
Structured Annotations of Web Queries

Nikos Sarkas
∗

University of Toronto
Toronto, ON, Canada

nsarkas@cs.toronto.edu

Stelios Paparizos
Microsoft Research

Mountain View, CA, USA
steliosp@microsoft.com

Panayiotis Tsaparas
Microsoft Research

Mountain View, CA, USA
panats@microsoft.com

ABSTRACT
Queries asked on web search engines often target structureddata,
such as commercial products, movie showtimes, or airline sched-
ules. However, surfacing relevant results from such data isa highly
challenging problem, due to the unstructured language of the web
queries, and the imposing scalability and speed requirements of
web search. In this paper, we discover latent structured seman-
tics in web queries and produceStructured Annotationsfor them.
We consider an annotation as a mapping of a query to a table of
structured data and attributes of this table. Given a collection of
structured tables, we present a fast and scalable tagging mechanism
for obtaining all possible annotations of a query over thesetables.
However, we observe that for a given query only few are sensible
for the user needs. We thus propose a principled probabilistic scor-
ing mechanism, using a generative model, for assessing the likeli-
hood of a structured annotation, and we define a dynamic threshold
for filtering out misinterpreted query annotations. Our techniques
are completely unsupervised, obviating the need for costlyman-
ual labeling effort. We evaluated our techniques using realworld
queries and data and present promising experimental results.

Categories and Subject Descriptors:H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval
General Terms: Algorithms, Performance, Experimentation
Keywords: keyword search, structured data, web

1. INTRODUCTION
Search engines are evolving from textual information retrieval

systems to highly sophisticated answering ecosystems utilizing in-
formation from multiple diverse sources. One such valuablesource
of information is structured data, abstracted as relational tables or
XML files, and readily available in publicly accessible datarepos-
itories or proprietary databases. Driving the web search evolution
are the user needs. With increasing frequency users issue queries
that target information that does not reside in web pages, but can
be found in structured data sources. Queries about products(e.g.,
“50 inch LG lcd tv”, “orange fendi handbag”, “white tiger book”),

∗Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

movie showtime listings (e.g., “indiana jones 4 near boston”), air-
lines schedules (e.g., “flights from boston to new york”), are only
a few examples of queries that are better served using information
from structured data, rather than textual content. User scenarios
like the ones above are forcing major search engines like Google,
Yahoo, Bing and Amazon to look more seriously into web scale
search over structured data. However, enabling such functionality
poses the following important challenges:

Web speed:Web users have become accustomed to lightning fast
responses. Studies have shown that even sub-second delays in re-
turning search results cause dissatisfaction to web users,resulting
in query abandonment and loss of revenue for search engines.

Web scale:Users issue over 100 million web queries per day. Ad-
ditionally, there is an abundance of structured data [2] already avail-
able within search engines’ ecosystems from sources like crawling,
data feeds, business deals or proprietary information. Thecombi-
nation of the two makes an efficient end-to-end solution non trivial.

Free-text queries: Web users targeting structured data express
queries in unstructured free-form text without knowledge of schema
or available databases. To produce meaningful results, query key-
words should be mapped to structure.

For example, consider the query “50 inch LG lcd tv” and assume
that there exists a table with information on TVs. One way to han-
dle such a query would be to treat each product as a bag of words
and apply standard information retrieval techniques. However, as-
sume that LG doesnot make 50 inch lcd tvs – there is a 46 inch
and a 55 inch lcd tv model. Simple keyword search would retrieve
nothing. On the other hand, consider a structured query thattargets
the table “TVs” and specifies the attributesDiagonal = “50 inch”,
Brand= “LG”, TV Type= “lcd tv”. Now, the retrieval and ranking
system can handle this query with a range predicate onDiagonal
and a fast selection on the other attributes. This is not an extreme
example; most web queries targeting structured data have similar
characteristics, incorporating latent structured information. Their
evaluation would greatly benefit from structured mappings that ex-
pose these latent semantics.

Intent disambiguation: Web queries targeting structured data use
the same language as all web queries. This fact violates the un-
derlying closed world assumption of systems that handle keyword
queries over structured data, rendering our problem significantly
harder. Web users seek information in the open world and issue
queries oblivious to the existence of structured data sources, let
alone their schema and their arrangement. A mechanism that di-
rectly maps keywords to structure can lead to misinterpretations of
the user’s intent for a large class of queries. There are two possible
types of misinterpretations: between web versus structured data,
and between individual structured tables.

For example, consider the query “white tiger” and assume there

is a table available containing Shoes and one containing Books.
For “white tiger”, a potential mapping can beTable= “Shoes” and
attributesColor = “white” and Shoe Line= “tiger”, after the pop-
ular Asics Tiger line. A different potential mapping can beTable
= “Books” andTitle = “white tiger”, after the popular book. Al-
though both mappings are possible, it seems that the book is more
applicable in this scenario. On the flip side, it is also quitepossible
the user was asking information that is not contained in our collec-
tion of available structured data, for example about “whitetiger”,
the animal. Hence, although multiple structured mappings can be
feasible, it is important to determine which one is more plausible
among them and which ones are at all meaningful. Such informa-
tion can greatly benefit overall result quality.

A possible way of addressing all the above challenges would be
to send every query to every database and use known techniques
from the domain of keyword search over databases or graphs, e.g.,
[12, 18, 15, 10, 19, 14, 11], to retrieve relevant information. How-
ever, it is not clear that such approaches are designed to handle
the web speed and scale requirements of this problem space. Web
queries are in the order of hundreds of millions per day with only
a small fraction really applicable to each particular table. Routing
every query to every database can be grossly inefficient. More im-
portantly, the final results surfaced to the web user would still need
to be processed via a meta-rank-aggregation phase that combines
the retrieved information from the multiple databases and only re-
turns the single or few most relevant. The design of such arbitration
phase is not obvious and almost certainly would require someanal-
ysis of the query and its mappings to the structured data. In conclu-
sion, we cannot simply apply existing techniques to this problem
and address the aforementioned challenges.

Having said that, previous work in this area is not without merit.
To address the scenario of web queries targeting structureddata,
a carefully thought-out end-to-end system has to be considered.
Many of the components for such system can be reused from what
already exists. For example, once the problem is decomposedinto
isolated databases, work on structured ranking can be reused. We
take advantage of such observations in proposing a solution.

1.1 Our Approach
In this paper, we exploit latent structured semantics in webqueries

to create mappings to structured data tables and attributes. We call
such mappingsStructured Annotations. For example an annota-
tion for the query “50 inch LG lcd tv” specifies theTable= “TVs”
and the attributesDiagonal = “50 inch”, Brand = “LG”, TV Type
= “lcd tv”. In producing annotations, we assume that all the struc-
tured data are given to us in the form of tables. We exploit that to
construct aClosed Structured Modelthat summarizes all the table
and attributes values and utilize it to deterministically produce all
possible annotations efficiently.

However, as we have already demonstrated with query “white
tiger”, generating all possible annotations is not sufficient. We need
to estimate the plausibility of each annotation and determine the
one that most likely captures the intent of the user. Furthermore,
we need to account for the fact that the users do not adhere to the
closed world assumption of the structured data: they use keywords
that may not be in the closed structured model, and their queries
are likely to target information in the open world.

To handle such problems we designed a principled probabilis-
tic model that scores each possible structured annotation.In addi-
tion, it also computes a score for the possibility of the query tar-
geting information outside the structured data collection. The latter
score acts as a dynamic threshold mechanism used to expose an-
notations that correspond to misinterpretations of the user intent.

50" LG lcd Tagger

����� �����	
��	�
lcd

������� ����
��	�
lcd

������������� Scorer

Statistics

Candidate Annotations

A1:

A2:

A1: 0.92

Scored, Plausible

Annotations

O
n
li
n
e

O
ff
li
n
e

LearningQuery

Log
DataData

Tables

LG50"

50" LG

Figure 1: Query Annotator Overview

Model probabilities are learned in an unsupervised fashionon the
combination of structured data and query logs. Such data areeasily
accessible within a search engine ecosystem.

