both appeared in the same movie. The dataset was
obtained from the IMDB web site1, and it spans the
years from 1998 to 2010.

1http://www.imdb.com

Table 3: Characteristics of the Gp
k graphs (number of nodes and edges) and their maximum vertex cover (number of nodes).

Dataset i = 0 i = 1 i = 2

Actors
δ = 3 δ = 2 δ = 1

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
35 27 10 1,350 4,081 446 1,851 202,899 9

Internet links
δ = 6 δ = 5 δ = 4

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
28 46 8 382 734 41 9,196 17,896 194

Facebook
δ = 7 δ = 6 δ = 5

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
4 2 2 44 37 16 409 591 60

DBLP
δ = 9 δ = 8 δ = 7

endpoints pairs maxcover endpoints pairs maxcover endpoints pairs maxcover
6 4 2 68 68 12 289 462 46

• The Internet links dataset is an undirected graph rep-
resenting the AS-level connectivity of the Internet [17,
10] (an Autonomous System (AS) represents a single
administrative domain on the Internet). Each node in
the graph is an AS and an edge between two nodes rep-
resents a message that was exchanged between them,
using the inter-domain routing protocol.

• The Facebook dataset, where nodes are users of Face-
book, and edges between two nodes denote friendship.
The dataset contains 31,498 connections, which were
created sequentially in 31,498 different time points.

• The DBLP dataset, where nodes are authors and there
is an edge between two authors if they wrote a paper
together. The dataset was obtained from the DBLP
site2 and includes articles of 14 top conferences in data
mining, databases, theory and the WWW from 1983
to 2013.

Each dataset was divided into two snapshots, so that the
initial snapshot, Gt1 , contains 80 percent of the edges, and
the second snapshot, Gt2 , contains the entire graph. Table
2 provides a summary of the characteristics of each dataset.

In selecting the values of k on which to evaluate our al-
gorithms, we note that for any given k, there are many ties,
that is, there are many pairs with the same shortest path
change. This means that there are many different sets of
top-k converging pairs and Gp

k graphs. We set k to a value
that guarantees a single optimal solution. Specifically, for
two graph instances Gt1 and Gt2 , let ∆ be the maximum
distance decrease over all connected pairs of nodes in Gt1 .
We test our algorithms by assigning values to k that corre-
spond to the number of pairs whose distance change is at
least equal to δ, where δ takes values ∆, ∆− 1, and ∆− 2.
Setting k as above makes the problem harder, since there is
a single optimal solution that we must retrieve that includes
all converging pairs with shortest path distance change at
least δ. For smaller values of the given k, our algorithms
work even better, since in this case, retrieving any of (many)
tying pairs suffices.

In Table 3, we report for each dataset the number of pairs
whose path distance change is at least δ = ∆ − i, for i =
0, 1, 2, the number of distinct endpoints involved in these
pairs, and the size of the maximum cover as computed by
the greedy algorithm. For example, for the DBLP dataset,

2http://dblp.uni-trier.de/

for δ = 8 (∆ − 1), there are 68 pairs whose distance was
reduced by at least 8. These pairs involved 68 distinct nodes,
and they can be covered with 12 nodes. When running our
algorithms we set k = 68, that is, we look for the top-68
converging pairs.

The main parameter of our algorithms is the available
budget expressed through parameter m, i.e., the number
of candidate endpoints for which we can compute short-
est paths. The performance of an algorithm is measured
in terms of coverage: The percentage of top-k converging
pairs that are retrieved by the algorithm. Note that these
are pairs with at least one endpoint in the candidate set
produced by the algorithm. The goal of the experiments
is to study the cost-coverage tradeoff. We want to under-
stand how the coverage grows as we increase the budget, and
the maximum coverage we can obtain with a small budget
(m = 100). For simplicity, we fix the number ` of landmarks
to 10 for all algorithms. A larger number of landmarks did
not improve the performance.