The result is aQuery Annotatorcomponent, shown in Figure 1.
It is worth clarifying that we are not solving the end to end prob-
lem for serving structured data to web queries. That would include
other components such as indexing, data retrieval and ranking. Our
Query Annotatorcomponent sits on the frond end of such end-to-
end system. Its output can be utilized to route queries to appropriate
tables and feed annotation scores to a structured data ranker.

Our contributions with respect to the challenges of web search
over structured data are as follows.

1. Web speed: We design an efficient tokenizer and tagger
mechanism producing annotations in milliseconds.

2. Web scale:We map the problem to a decomposable closed
world summary of the structured data that can be done in
parallel for each structured table.

3. Free-text queries: We define the novel notion of a Struc-
tured Annotation capturing structure from free text. We show
how to implement a process producing all annotations given
a closed structured data world.

4. Intent disambiguation: We describe a scoring mechanism
that sorts annotations based on plausibility. Furthermore, we
extend the scoring with a dynamic threshold, derived from
the probability a query was not described by our closed world.

The rest of the paper is organized in the following way. We de-
scribe the closed structured world andStructured Annotationsin
Section 2. We discuss the efficient tokenizer and tagger process
that deterministically produces all annotations in Section 3. We
define a principled probabilistic generative model used forscoring
the annotations in Section 4 and we discuss unsupervised model
parameter learning in Section 5. We performed a thorough exper-
imental evaluation with very promising results, presentedin Sec-
tion 6. We conclude the paper with a discussion of related work in
Section 7 and some closing comments in Section 8.

2. STRUCTURED ANNOTATIONS
We start our discussion by defining some basic concepts. Atoken

is defined as a sequence of characters including space, i.e.,one or
more words. For example, the bigram “digital camera” may be a
single token. We define theOpen Language Model(OLM) as the
infinite set of all possible tokens. All keyword web queries can be
expressed using tokens fromOLM.

We assume that structured data are organized as a collectionof
tablesT = {T1, T2, . . . , T�}

1. A tableT is a set of relateden-

1The organization of data into tables is purely conceptual and orthogonal to the under-
lying storage layer: the data can be physically stored in XMLfiles, relational tables,
retrieved from remote web services, etc. Our assumption is that a mapping between
the storage layer and the “schema” of table collectionT has been defined.

tities sharing a set ofattributes. We denote the attributes of ta-
ble T as T.A = {T.A1, T.A2, . . . , T.A�}. Attributes can be
eithercategoricalor numerical. The domainof a categorical at-
tribute T.Ac ∈ T.Ac, i.e., the set of possible values thatT.Ac

can take, is denoted withT.Ac.V. We assume that each numeri-
cal attributeT.An ∈ T.An is associated with a singleunit U of
measurement. Given a set of unitsU we defineNum(U) to be
the set of all tokens that consist of a numerical value followed by
a unit inU . Hence, thedomainof a numerical attributeT.An is
Num(T.An.U) and thedomainof all numerical attributesT.An

in a table isNum(T.An.U).
An example of two tables is shown in Figure 2. The first ta-

ble contains TVs and the second Monitors. They both have three
attributes: Type, Brand and Diagonal. Type and Brand are categor-
ical, whereas Diagonal is numerical. The domain of values for all
categorical attributes for both tables isT .Ac.V = {TV, Samsung,
Sony, LG, Monitor, Dell, HP}. The domain for the numerical at-
tributes for both tables isNum(T .An.U) = Num({inch}). Note
thatNum({inch}) does not include only the values that appear in
the tables of the example, but rather all possible numbers followed
by the unit “inch”. Additionally, note that it is possible toextend
the domains with synonyms, e.g., by using “in” for “inches” and
“Hewlett Packard” for “HP”. Discovery of synonyms is beyondthe
scope of this paper, but existing techniques [21] can be leveraged.

We now give the following definitions.

DEFINITION 1 (TYPED TOKEN). A typed tokent for tableT
is any value from thedomainof {T.Ac.V ∪ Num(T.An.U)}.

DEFINITION 2 (CLOSEDLANGUAGE MODEL). TheClosed
Language ModelCLM of tableT is the set of all duplicate-free
typed tokens for tableT .

For the rest of the paper, for simplicity, we often refer totyped
tokensas justtokens. The closed language modelCLM(T) con-
tains the duplicate-free set of all tokens associated with tableT .
Since for numerical attributes we only store the “units” associated
with Num(U) the representation ofCLM(T) very compact.

The closed language modelCLM(T) for all our structured data
T is defined as the union of the closed language models of all ta-
bles. Furthermore, by definition, if we break a collection oftables
T into k sub-collections{T1, ..., Tk}, thenCLM(T) can be de-
composed into{CLM(T1), ...,CLM(Tk)}. In practice,CLM(T)
is used to identify tokens in a query that appear in the tablesof our
collection. So compactness and decomposability are very impor-
tant features that address the web speed and web scale challenges.

The closed language model defines the set of tokens that are as-
sociated with a collection of tables, but it does not assign any se-
manticsto these tokens. To this end, we define the notion of an
annotated tokenandclosed structured model.

DEFINITION 3 (ANNOTATED TOKEN). Anannotated tokenfor
a tableT is a pairAT = (t, T.A) of a tokent ∈ CLM(T) and an
attributeA in tableT , such thatt ∈ T.A.V.

For an annotated tokenAT = (t, T.A), we useAT.t to refer to
underlying tokent. Similarly, we useAT.T andAT.A to refer to
the underlying tableT and attributeA. Intuitively, theannotated
tokenAT assigns structured semantics to a token. In the example
of Figure 2, the annotated token (LG, TVs.Brand) denotes that the
token “LG” is a possible value for the attribute TVs.Brand.

DEFINITION 4 (CLOSEDSTRUCTUREDMODEL). TheClosed
Structured Modelof tableT , CSM(T) ⊆ CLM(T)× T.A, is the
set of all annotated tokens for tableT .

TVs
Type Brand Diagonal
TV Samsung 46 inch
TV Sony 60 inch
TV LG 26 inch

Monitors
Type Brand Diagonal
Monitor Samsung 24 inch
Monitor Dell 12 inch
Monitor HP 32 inch

Figure 2: A two-table example

Note that in the example of Figure 2, the annotated token (LG,
TVs.Brand) forCSM(TVs) is different from the annotated token
(LG, Monitors.Brand) forCSM(Monitors), despite the fact that in
both cases the name of the attribute is the same, and the token“LG”
appears in the closed language model of both TVs and Monitors
table. Furthermore, the annotated tokens (50 inch, TVs.Diagonal)
and (15 inch, TVs.Diagonal) are part of forCSM(TVs), despite
the fact that table TVs does not contain entries with those values.

The closed structured model for the collectionT is defined as
the union of the structured models for the tables inT . In practice,
CSM(T) is used to map all recognized tokens{t1, ..., tn} from
a query q to tables and attributes{T1.A1, ..., Tn.An}. This is a
fast lookup process as annotated tokens can be kept in a hash table.
To keep a small memory footprint,CSM(T) can be implemented
using token pointers toCLM(T), so the actual values are not repli-
cated. As before withCLM, CSM(T) is decomposable to smaller
collections of tables. Fast lookup, small memory footprintand de-
composability help with web speed and web scale requirements of
our approach.

We are now ready to proceed with the definition of aStructured
Annotation. But first, we introduce an auxiliary notion that simpli-
fies the definition. For a queryq, we define asegmentationof q, as
the set of tokensG = {t1, ..., tk} for which there is a permutation
�, such thatq = t�(1), ..., t�(k), i.e., the queryq is the sequence of
the tokens inG. Intuitively, a segmentation of a query is a sequence
of non-overlapping tokens that cover the entire query.

DEFINITION 5 (STRUCTUREDANNOTATION). A structured an-
notationSq of queryq over a table collectionT , is a triple⟨T ,AT ,
ℱT ⟩, whereT denotes a table inT , AT ⊆ CSM(T) is a set of
annotated tokens, andℱT ⊆ OLM is a set of words such that
{AT .t,ℱT } is a segmentation ofq.

A structured annotation2 Sq = ⟨T,AT ,ℱT ⟩ of query q is a
mapping of the user-issued keyword query to a structured data ta-
bleT , a subset of its attributesAT .A, and a set offree tokensℱT
of words from the open language model. Intuitively, it corresponds
to an interpretation of the query as a request for some entities from
tableT . The set of annotated tokensAT expresses the characteris-
tics ofT ’s entities requested, as pairs(ti, T.Ai) of a table attribute
T.Ai and a specific attribute valueti. The set of free tokensℱT is
the portion of the query that cannot be associated with an attribute
of tableT . Annotated and free tokens together cover all the words
in the query, defining complete segmentation ofq.

One could argue that it is possible for a query to target more
than one table and the definition of a structured annotation does
not cover this case. For example, query “chinese restaurants in
san francisco” could refer to a table of Restaurants and one of Lo-
cations. We could extend our model and annotation definitions to
support multiple tables, but for simplicity we choose to notto, since
the single-table problem is already a complex one. Instead,we as-
sume that such tables have been joined into one materializedview.

Now, consider the keyword queryq =“50 inch LG lcd”. Assume
that we have a collectionT of three tables over TVs, Monitors,

2For convenience we will often use the termsannotation, annotated queryandstruc-
tured queryto refer to a structured annotation. The terms are synonymous and used
interchangeably throughout the paper.

�������� � ��!
50 inch LG lcd

"#$ %& ''� �������� � ��!
50 inch lcd

(���)� $ %& ''� *�!)+ � ��!
50 inch lcd

,'- ��' �)� $./00
(a) (b) (c)

50 inch LG lcd tv123 ��&+4 "#$ 5��������6123 ��&+4 (���)� $5��������61784"#$ 5� ��!61784(���)� $5� ��!61)94 "#$ 5":;'6
(d)

LG LG

Figure 3: Examples of annotations and annotation generation.

and Refrigerators, and there are three possible possible annotations
⟨T,AT ,ℱT ⟩ of q (shown in Figure 3(a-c)):

(a) S1 = ⟨TVs, {(50 inch, TVs.Diagonal), (LG, TVs.Brand),
(lcd, TVs.Screen)}, {}⟩

(b) S2 = ⟨Monitors, {(50 inch, Monitors.Diagonal),
(LG, Monitors.Brand)}, (lcd, Monitors.Screen), {}⟩

(c) S3 = ⟨Refrigerators, {(50 inch, Refrigerators.Width),
(LG, Refrigerators.Brand)}, {lcd}⟩

The example above highlights the challenges discussed in Sec-
tion 1. The first challenge is how to efficiently derive all possi-
ble annotations. As the size and heterogeneity of the underlying
structured data collection increases, so does the number ofpossible
structured annotations per query. For instance, there can be multi-
ple product categories manufactured by “LG” or have an attribute
measured in “inches”. This would result in an even higher number
of structured annotations for the example queryq =“50 inch LG
lcd”. Hence, efficient generation of all structured annotations of a
query is a highly challenging problem.

PROBLEM 1 (ANNOTATION GENERATION). Given a keyword
queryq, generate the set of allstructured annotationsSq = S1, . . . , Sk

of queryq.

Second, it should be clear from our previous example that al-
though many structured annotations are possible, only a handful,
if any, areplausibleinterpretations of the keyword query. For in-
stance, annotationS1 (Figure 3(a)) is a perfectly sensible interpre-
tation of q. This is not true for annotationsS2 andS3. S2 maps
theentirekeyword query to table Monitors, but it is highly unlikely
that a user would request Monitors with such characteristics, i.e.,
(50 inch, Monitors.Diagonal), as users are aware that no such large
monitors exist (yet?). AnnotationS3 maps the query to table Re-
frigerators. A request for Refrigerators made by LG and a Width
of 50 inches is sensible, but it is extremely unlikely that a keyword
query expressing this request would include free token “lcd”, which
is irrelevant to Refrigerators. Note that the existence of free tokens
does not necessarily make an annotation implausible. For example,
for the query “50 inch lcdscreenLG”, the free token “screen” in-
creases the plausibility of the annotation that maps the query to the
table TVs. Such subtleties demand a robust scoring mechanism,
capable of eliminating implausible annotations and distinguishing
between the (potentially many) plausible ones.

PROBLEM 2 (ANNOTATION SCORING). Given a set of can-
didate annotationsSq = S1, . . . , Sk for a queryq, define a score
f(Si) for each annotationSi, and determine theplausibleones
satisfyingf(Si) > �q , where�q is a query-specific threshold.

We address the Annotation Generation problem in Section 3, and
the Annotation Scoring problem in Sections 4 and 5.

3. PRODUCING ANNOTATIONS
The process by which we map a web queryq to Structured An-

notationsinvolves two functions: a tokenizerfTOK and an tagger
fTAG. The tokenizer maps queryq to a set of annotated tokens
AT q ⊆ CSM(T) from the set of all possible annotated tokens in

Algorithm 1 Tokenizer
Input: A queryq represented as an array of wordsq[1, . . . , length(q)]
Output: An arrayAT , such that for each positioni of q, AT [i] is the
list of annotated tokens beginning ati; A list of free tokensℱT .

for i = 1 . . . length(q) do
Compute the set of annotated tokensAT [i] starting at positioni of
the query.
Add wordq[i] to the list of free tokensℱT .

return Array of annotated tokensAT and free tokensℱT .

the closed structured model of the dataset. The tagger consumes
the queryq and the set of annotated tokensATq and produces a set
of structured annotationsSq.

Tokenizer: The tokenizer procedure is shown in Algorithm 1. The
tokenizer consumes one query and produces all possible annotated
tokens. For example, consider the query “50 inch LG lcd tv” and
suppose we use the tokenizer over the dataset in Figure 3. Then the
output of the tokenizer will befTOK(q) ={(50 inch, TVs.Diagonal),
(50 inch, Monitors.Diagonal), (LG, Monitors. Brand), (LG,TVs.Brand),
(tv, TVs.Type)} (Figure 3(d)). The token “lcd” will be left un-
mapped, since it does not belong to the language modelCLM(T).

In order to impose minimal computational overhead when pars-
ing queries, the tokenizer utilizes a highly efficient and compact
string dictionary, implemented as a Ternary Search Tree (TST) [1].
The main-memory TST is a specialized key-value dictionary with
well understood performance benefits. For a collection of tablesT ,
the Ternary Search Tree is loaded with the duplicate free values of
categorical attributes and list of units of numerical attributes. So
semantically TST storesT .Ac.V ∪ T .An.U .

For numbers, a regular expressions matching algorithm is used
to scan the keyword query and make a note of all potential numeric
expressions. Subsequently, terms adjacent to a number are looked-
up in the ternary search tree in order to determine whether they
correspond to a relevantunit of measurement, e.g., “inch”, “GB”,
etc. If that is the case, the number along with the unit-term are
grouped together to form a typed token.

For every parsed typed tokent, the TST stores pointers to all the
attributes, over all tables and attributes in the collection that contain
this token as a value. We thus obtain the set of all annotated tokens
AT that involve tokent. The tokenizer maps the queryq to the
closed structured modelCSM(T) of the collection. Furthermore,
it also outputs a free token for every word in the query. Therefore,
we have thatfTOK(q) = {AT q,ℱT q}, whereAT q is the set of
all possible annotated tokens inq over all tables, andℱT q is the
set of words inq, as free tokens.

Tagger: We will now describe how the tagger works. For that we
need to first define the notion ofmaximal annotation.

DEFINITION 6. Given a queryq, and the set of all possible an-
notationsSq of queryq, annotationSq = ⟨T,AT ,ℱT ⟩ ∈ Sq is
maximal, if there exists no annotationS′

q = ⟨T ′,AT ′,ℱT ′⟩ ∈ Sq

such thatT = T ′ andAT ⊂ AT ′ andℱT ⊃ ℱT ′.