In Table 4 we give an overview of the algorithms we con-
sider, and a quick index for the algorithm names.

5.2 Single Feature Algorithms
In this experiment, we evaluate the performance of the

proposed single-feature algorithms (all algorithms, except
for the classification-based algorithms). Our evaluation is in
terms of coverage of the top-k converging pairs.

We first evaluate the coverage of our algorithms (percent-
age of top-k converging pairs found) for a fixed budget m
= 100 and various values of k. Table 5 reports the coverage
of converging pairs with distance change at least δ for vari-
ous δ, which corresponds to a number of different k values,
ranging from k = 2 for Facebook and δ = 7 to k = 202,899
for Actors and δ = 1. The bold entries correspond to the
best performing algorithm for a particular input.

As shown, the centrality-based algorithms (based on de-
gree) achieve the lowest coverage almost always for all datasets
but for Actors. The algorithm that orders the candidate
endpoints according to their degree in the original graph
has actually almost zero coverage for all datasets, indicat-
ing that degree is negatively correlated with participation
to changed shortest paths. It appears that nodes with very
high degree are already central in the graph, and thus most
of their shortest paths are already short. Surprisingly the
degree difference is also an ineffective feature for selecting
good candidates. This can be explained from the prefer-

Table 4: Overview of Candidate Selection Algorithms.

Degree Selects the m nodes with the largest degt1
(u).

DegDiff Selects the m nodes with the largest degt2
(u)− degt1

(u).
DegRel Selects the m nodes with the largest (degt2

(u)− degt1
(u))/degt1

(u).
MaxMin Selects greedily m nodes in the first snapshot, such that each new node maximizes the minimum distance

to the already selected nodes.
MaxAvg Selects greedily m nodes in the first snapshot, such that each new node maximizes the average distance to

the already selected nodes.
SumDiff Selects the m nodes with the largest sum of distance decreases from a set of random landmarks L.
MaxDiff selects the m nodes with the largest maximum distance decrease from a set of random landmarks L.
MMSD MaxMin-SumDiff: Uses MaxMin for landmark selection, and SumDiff for selecting the m nodes.
MMMD MaxMin-MaxDiff: Uses MaxMin for landmark selection, and MaxDiff for selecting the m nodes.
MASD MaxAvg-SumDiff: Uses MaxAvg for landmark selection, and SumDiff for selecting the m nodes.
MAMD MaxAvg-MaxDiff: Uses MaxAvg for landmark selection, and MaxDiff for selecting the m nodes.
IncDeg Selects the m of the active nodes with the largest degt2

(u)− degt1
(u) [14].

IncBeet Selects the m of the active nodes with the largest increase in the total betweenness of their incident
edges [14].

ential attachment principle [1]: nodes with high degree are
more likely to obtain new links. We indeed observed strong
correlation between degree and degree change. Relative de-
gree difference mitigates the effect of high degree to some
extent, and this is why it performs better than degree and
degree difference on all datasets. Still it underperforms com-
pared to other algorithms. The poor performance of the
centrality-based algorithms indicates that approaches based
on the endpoints of the new edges as the one in [14] are
less efficient than selecting candidate nodes based on other
features.

The exception to the above observations is the Actors
dataset. For this dataset, DegRel is among the best algo-
rithms. We note that this is a dense dataset where many of
the top changed shortest paths are reduced to single edges.
In this setting, the addition of new edges to a node has a
stronger effect on the shortest path changes.

The dispersion-based algorithms are relatively successful
in discovering the converging pairs. MaxAvg outperforms
MaxMin in almost all cases. MaxAvg gives preference to
nodes in the outskirts of the graph while MaxMin tends to
select nodes that cover the different clusters in the graph [8].
Peripheral nodes are more likely to come significantly closer
to other nodes in the graph. The satisfactory performance
of the dispersion-based algorithms and the fact that they
do not require knowledge of the second snapshot indicates
that dispersion techniques could also be used as predictors
of converging pairs.

From the two landmark-based algorithms, SumDiff works
consistently better than MaxDiff. SumDiff considers nodes
that came closer to many landmarks and thus discovers
nodes that become central in the new graph. We think of the
SumDiff algorithm as a sampling of the distance changes
of the nodes in the graph. Nodes with high SumDiff value
are likely to have come close to many nodes in the graph.
Thus, in some sense, SumDiff is trying to approximate the
methodology of the greedy algorithm for finding a vertex
cover for Gp

k.
Finally, among the hybrid algorithms, the best coverage

is attained in most cases by MaxMin-SumDiff (MMSD).
The MaxMin-SumDiff algorithm exploits the ability of the
MaxMin algorithm to select representative landmarks that
cover the initial graph and the ability of SumDiff to select
nodes that come closer to all these representative nodes.

Note that although in general MaxAvg is a better disper-
sion algorithm than MaxMin, MaxMin-based landmark se-
lection tends to outperform MaxAvg-based selection. This
is reasonable, since, for landmark selection, it is better to se-
lect nodes that cover the graph rather than peripheral nodes.

We now study the coverage achieved for different values of
the budget m. Figure 1 shows the coverage achieved by the
landmark-based algorithms for various values of m for all
datasets. In general, the algorithms based on SumDiff con-
verge faster confirming our intuition that they cover many
pairs. The plot also demonstrates that landmark-based al-
gorithms waste part of their computational budget in com-
puting shortest path distances for the l = 10 random nodes
selected as landmarks that are not likely to be endpoints.
Thus, these algorithms obtain no coverage for this computa-
tion. On the other hand, the hybrid algorithms benefit from
the fact that they choose meaningful candidates as land-
marks, and as a result the effort for the landmark shortest
path computations is not wasted. Also, notice that MASD
and MMSD attain 90% coverage for m smaller than 50.

We also look into the set of candidate endpoints generated
by our algorithms to see to what extent this set consists of
(1) nodes in Gp

k and (2) nodes in the vertex cover of Gp
k pro-

duced by the greedy algorithm. We refer to the second set
as greedy-cover. For this experiment we use the Facebook
dataset and δ = 6 (k = 37). We study the best-performing
algorithms for this dataset: the landmark-based and hybrid
algorithms. Figure 2(a) reports the percentage of the can-
didate nodes that belong to Gp

k and Figure 2(b) the per-
centage that belongs to greedy-cover for various values of
m. Similar behavior is noticed for the other datasets and al-
gorithms. Not surprisingly, we observe that algorithms that
cover many paths also have high intersection with both sets.
It is interesting to note that the algorithms based on SumD-
iff have the largest intersection with the greedy-cover, that
is, they discover high-quality candidate nodes.

5.3 Classification-based methods
In our experiments, we observed that different algorithms

perform well for different datasets. A natural question is
whether we can combine the individual algorithms to gen-
erate better candidate endpoints and if so, how we should
weight the contribution of each individual algorithm. To this
end, we view the above algorithms as features and use them

Table 5: Coverage: percentage of converging pairs found for m = 100.

Actors Internet links Facebook DBLP

δ = 3 δ = 2 δ = 1 δ = 6 δ = 5 δ = 4 δ = 7 δ = 6 δ = 5 δ = 9 δ = 8 δ = 7

k = 27 k = 4,081 k = 202,899 k = 46 k = 734 k = 17,896 k = 2 k = 37 k = 591 k = 4 k = 68 k = 462