The tagger fTAG is a function that takes as input the set of an-
notated and free tokens{AT q ,ℱT q} of queryq and outputs the
set of all maximal annotationsfTOK({AT q , ℱT q}) = S∗

q . The
procedure of the tagger is shown in Algorithms 2 and 3. The algo-
rithm first partitions the annotated tokens per table, decomposing
the problem to smaller subproblems. Then, for each table it con-
structs the candidate annotations by scanning the query from left
to right, each time appending an annotated or free token to the end
on an existing annotation, and then recursing on the remaining un-
covered query. This process produces all valid annotations. We

Algorithm 2 Tagger
Input: An arrayAT , such that for each positioni of q, AT [i] is the list
of annotated tokens beginning ati; A list of free tokensℱT .
Output: A set of structured annotationsS

Partition the lists of annotated tokens per table.
for each tableT do

ℒ = ComputeAnnotations(AT T ,ℱT , 0)
Eliminate non-maximal annotations fromℒ
S = S ∪ ℒ

return S

Algorithm 3 ComputeAnnotation
Input: An arrayAT , such thatAT [i] is the list of annotated tokens; A
list of free tokensℱT ; A positionk in the arrayAT .
Output: A set of structured annotationsS using annotated and free to-
kens fromAT [j], ℱT [j] for j ≥ k.

if k > length(AT) then
return ∅

Initialize S = ∅
for each annotated or free tokenAFT ∈ (AT [k] ∪ ℱT [k]) do

k′ = k + length(AFT.t)
ℒ = ComputeAnnotation(AT ,ℱT , k′)
for each annotationS in ℒ do

S = {AFT, S}
S = S ∪ S

return S

perform a final step to remove the non-maximal annotations. This
can be done efficiently in a single pass: each annotation needs to
be checked against the “current” set of maximal annotations, as in
skyline computations. It is not hard to show that this process will
produce all possible maximal annotations.

LEMMA 1. The tagger produces all possible maximal annota-
tionsS∗

q of a queryq over a closed structured modelCSM(T).

As a walk through example consider the query “50 inch LG lcd
tv”, over the data in Figure 2. The input to the tagger is the set
of all annotated tokensAT q computed by the tokenizer (together
with the words of the query as free tokens). This set is depicted in
Figure 3(d). A subset of possible annotations forq is:

S1 = ⟨TVs,{(50 inch,TVs.Diagonal)},{LG, lcd, tv}⟩
S2 = ⟨TVs,{(50 inch,TVs.Diagonal),(LG, TVs.Brand)}, {lcd, tv}⟩
S3 = ⟨TVs,{(50 inch,TVs.Diagonal),(LG, TVs.Brand),(tv, TVs.Type)},{lcd}⟩
S4 = ⟨Monitors,{(50 inch,Monitors.Diagonal)}, {LG, lcd, tv}⟩
S5 = ⟨Monitors,{(50 inch,Monitors.Diagonal),(LG, Monitors.Brand)},
{lcd, tv}⟩

Out of these annotations,S3 andS5 are maximal, and they are
returned by the tagger function. Note that the token “lcd” isalways
in the free token set, while “tv” is a free token only for Monitors.

4. SCORING ANNOTATIONS
For each keyword queryq, the tagger produces the list of all pos-

sible structured annotationsSq = {S1, ..., Sk} of queryq. This set
can be large, since query tokens can match the attribute domains of
multiple tables. However, it is usually quite unlikely thatthe query
was actually intended for all these tables. For example, consider
the query “LG 30 inch screen”. Intuitively, the query most likely
targets TVs or Monitors, however a structured annotation will be
generated for all tables that contain any product of LG (DVD play-
ers, cell phones, cameras, etc.), as well as all tables with attributes
measured in inches.

It is thus clear that there is a need for computing ascore for
the annotations generated by the tagger that captures how “likely”

an annotation is. This is the responsibility of the scorer function,
which given the set of all annotationsSq, it outputs for each an-
notationSi ∈ Sq the probabilityP (Si) of a user requesting the
information captured by the annotation. For example, it is unlikely
that query “LG 30 inch screen”, targets a DVD player, since most of
the times people do not query for the dimensions of a DVD player
and DVD players do not have a screen. It is also highly unlikely
that the query refers to a camera or a cell phone, since although
these devices have a screen, its size is significantly smaller.

We model this intuition using agenerative probabilistic model.
Our model assumes that users “generate” an annotationSi (and
the resulting keyword query) as a two step process. First, with
probabilityP (T.Ai), they decide on the tableT and the subset of
its attributesT.Ai that they want to query, e.g., the product type
and the attributes of the product. Since the user may also include
free tokens in the query, we extend the set of attributes of each table
T with an additional attributeT.f that emits free tokens, and which
may be included in the set of attributesT.Ai. For clarity, we use
T.Ãi to denote a subset of attributes taken over this extended set
of attributes, whileT.Ai to denote the subset of attributes from the
tableT . Note that similar to every other attribute of tableT , the
free-token attributeT.f can be repeated multiple times, depending
on the number of free tokens added to the query.

In the second step, given their previous choice of attributesT.Ãi,
users select specific annotated and free tokens with probability
P ({AT i,ℱT i}∣T.Ãi). Combining the two steps, we have:

P (Si) = P ({AT i,ℱT i}∣T.Ãi)P (T.Ãi) (1)

For the “LG 30 inch screen” example, letSi = ⟨ TVs, {(LG,
TVs.Brand), (30 inch, TVs.Diagonal)},{screen}⟩ be an annotation
over the table TVs. Here the set of selected attributes is{TVs.Brand,
TVs.Diagonal, TVs.f}. We thus have:

P (Si) = P ({LG, 30 inch},{screen}∣(Brand,Diagonal, f))

⋅P (TVs.Brand,TVs.Diagonal,TVs.f)

In order to facilitate the evaluation of Equation 1 we make some
simplifying but reasonable assumptions. First, that the sets of an-
notatedAT i and freeℱT i tokens are independent, conditional on
the set of attributesT.Ãi selected by the user, that is:

P ({AT i,ℱT i}∣T.Ãi) = P (AT i∣T.Ãi)P (ℱT i∣T.Ãi)

Second, we assume that the free tokensℱT i do not depend on
the exact attributesT.Ãi selected by the user, but only on the ta-
ble T that the user decided to query. That is,P (ℱT i∣T.Ãi) =
P (ℱT i∣T). For example, the fact that the user decided to add the
free token “screen” to the query depends only on the fact thatshe
decided to query the table TVs, and not on the specific attributes of
the TVs table that she decided to query.

Lastly, we also assume that the annotated tokensAT i selected
by a user do not depend on her decision to add a free token to the
query, but instead only on the attributesT.Ai of the table that she
queried. That is,P (AT i∣T.Ãi) = P (AT i∣T.Ai). In our running
example, this means that the fact that the user queried for the brand
“LG”, and the diagonal value “30 inches”, does not depend on the
decision to add a free token to the query.

Putting everything together, we can rewrite Equation 1 as fol-
lows:

P (Si) = P (AT i∣T.Ai)P (ℱT i∣T)P (T.Ãi) (2)

Given the annotation setSq = {S1, ..., Sk} of query q, the
scorer function uses Equation 2 to compute the probability of each
annotation. In Section 5 we describe how given an annotationSi

we obtain estimates for the probabilities involved in Equation 2.

P(S1)

P(S2)

θ*P(SOLM)

P(S3)

P(S4)

Select table T and
attributes T.Ai with

P(T.Ãi)

Select annotated and
free tokens with
P({ ATi,FTi}|T.Ãi)

Generate an OLM
query with
P(OLM)

Start

(a) (b)

Select query q with
P(FTq|OLM)

Figure 4: The scorer component.