Degree 0 3.99 5.10 0 0 0.19 0 0 0.51 0 0 0
DegDiff 37.04 37.03 22.46 0 0.27 1 0 5.41 6.77 0 7.3 5.2
DegRel 100 66.16 34.24 41.30 44.82 45.17 0 70.27 44.50 100 57.35 39.61
MaxMin 59.26 28.13 14.0 67.39 65.67 66.12 100 64.87 50.42 75 52.94 42.42
MaxAvg 100 43.23 17.03 86.96 81.88 78.65 50 86.49 93.40 75 58.82 47.62
SumDiff 74.07 57.59 28.34 96.96 95.05 95.07 55 93.24 93.37 75 84.12 69.83
MaxDiff 83.33 31.74 16.97 92.39 92.00 88.31 45 84.32 87.73 77.5 74,41 63.31
MMSD 96.30 56.26 27.14 97.83 95.1 96.0 50 94.56 90.86 75 79.41 62.34
MMMD 37.04 25.41 15.06 97.83 88.69 80.16 50 83.78 80.20 75 72.06 67.53
MASD 100 54.64 27.11 97.83 95.1 95.60 50 89.19 92.22 75 86.77 67.53
MAMD 44.44 26.32 15.06 95.65 94.41 82.09 0 89.19 81.56 75 88.24 76.19
IncDeg 37.04 37.44 22.77 0 0 0.32 0 2.7 3.9 75 45.6 32.47
IncBeet 29.63 27 15.34 0 0.41 0.73 0 16.22 8.63 0 2.94 1.73

to build a classifier to predict whether a node is a“good”can-
didate endpoint or not. More precisely we use the following
features: the degree of the nodes in the first snapshot; the
degree difference; the degree relative difference; the L1 and
L∞ norm of the distances to random landmarks and land-
marks selected accordingly to the MaxMin and the MaxAvg
algorithms. All features are normalized in the interval [-1,1].
An important benefit of using a classifier is that it automat-
ically finds the appropriate features for each dataset.

For the positive class of the classifier, that is for the class
that corresponds to “good” endpoints, we use the vertex
cover computed by the greedy algorithm for the graph Gp

k.
As shown by our experiments, participation of a node in the
vertex cover is a strong indication that a node is a good
candidate. We also experimented with using all endpoints
in Gp

k, and the results were very similar.
We use the LIBLINEAR implementation of the logistic

regression classifier [11]. The logistic regression classifier
outputs a probability for every node to belong to the positive
class. Using this probability, we order the nodes according
to their likelihood of being good endpoints. We sort the
nodes in descending order of this probability and we output
the top-m nodes.

For the evaluation of the classifier, we split each dataset
into four snapshots. To train the classifier, we use snap-
shots G0

t1 that includes 40 percent of the edges and G0
t2 that

includes 60 percent of the edges. To test the classifier, we
use snapshots Gt1 that includes 80 percent of the edges and
Gt2 that includes the full graph, that is, the same snapshots
used for the evaluation of the single-feature algorithms. This
allows for a direct comparison of the results. We used the
same δ for both training and testing.

We consider two types of classifiers. A local classifier
build for each dataset which we denote as L-Classifier,
and a global classifier that can work for any dataset which
we denote as G-Classifier. For the global classifier, we ex-
tract additional features from all datasets. In particular, we
compute the density and the maximum node degrees of the
training graph snapshots that we normalize appropriately
within the interval [-1, 1]. We create the global classifica-
tion model using training data from all four datasets in equal
proportions.

Figure 3 compares the coverage achieved by L-Classifier

and G-Classifier, with the best algorithm for each dataset.
Note that the best algorithm is different for each dataset.
The classification algorithm is able to automatically detect
the appropriate features and produce a solution that has
high coverage for each dataset. Note that the classifiers are
handicapped by the set-up cost of the landmark computa-
tion (the first 30 shortest-path computations). Still, they
are able to catch up with the best algorithm.

The only case where this does not happen is for the Ac-
tors dataset, when using G-Classifier. The poor per-
formance can be explained by the differentiation of Actors
dataset compared to the other datasets (Section 5.2). Since
75% of the training set for G-Classifier consists of fea-
tures extracted from the Facebook, Internet links, and DBLP
datasets, and only 25% of Actors features, the G-Classifier
fails to produce a high coverage.

5.4 The Incidence algorithms
Finally, we compare our work to the approach in [14]. For

this comparison, we implemented the original version of the
Incidence algorithm, which does not use any kind of budget
in the shortest path computations. This algorithm achieves
very high coverage as shown in Table 6. However the set
of the active nodes A, which is the set of nodes for which
we need to compute the shortest paths, is a large fraction of
the original graph. The smallest set A is computed for the
DBLP dataset, and it is 11.66% of the Gt1 size (m = 1,794).
In comparison our budget (m = 100) does not exceed 0.65%
of the graph size. The largest set A is computed for the
Facebook dataset, and it is around 66% of Gt1 , while our
budget of m = 100 candidates is just 2.25% of the graph.
Given the large number of candidates used by Incidence, the
algorithm achieves almost complete coverage. At the same,
time the time complexity is excessively high. For efficiency
reasons, we did not test the effectiveness of Selective Expan-
sion, as it is a recursive process that is very time consuming.
It would lead us to use a very large set of candidate nodes
and eventually to solve the problem by performing the base-
line algorithm (computing all-pairs shortest paths), which is
prohibitively expensive.

We also compare with the approach of [14] under bud-
get constraints. Table 5 shows the best of the degree-based
policies, IncDeg, where the active nodes are ranked by their

Table 6: The percentage of Gt1 that the active nodes form and the coverage of Incidence Algorithm.

Actors Internet links Facebook DBLP
δ = 3 δ = 2 δ = 1 δ = 6 δ = 5 δ = 4 δ = 7 δ = 6 δ = 5 δ = 9 δ = 8 δ = 7

Incidence active nodes m = 1,197 (64.66%) m = 5,071 (23.22%) m = 2,914 (65.7%) m = 1,794 (11.66%)
Incidence coverage 100 100 99.35 89.13 95.1 93.91 100 100 99.32 100 97.1 90.9

0

20

40

60

80

100

0 20 40 60 80 100

C
O

V
ER

A
G

E

m

DEGREL SUMDIFF MAXDIFF MASD MAMD MMSD

(a) Pair coverage for Actors

0

20

40

60

80

100

0 2 0 4 0 6 0 8 0 1 0 0

C
O

V
ER

A
G

E

m

SUMDIFF MAXDIFF MASD MAMD MMSD MMMD

(b) Pair coverage for Internet links

0

20

40

60

80

100

0 2 0 4 0 6 0 8 0 1 0 0

C
O

V
ER

A
G

E

m

SUMDIFF MAXDIFF MASD MAMD MMSD MMMD

(c) Pair coverage for Facebook

0

20

40

60

80

100

0 2 0 4 0 6 0 8 0 1 0 0

C
O

V
ER

A
G

E

m

SUMDIFF MAXDIFF MASD MAMD MMSD MMMD

(d) Pair coverage for DBLP

Figure 1: Coverage of the top-k converging pairs, for the (a) Actors dataset and δ = 3 (k = 27), (b) Internet links dataset
and δ = 6 (k = 46), (c) Facebook dataset and δ = 6 (k = 37), and (d) DBLP dataset and δ = 8 (k = 68).

0

10

20

30

40

50

60

0 2 0 4 0 6 0 8 0 1 0 0

IN
TE

R
SE

C
TI

O
N

 W
IT

H
 P

m

SUMDIFF MAXDIFF MASD MAMD MMSD MMMD

(a) Intersection with nodes in Gp
k

0

10

20

30

40

50

60

70

80

0 2 0 4 0 6 0 8 0 1 0 0

IN
TE

R
SE

C
TI

O
N

 W
IT

H
 C

m

SUMDIFF MAXDIFF MASD MAMD MMSD MMMD

(b) Intersection with greedy-cover

Figure 2: (a) Intersection of candidate nodes with (a) the nodes of Gp
k and (b) the greedy-cover set, for various values of m

for the Facebook dataset and δ = 6 (k = 37).