The probabilities allow us to discriminate between less andmore
likely annotations. However, this implicitly assumes thatwe op-
erate under a closed world hypothesis, where all of our queries
are targeting some table in the structured data collectionT . This
assumption is incompatible with our problem setting where users
issue queries through a web search engine text-box and are thus
likely to compose web queries using an open language model tar-
geting information outsideT . For example, the query “green ap-
ple” is a fully annotated query, where token “green” corresponds to
a Color, and “apple” to a Brand. However, it seems more likelythat
this query refers to the fruit, than any of the products of Apple. We
thus need to account for the case that the query we are annotating
is a regular web query not targeting the structured data collection.

Our generative model can easily incorporate this possibility in
a consistent manner. We define the open-language “table”OLM
which is meant to capture open-world queries. TheOLM table
has only the free-token attributeOLM.f and generates all possible
free-text queries. We populate the table using a generic webquery
log. LetℱT q denote the free-token representation of a queryq. We
generate an additional annotationSOLM = ⟨OLM, {ℱT q}⟩, and
we evaluate it together with all the other annotations inSq. Thus
the set of annotations becomesSq = {S1, ..., Sk, Sk+1}, where
Sk+1 = SOLM, and we have:

P (SOLM) = P (ℱT q ∣OLM)P (OLM) (3)

The SOLM annotation serves as a “control” against which all
candidate structure annotations need to measured. The probability
P (SOLM) acts as an adaptive threshold which can be used to filter
out implausibleannotations, whose probability is not high enough
compared toP (SOLM). More specifically, for some� > 0, we
say that a structured annotationSi is plausibleif P (Si)

P (SOLM)
> �.

In other words, an annotation, which corresponds to an interpreta-
tion of the query as a request which can be satisfied using struc-
tured data, is considered plausible if it ismore probablethan the
open-language annotation, which captures the absence of demand
for structured data. On the other hand, implausible annotations are
less probablethan the open-language annotation, which suggests
that they correspond to misinterpretations of the keyword query.

The value of� is used to control the strictness of the plausibility
condition. The scorer outputs only the set of plausible structured
annotations (Figure 4(a)). Notice that multiple plausibleannota-
tions are both possible and desirable. Certain queries are naturally
ambiguous, in which case it is sensible to output more than one
plausible annotations. For example, the query “LG 30 inch screen”
can be targeting either TVs or Monitors.

5. LEARNING THE GENERATIVE MODEL
In order to fully specify the generative model described in Sec-

tion 4 and summarized in Figure 4(b), we need to describe how to
obtain estimates for the probabilitiesP (AT i∣T.Ai), P (ℱT i∣T),
andP (T.Ãi) in Equation 2 for every annotationSi in Sq, as well as

P (ℱT q ∣OLM) andP (OLM) in Equation 3 for the open language
annotationSOLM. In order to guarantee highly efficient annotation
scoring, these estimates need to be pre-computed off-line,while to
guarantee scoring precision, the estimates need also be accurate.

5.1 Estimating token-generation probabilities
Generating Annotated Tokens.

We need to compute the conditional probabilityP (AT i∣T.Ai),
that is, the probability that the queryq on tableT and attributes
T.Ai contains a specific combination of values for the attributes.
A reasonable estimate of the conditional probability is offered by
the fraction of table entries that actually contain the values that ap-
pear in the annotated query. LetAT i.V denote the set of attribute
values associated with annotated tokensAT i. Also, letT (AT i.V)
denote the set of entries inT where the attributes inT.Ai take the
combination of valuesAT i.V. We have:

P (AT i∣T.Ai) =
∣T (AT i.V)∣

∣T ∣

For example, consider the query “50 inch LG lcd”, and the annota-
tionS = ⟨ TVs, {(LG,TVs.Brand),(50 inch, TVs.Diagonal)},{lcd}⟩.
We haveT.A = {Brand,Diagonal} andAT .V = {LG, 50inch}.
The setT (AT .V) is the set of all televisions in the TVs table of
brand LG with diagonal size 50 inch, andP (AT ∣T.A) is the frac-
tion of the entries in the TVs table that take these values.

Essentially, our implicit assumption behind this estimateis that
attribute values appearing in annotated queries and attribute val-
ues in tables follow the same distribution. For example, if a signif-
icant number of entries in the TVs table contains brand LG, this is
due to the fact that LG is popular among customers. On the other
hand, only a tiny fraction of products are of the relatively obscure
and, hence, infrequently queried brand “August”.

Similarly, we can expect few queries for “100 inch” TVs and
more for “50 inch” TVs. That is, large TVs represent a niche, and
this is also reflected in the composition of table TVs. Additionally,
we can expect practically no queries for “200 inch” TVs, as people
are aware that no such large screens exist (yet?). On the other hand,
even if there are no TVs of size 33 inches in the database, but TVs
of size 32 inches and 34 inches do exist, this is an indicationthat
33 may be a reasonable size to appear in a query.

Of course, there is no need to actually issue the query over our
data tables and retrieve its results in order to determine conditional
probability P (AT ∣T.A). Appropriate, lightweight statistics can
be maintained and used, and the vast literature onhistogram con-
struction [13] andselectivity estimation[20] can be leveraged for
this purpose. In this work, we assume by default independence be-
tween the different attributes. IfT.A = {T.A1, ..., T.Aa} are the
attributes that appear in the annotation of the query, andAT =
{(T.A1.v, T.A1), ..., (T.Aa.v, T.Aa)} are the annotated tokens,
then we have:

P (AT ∣T.A) =

a
∏

j=1

P (T.Aj .v∣T.Aj)

For the estimation ofP (T.Aj .v∣T.Aj), for categorical attributes,
we maintain the fraction of table entries matching each domain
value. For numerical attributes, a histogram is built instead, which
is used as an estimate of the probability density function ofthe val-
ues for this attribute. In that case, the probability of a numerical at-
tribute valuev is computed as the fraction of entities with values in
range[(1− �)v, (1+ �)v] (we set� = 0.05 in our implementation).
The resulting data structures storing these statistics areextremely
compact and amenable to efficient querying.

In the computation ofP (AT ∣T.A), we can leverage information
we have about synonyms or common misspellings of attribute val-
ues. Computation of the fraction of entries in tableT that contain
a specific valuev for attributeA, is done by counting how many
timesv appears in the tableT for attributeA. Suppose that our
query contains valuev′, which we know to be a synonym of value
v, with some confidencep. The closed world language model forT
will be extended to includev′ with the added information that this
maps to valuev with confidencep. Then, estimating the probabil-
ity of valuev′ can be done by counting the number of times value
v appears, and weight this count by the value ofp. The full discus-
sion on finding, modeling and implementing synonym handlingis
beyond the scope of our paper.

Finally, we note that although in general we assume indepen-
dence between attributes, multi-attribute statistics areused when-
ever their absence could severely distort the selectivity estimates
derived. Such an example are attributes Brand and Model-Line. A
Model-Line value is completely dependent on the corresponding
Brand value. Assuming independence between these two attributes
would greatly underestimate the probability of relevant value pairs.

Generating Free Tokens.
We distinguish between two types of free tokens: the free tokens

in ℱT q that are generated as part of the open language model anno-
tationSOLM that generates free-text web queries, and free tokens
in ℱT i that are generated as part of an annotationSi for a tableT
in the collectionT .

For the first type of free tokens, we compute the conditional
probability P (ℱT q∣OLM) using a simple unigram model con-
structed from a collection of generic web queries. The assumption
is that that each free token (word in this case) is drawn indepen-
dently. Therefore, we have that:

P (ℱT q∣OLM) =
∏

w∈ℱT q

P (w∣OLM)

Obviously, the unigram model is not very sophisticated and is
bound to offer less than perfect estimates. However, recallthat
the OLM table is introduced to act as a “control” against which
all candidate structured annotations need to “compete”, inaddition
to each other, to determine which ones are plausible annotations
of the query under consideration. An annotationSi is plausible if
P (Si) > �P (SOLM); the remaining annotations are rejected. A
rejected annotationSi is less likely to have generated the query
q, than a process that generates queries by drawing words inde-
pendently at random, according to their relative frequency. It is
reasonable to argue that such an interpretation of the queryq is
implausible and should be rejected.

For the second type of free tokens, we compute the conditional
probabilityP (ℱT i∣T), for some annotationSi over tableT , using
again a unigram modelUMT that is specific to the tableT , and
contains all unigrams that can be associated with tableT . For con-
struction ofUMT , we utilize the names and values ofall attributes
of tableT . Such words are highly relevant to tableT and therefore
have a higher chance of being included as free tokens in an anno-
tated query targeted at tableT . Further extensions of the unigram
model are possible, by including other information relatedto table
T , e.g., crawling related information from the web, or addingre-
lated queries via toolbar or query log analysis. This discussion is
beyond the scope of this paper.

Using the unigram modelUMT we now have:

P (ℱT i∣T) =
∏

w∈ℱT i

P (w∣T) =
∏

w∈ℱT i

P (w∣UMT)

Note that free tokens are important for disambiguating the intent of
the user. For example, for the query “LG 30 inch computer screen”
there are two possible annotations, one for the Monitors table, and
one for the TV table, each one selecting the attributes Brandand
Diagonal. The terms “computer” and “screen” are free tokens. In
this case the selected attributes should not give a clear preference
of one table over the other, but the free term “computer” should
assign more probability to the Monitors table, over the TVs table,
since it is related to Monitors, and not to TVs.

Given that we are dealing with web queries, it is likely that users
may also use as free tokens words that are generic to web queries,
even for queries that target a very specific table in the structured
data. Therefore, when computing the probability that a wordap-
pears as a free token in an annotation we should also take intoac-
count the likelihood of a word to appear in a generic web query.
For this purpose, we use the unigram open language modelOLM
described in Section 4 as thebackgroundprobability of a free to-
ken w in ℱT i, and we interpolate the conditional probabilities
P (w∣UMT) andP (w∣OLM). Putting everything together:

P (w∣T) = �P (w∣UMT) + �P (w∣OLM) , �+ � = 1 (4)

The ratio between�/� controls the confidence we place to the
unigram model, versus the possibility that the free tokens come
from the background distribution. Given the importance andpoten-
tially deleterious effect of free tokens on the probabilityand plausi-
bility of an annotation, we would like to exert additional control on
how free tokens affect the overall probability of an annotation. In
order to do so, we introduce a tuning parameter0 < � ≤ 1, which
can be used to additionally “penalize” the presence of free tokens
in an annotation. To this end, we compute:

P (w∣T) = �(�P (w∣UMT) + �P (w∣OLM))

Intuitively, we can view� as the effect of a process that outputs
free tokens with probability zero (or asymptotically closeto zero),
which is activated with probability1−�. We set the ratio�/� and
penalty parameter� in our experimental evaluation in Section 6.

5.2 Estimating Template Probabilities
We now focus on estimating the probability of a query targeting

particular tables and attributes, i.e., estimateP (T.Ãi) for an anno-
tationSi. A parallel challenge is the estimation ofP (OLM), i.e.,
the probability of a query being generated by the open language
model, since this is considered as an additional type of “table” with
a single attribute that generates free tokens. We will referto table
and attribute combinations asattribute templates.

The most reasonable source of information for estimating these
probabilities is web query log data, i.e., user-issued web queries
that have been already witnessed. LetQ be a such collection of
witnessed web queries. Based on our assumptions, these queries
are the output of∣Q∣ “runs” of the generative process depicted in
Figure 4(b). The unknown parameters of a probabilistic genera-
tive process are typically computed usingmaximum likelihood es-
timation, that is, estimating attribute template probability values
P (T.Ãi) andP (OLM) that maximize the likelihood of generative
process giving birth to query collectionQ.

Consider a keyword queryq ∈ Q and its annotationsSq. The
query can either be the formulation of a request for structured data
captured by an annotationSi ∈ Sq, or free-text query described
by theSOLM annotation. Since these possibilities are disjoint, the
probability of the generative processes outputting queryq is:

P (q) =
∑

Si∈Sq

P (Si) + P (SOLM) =

=
∑

Si∈Sq

P ({AT i,ℱT i}∣T.Ãi)P (T.Ãi) + P (ℱT q∣OLM)P (OLM)

A more general way of expressingP (q) is by assuming that all
tables in the database and all possible combinations of attributes
from these tables could give birth to queryq and, hence, contribute
to probabilityP (q). The combinations that do not appear in an-
notation setSq will have zero contribution. Formally, letTi be a
table, and letPi denote the set of all all possible combinations of
attributes ofTi, including the free token emitting attributeTi.f .
Then, for a table collectionT of size∣T ∣, we can write:

P (q) =

∣T ∣
∑

i=1

∑

Aj∈Pi

�qij�ij + �q�o

where�qij = P ({AT ij ,ℱT ij}∣Ti.Ãj), �q = P (ℱT q ∣OLM),
�ij = P (Ti.Ãj) and�o = P (OLM). Note that for annotations
Sij ∕∈ Sq, we haveaqij = 0. For a given queryq, the parameters
�qij and�q can be computed as described in Section 5.1. The pa-
rameters�ij and�o correspond to the unknown attribute template
probabilities we need to estimate.

Therefore, the log-likelihood of the entire query log can beex-
pressed as follows:

ℒ(Q) =
∑

q∈Q

logP (q) =
∑

q∈Q

log

⎛

⎝

∣T ∣
∑

i=1

∑

Aj∈Pi

�qij�ij + �q�o

⎞

⎠

Maximization ofℒ(Q) results in the following problem:

max
�ij ,�o

ℒ(Q), subject to
∑

ij

�ij + �o = 1 (5)

Condition
∑

ij
�ij+�o = 1 follows from the fact that based on our

generative model all queries can be explained either by an annota-
tion over the structured data tables, or as free-text queries generated
by the open-wold language model.

This is a large optimization problem with millions of variables.
Fortunately, objective functionℒ(�ij , �o∣Q) is concave. This fol-
lows from the fact that the logarithms of linear functions are con-
cave, and the composition of concave functions remains concave.
Therefore, any optimization algorithm will converge to a global
maximum. A simple, efficient optimization algorithm is the Expec-
tation-Maximization (EM) algorithm [3].

LEMMA 2. The constrained optimization problem described by
equations 5 can be solved using the Expectation-Maximization al-
gorithm. For every query keyword queryq and variable�ij , we
introduce auxiliary variablesqij and �q. The algorithm’s itera-
tions are provided by the following formulas:

∙ E-Step:
t+1
qij = �qij�

t
ij/

(
∑

km
�qkm�t

km + �q�
t
o

)

�t+1
q = �q�

t
o/

(
∑

km
�qkm�t

km + �q�
t
o

)

∙ M-Step:
�t+1
ij =

∑

q
t+1
qij /∣Q∣

�t+1
o =

∑

q
�t+1
q /∣Q∣

The proof is omitted due to space constraints. For a related proof,
see [3]. The EM algorithm’s iterations are extremely lightweight
and progressively improve the estimates for variables�ij , �o.

More intuitively, the algorithm works as follows. The E-step,
uses the current estimates of�ij , �o to compute for each queryq

probabilitiesP (Sij), Sij ∈ Sq andP (SOLM). Note that for a
given query we only consider annotations in setSq. The appear-
ance of each queryq is “attributed” among annotationsSij ∈ Sq

andSOLM proportionally to their probabilities, i.e.,qij stands for
the “fraction” of queryq resulting from annotationSij involving
tableTi and attributesTi.Ãj . The M-step then estimates�ij =
P (Ti.Ãj) as the sum of query “fractions” associated with tableTi

and attribute setTi.Ãj , over the total number of queries inQ.

6. EXPERIMENTAL EVALUATION
We implemented our proposed Query Annotator solution using

C# as a component of [22]. We performed a large-scale experimen-
tal evaluation utilizing real data to validate our ability to success-
fully address the challenges discussed in Section 1.