0

20

40

60

80

100

0 2 0 4 0 6 0 8 0 1 0 0

C
O

V
ER

A
G

E

m

DEGREL L-Classifier G-Classifier

(a) Pair coverage for Actors

0

20

40

60

80

100

0 2 0 4 0 6 0 8 0 1 0 0

C
O

V
ER

A
G

E

m

MASD L-Classifier G-Classifier

(b) Pair coverage for Internet links

0

20

40

60

80

100

0 2 0 4 0 6 0 8 0 1 0 0

C
O

V
ER

A
G

E

m

MMSD L-Classifier G-Classifier

(c) Pair coverage for Facebook

0

20

40

60

80

100

0 2 0 4 0 6 0 8 0 1 0 0
C

O
V

ER
A

G
E

m

MAMD L-Classifier G-Classifier

(d) Pair coverage for DBLP

Figure 3: Coverage of the top-k converging pairs, achieved by best algorithm, G-Classifier, L-Classifier trained with the vertex
cover computed by the greedy algorithm, for the (a) Actors dataset and δ = 3 (k = 27), (b) Internet links dataset and δ = 6
(k = 46), (c) Facebook dataset and δ = 6 (k = 37), and (d) DBLP dataset and δ = 8 (k = 68).

degree change and IncBeet, where active nodes are ranked
by the increase of the betweeness centrality of the edges in-
cident to the nodes. We compute the actual edge between-
ness centrality instead of estimating it, giving an advantage
to the IncBeet algorithm. We can observe in Table 5 that
IncDeg and IncBet have low performance. In particular, for
the Internet links dataset, with δ = 4 and m = 100 (0.5% of
Gt1 size), MMSD achieves almost 96% coverage, while the
coverage of IncBet does not exceed 1%. In almost all of our
experiments, with exception the case of the DBLP dataset
with δ = 9, both of the two best variations of the Incidence

algorithm underperform in term of coverage, as they can not
discover more than 50% of the top converging pairs.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we focus on the problem of identifying top-k

converging pairs of nodes, that is, pairs of nodes that came
closer together between two snapshots of an evolving social
graph. We address the problem using purely structural prop-
erties of the two graph instances. Since a brute-force method
for computing all pair shortest path distances in the two in-
stances is not cost effective, we tackle the problem from a
different angle, by predicting the endpoints of such pairs.
In doing so, we introduce two novel ideas: (1) allocating a
fixed budget of m shortest-path computations and (2) for-
mally defining good candidate endpoints as those belonging
to the vertex cover of the top-k converging pairs. We pro-
pose a suite of algorithms for selecting candidate nodes and
build a classifier that combines them to effectively identify

the most appropriate algorithm for each setting. The clas-
sifier takes advantage of our novel method of characterizing
good candidate endpoints.

For future work, an interesting variation of the problem
to consider is the converging pair prediction task, where we
are given only the initial graph snapshot and we are asked
to “predict” the converging pairs. This problem can be seen
as an extension of the link prediction problem which asks
whether a single edge will be added between a pair of nodes.
Finally, our work can be extended by considering non struc-
tural properties, such as additional attributes of the edges
or nodes.

7. ACKNOWLEDGMENTS
This work has been supported by the Marie Curie Reinte-

gration Grant project titled JMUGCS which has received re-
search funding from the European Union, as well as the Op-
erational Program ”Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) - Research
Funding Program: Thales which has been co-financed by the
European Union (European Social Fund - ESF) and Greek
national funds. Investing in knowledge society through the
European Social Fund.

8. REFERENCES
[1] Réka Albert and Albert-László Barabási. Emergence of

scale in random networks. Science, 286:509–512, 1999.

[2] Lars Backstrom, Daniel P. Huttenlocher, Jon M.
Kleinberg, and Xiangyang Lan. Group formation in

large social networks: membership, growth, and
evolution. In KDD, pages 44–54, 2006.