The structured data collectionT used was comprised of 1176
structured tables available to us from the Bing search engine. In
total, there were around 30 million structured data tuples occupying
approximately 400GB on disk when stored in a database. The same
structured data are publicly available via an XML API.3

The tables used represent a wide spectrum of entities, such as
Shoes, Video Games, Home Appliances, Televisions, and Digital
Cameras. We also used tables with “secondary” complementary
entities, such as Camera Lenses or Camera Accessories that have
high vocabulary overlap with “primary” entities in table Digital
Cameras. This way we stress-test result quality on annotations that
are semantically different but have very high token overlap.

Besides the structured data collection, we also used logs ofweb
queries posed on the Bing search engine. For our detailed qual-
ity experiments we used a log comprised of 38M distinct queries,
aggregated over a period of 5 months.

6.1 Algorithms
The annotation generation component presented in Section 3is

guaranteed to produce all maximal annotations. Therefore,we only
test its performance as part of our scalability tests presented in Sec-
tion 6.5. We compare the annotation scoring mechanism against a
greedy alternative. Both algorithms score the same set of annota-
tions, output by the annotation generation component (Section 3).

Annotator SAQ: The SAQ annotator (Structured Annotator of
Queries) stands for the full solution introduced in this work. Two
sets of parameters affecting SAQ’s behavior were identified. The
first, is thethresholdparameter� used to determine the set of plau-
sible structured annotations, satisfyingP (Si)

P (SOLM)
> � (Section 4).

Higher threshold values render the scorer more conservative in out-
putting annotations, hence, usually resulting in higher precision.
The second are the language model parameters: the ratio�/� that
balances our confidence to the unigram table language model,ver-
sus the background open language model, and the penalty param-
eter�. We fix �/� = 10 which we found to be a ratio that works
well in practice, and captures our intuition for the confidence we
have to the table language model. We consider two variationsof
SAQ based on the value of�: SAQ-MED (medium-tolerance) using
� = 0.1, and SAQ-LOW (low-tolerance) using� = 0.01.

Annotator IG-X : The Intelligent Greedy(IG-X) scores annota-
tionsSi based on the number of annotated tokens∣AT i∣ that they
contain, i.e., Score(Si) = ∣AT i∣. The Intelligent Greedy annota-
tor captures the intuition that higher scores should be assigned to
annotations that interpret structurally a larger part of the query. Be-
sides scoring, the annotator needs to deploy a threshold, i.e., a cri-

3See http://shopping.msn.com/xml/v1/getresults.aspx?text=televisions for for a table
of TVs and http://shopping.msn.com/xml/v1/getspecs.aspx?itemid=1202956773 for
an example of TV attributes.

terion for eliminating meaningless annotations and identifying the
plausible ones. The set of plausible annotations determined by the
Intelligent Greedy annotator are those satisfying (i)∣ℱT i∣ ≤ X,
(ii) ∣AT i∣ ≥ 2 and (iii) P (AT i∣T.Ai) > 0. Condition (i) puts an
upper boundX on the number of free tokens a plausible annotation
should contain: an annotation with more thanX free tokens cannot
be plausible. Note that the annotator completely ignores the affinity
of the free tokens to the annotated tokens and only reasons based on
their number. Condition (ii) demands a minimum of two annotated
tokens, in order to eliminate spurious annotations. Finally, condi-
tion (iii) requires that the attribute-value combination identified by
an annotation has a non-zero probability of occurring. Thiselim-
inates combinations of attribute values that have zero probability
according to the multi-attribute statistics we maintain (Section 5.1).

6.2 Scoring Quality
We quantify annotation scoring quality using precision andre-

call. This requires obtaining labels for a set of queries andtheir cor-
responding annotations. Since manual labeling could not berealis-
tically done on the entire structure data and query collections, we
focused on 7 tables: Digital Cameras, Camcorders, Hard Drives,
Digital Camera Lenses, Digital Camera Accessories, Monitors and
TVs. The particular tables were selected because of their high pop-
ularity, and also the challenge that they pose to the annotators due
to the high overlap of their corresponding closed language models
(CLM). For example, tables TVs and Monitors or Digital Cameras
and Digital Camera Lenses have very similar attributes and values.

The ground truth query set, denotedQ, consists of 50K queries
explicitly targeting the 7 tables. The queries were identified us-
ing relevant click log information over the structured dataand the
query-table pair validity was manually verified. We then used our
tagging process to produce all possible maximal annotations and
labeled manually the correct ones, if any.

We now discuss the metrics used for measuring the effective-
ness of our algorithms. An annotator can output multiple plau-
sible structured annotations per keyword query. We define0 ≤
TP (q) ≤ 1 as the fraction of correct plausible structured anno-
tations over the total number of plausible structured annotations
identified by an annotator. We also define a keyword query ascov-
eredby an annotator, if the annotator outputs at least one plausible
annotation. Let also Cov(Q) denote the set of queries covered by
an annotator. Then, we define:

Precision=

∑

q∈Q
TP (q)

∣Cov(Q)∣
, Recall=

∑

q∈Q
TP (q)

∣Q∣

Figure 5 presents the Precision vs Recall plot for SAQ-MED,
SAQ-LOW and the IG-X algorithms. Threshold� values for SAQ

were in the range of0.001 ≤ � ≤ 1000. Each point in the plot
corresponds to a different� value. The SAQ-based annotators and
IG-0 achieve very high precision, with SAQ being a little better. To
some extent this is to be expected, given that these are “cleaner”
queries, with every single query pre-classified to target the struc-
tured data collection. Therefore, an annotator is less likely to misin-
terpret open-world queries as a request for structured data. Notice,
however, that the recall of the SAQ-based annotators is significantly
higher than that of IG-0. The IG-X annotators achieve similar re-
call for X > 0, but the precision degrades significantly. Note also,
that increasing the allowable free tokens from 1 to 5 does notgive
gains in recall, but causes a large drop in precision. This isexpected
since targeted queries are unlikely to contain many free tokens.

Since the query data set is focused only on the tables we con-
sider, we decided to stress-test our approach even further:we set
threshold� = 0, effectively removing the adaptable threshold sep-

Figure 5: Precision and Recall using Targeted Queries

arating plausible and implausible annotations, and considered only
the most probable annotation. SAQ-MED precision was measured
at 78% and recall at 69% for� = 0, versus precision 95% and re-
call 40% for� = 1. This highlights the following points. First,
even queries targeting the structured data collection can have errors
and the adaptive threshold based on the open-language modelcan
help precision dramatically. Note that errors in this case happen
by misinterpreting queries amongst tables or the attributes within a
table, as there are no generic web queries in this labeled data set.
Second, there is room for improving recall significantly. A query is
often not annotated due to issues with stemming, spell-checking or
missing synonyms. For example, we do not annotate token “can-
non” when it is used instead of “canon”, or “hp” when used in-
stead of “hewlett-packard”. An extended structured data collection
using techniques as in [6, 8] can result in significantly improved
recall, but the study of such techniques is out of scope for this pa-
per. Finally, we measured that in approximately 19% of the labeled
queries, not a single token relevant to the considered tableattributes
was used in the query. This means there was no possible mapping
from the open language used in web queries to the closed world
described by the available structured data.

6.3 Handling General Web Queries
Having established that the proposed solution performs well in a

controlled environment where queries are known to target the struc-
tured data collection, we now investigate its quality on general web
queries. We use the full log of 38M queries, representative of an
everyday web search engine workload. These queries vary a lot in
context and are easy to misinterpret, essentially stress-testing the
annotator’s ability to supress false positives.

We consider the same annotator variants: SAQ-MED, SAQ-LOW

and IG-X. For each query, the algorithms output a set of plausi-
ble annotations. For each alternative, a uniform random sample of
covered queries was retrieved and the annotations were manually
labeled by 3 judges. A different sample for each alternativewas
used; 450 queries for each of the SAQ variations and 150 queries
for each of the IG variations. In total, 1350 queries were thoroughly
hand-labeled. Again, to minimize the labeling effort, we only con-
sider structured data from the same 7 tables mentioned earlier.