[3] Mario Cannataro, Pietro H. Guzzi, and Pierangelo
Veltri. Protein-to-protein interactions: Technologies,
databases, and algorithms. ACM Comput. Surv.,
43(1):1:1–1:36, December 2010.

[4] Vineet Chaoji, Sayan Ranu, Rajeev Rastogi, and
Rushi Bhatt. Recommendations to boost content
spread in social networks. In WWW, pages 529–538,
2012.

[5] M. Christoforaki and T. Suel. Estimating pairwise
distances in large graphs. In BigData, 2014.

[6] Sara Cohen, Benny Kimelfeld, and Georgia Koutrika.
A survey on proximity measures for social networks.
In SeCO Book, pages 191–206. ACM, 2012.

[7] Camil Demetrescu and Giuseppe F. Italiano. A new
approach to dynamic all pairs shortest paths. In
STOC, pages 159–166, 2003.

[8] Marina Drosou and Evaggelia Pitoura. Disc diversity:
result diversification based on dissimilarity and
coverage. PVLDB, 6(1):13–24, 2012.

[9] David A. Easley and Jon M. Kleinberg. Networks,
Crowds, and Markets - Reasoning About a Highly
Connected World. Cambridge University Press, 2010.

[10] Michalis Faloutsos, Petros Faloutsos, and Christos
Faloutsos. On power-law relationships of the internet
topology. In SIGCOMM, pages 251–262, 1999.

[11] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh,
Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A
library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874, 2008.

[12] M. Girvan and M. E. J. Newman. Community
structure in social and biological networks.
Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[13] Sreenivas Gollapudi and Aneesh Sharma. An
axiomatic approach for result diversification. In
WWW, pages 381–390, 2009.

[14] Manish Gupta, Charu C. Aggarwal, and Jiawei Han.
Finding top-k shortest path distance changes in an

evolutionary network. In SSTD, pages 130–148, 2011.

[15] Jure Leskovec, Jon M. Kleinberg, and Christos
Faloutsos. Graph evolution: Densification and
shrinking diameters. TKDD, 1(1), 2007.

[16] David Liben-Nowell and Jon M. Kleinberg. The
link-prediction problem for social networks. JASIST,
58(7):1019–1031, 2007.

[17] Alan Mislove. Online Social Networks: Measurement,
Analysis, and Applications to Distributed Information
Systems. PhD thesis, Rice University, Department of
Computer Science, May 2009.

[18] Manos Papagelis, Francesco Bonchi, and Aristides
Gionis. Suggesting ghost edges for a smaller world. In
CIKM, pages 2305–2308, 2011.

[19] N. Parotisidis, E. Pitoura, and P. Tsaparas. Selecting
shortcuts for a smaller world. In SIAM International
Conference on Data Mining (SDM), 2015.

[20] Michalis Potamias, Francesco Bonchi, Carlos Castillo,
and Aristides Gionis. Fast shortest path distance
estimation in large networks. In CIKM, pages
867–876, 2009.

[21] Hanghang Tong, Spiros Papadimitriou, Philip S. Yu,
and Christos Faloutsos. Proximity tracking on
time-evolving bipartite graphs. In SDM, pages
704–715, 2008.

[22] Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad,
Michalis Faloutsos, and Christos Faloutsos. Gelling,
and melting, large graphs by edge manipulation. In
CIKM, pages 245–254, 2012.

[23] Konstantin Tretyakov, Abel Armas-Cervantes,
Luciano Garćıa-Bañuelos, Jaak Vilo, and Marlon
Dumas. Fast fully dynamic landmark-based estimation
of shortest path distances in very large graphs. In
CIKM, pages 1785–1794, 2011.

[24] Vijay V. Vazirani. Approximation algorithms.
Springer-Verlag New York, Inc., New York, NY, USA,
2001.

[25] Xiaohan Zhao, Alessandra Sala, Christo Wilson,
Haitao Zheng, and Ben Y. Zhao. Orion: Shortest path
estimation for large social graphs. In WOSN, 2010.