The plausible structured annotations associated with eachquery
were labeled asCorrect or Incorrect based on whether an anno-
tation was judged to represent a highly likely interpretation of the
query over our collection of tablesT . We measure precision as:

Precision=
of correct plausible annotations in the sample

of plausible annotations in the sample

It is not meaningful to compute recall on the entire query set
of 38 million. The vast majority of the web queries are general
purpose queries and do not target the structured data collection.

Figure 6: Precision and Coverage using General Web Queries

To compensate, we measuredcoverage, defined as the number of
covered queries, as a proxy ofrelative recall.

Figure 6 presents the annotation precision-coverage plot,for dif-
ferent threshold values. SAQ uses threshold values ranging in1 ≤
� ≤ 1000. Many interesting trends emerge from Figure 6. With re-
spect to SAQ-MED and SAQ-LOW, the annotation precision achieved
is extremely high, ranging from 0.73 to 0.89 for SAQ-MED and
0.86 to 0.97 for SAQ-LOW. Expectedly, SAQ-LOW’s precision is
higher than SAQ-MED, as SAQ-MED is more tolerant towards the
presence of free tokens in a structured annotation. As discussed,
free tokens have the potential to completely distort the interpreta-
tion of the remainder of the query. Hence, by being more tolerant,
SAQ-MED misinterprets queries that contain free tokens more fre-
quently than SAQ-LOW. Additionally, the effect of the threshold
on precision is pronounced for both variations: a higher threshold
results value results in higher precision.

The annotation precision of IG-1 and IG-5 is extremely low,
demonstrating the challenge that free tokens introduce andthe value
of treating them appropriately. Even a single free token (IG-1) can
have a deleterious effect on precision. However, even IG-0,which
only outputs annotations withzerofree tokens, offers lower preci-
sion than the SAQ variations. The IG-0 algorithm, by not reasoning
in a probabilistic manner, makes a variety of mistakes, the most im-
portant of which to erroneously identify latent structuredsemantics
in open-world queries. The “white tiger” example mention inSec-
tion 1 falls in this category. To verify this claim, we collected and
labeled a sample of 150 additional structured annotations that were
output by IG-0, but rejected by SAQ-MED with � = 1. SAQ’s
decision was correct approximately 90% of the time.

With respect to coverage, as expected, the more conservative
variations of SAQ, which demonstrated higher precision, have lower
coverage values. SAQ-MED offers higher coverage than SAQ-LOW,
while increased threshold values result in reduced coverage. Note
also the very poor coverage of IG-0. SAQ, by allowingand prop-
erly handling free tokens, increases substantially the coverage, with-
out sacrificing precision.

6.4 Understanding Annotation Pitfalls
We performed micro benchmarks using the hand-labeled data de-

scribed in Section 6.3 to better understand why the annotator works
well and why not. We looked at the effect of annotation length, free
tokens and structured data overlap.

Number of Free Tokens: Figures 7(a) and 8(a) depict the frac-
tion of correct and incorrect plausible structured annotations with
respect to the number of free tokens, for configurations SAQ-LOW

(with � = 1) and IG-5 respectively. For instance, the second bar
of 7(a) shows that 35% ofall plausible annotations contain 1 free
token: 24% were correct, and 11% were incorrect. Figures 7(b) and
8(b) normalize these fractions for each number of free tokens. For
instance, the second bar of Figure 7(b) signifies that of the struc-

Figure 7: SAQ -L OW: Free tokens and precision.

Figure 8: IG-5: Free tokens and precision.

tured annotations with 1 free token output by SAQ-LOW, approxi-
mately 69% were correct and 31% were incorrect.

The bulk of the structured annotations output by SAQ-LOW (Fig-
ure 7) contain either none or one free token. As the number of free
tokens increases, it becomes less likely that a candidate structured
annotation is correct. SAQ-LOW penalizes large number of free
tokens and only outputs structured annotations if it is confident of
their correctness. On the other hand, for IG-5 (Figure 8), more than
50% of structured annotations contain at least 2 free tokens. By us-
ing the appropriate probabilistic reasoning and dynamic threshold,
SAQ-LOW achieves higher precision even against IG-0 (zero free
tokens) or IG-1 (zero or one free tokens). As we can see SAQ

handles the entire gamut of free-token presence gracefully.
Overall Annotation Length : Figures 9 and 10 present the frac-

tion and normalized fraction of correct and incorrect structured an-
notations outputted, with respect to annotationlength. The length
of an annotation is defined as number of the annotated and free
tokens. Note that Figure 10 presents results for IG-0 ratherthan
IG-5. Having established the effect of free tokens with IG-5, we
wanted a comparison that focuses more on annotated tokens, so we
chose IG-0 that outputs zero free tokens.

An interesting observation in Figure 9(a) is that although SAQ-LOW

has not been constrained like IG-0 to output structured annotations
containing at least 2 annotated tokens, only a tiny fractionof its
output annotations contain a single annotated token. Intuitively, it
is extremely hard toconfidentlyinterpret a token, corresponding
to a single attribute value, as a structured query. Most likely the
keyword query is an open-world query that was misinterpreted.

The bulk of mistakes by IG-0 happen for two-token annotations.
As the number of tokens increases, it becomes increasingly un-
likely that all 3 or 4 annotated tokens from the same table appeared
in the same query by chance. Finally, note how different the dis-
tribution of structured annotations is with respect to the length of
SAQ-LOW (Figure 9(a)) and IG-0 (Figure 10(a)). By allowing free
tokens in a structured annotation, SAQ can successfully and cor-
rectly annotate longer queries, hence achieving much better recall
without sacrificing precision.

Types of Free Tokens in Incorrect Annotations: Free tokens
can completely invalidate the interpretation of a keyword query
captured by the corresponding structured annotation. Figure 11
depicts a categorization of the free tokens present in plausible an-
notations output by SAQ and labeled asincorrect. The goal of the
experiment is to understand the source of the errors in our approach.

We distinguish four categories of free tokens:(i) Open-world al-
tering tokens: This includes free tokens such as “review”, “drivers”

Figure 9: SAQ -L OW: Annotation length and precision.

Figure 10: IG-0: Annotation length and precision.

that invalidate the intent behind a structured annotation and take us
outside the closed world.(ii) Closed-world altering tokens: This
includes relevant tokens that are not annotated due to incomplete
structured data and eventually lead to misinterpretations. For exam-
ple, token “slr” is not annotated in the query “nikon 35 mm slr” and
as a result the annotation for Camera Lenses receives a high score.
(iii) Incomplete closed-world: This includes tokens that would have
been annotated if synonyms and spell checking were enabled.For
example, query “panasonic video camera” gets misinterpreted if
“video” is a free token. If “video camera” was given as a synonym
of “camcorder” this would not be the case.(iv) Open-world tokens:
This contains mostly stop-words like “with”, “for”, etc.

The majority of errors are in category (i). We note that a large
fraction of these errors could be corrected by a small amountof
supervised effort, to identify common open-world alteringtokens.
We observe also that the number of errors in categories (ii) and (iii)
is lower for SAQ-LOW than SAQ-MED, since (a) SAQ-LOW is
more stringent in filtering annotations and (b) it down-weights the
effect of free tokens and is thus hurt less by not detecting synonyms.

Overlap on Structured Data: High vocabulary overlap between
tables introduces a potential source of error. Table 1 presents a
“confusion matrix” for SAQ-LOW. Every plausible annotation in
the sample is associated with two tables: the actual table targeted by
the corresponding keyword query (“row” table) and the tablethat
the structured annotation suggests as targeted (“column” table). Ta-
ble 1 displays the row-normalized fraction of plausible annotations
output for each actual-predicted table pair. For instance,for 4% of
the queries relevant to table Camcorders, the plausible structured
annotation identified table Digital Cameras instead. We note that
most of the mass is on the diagonal, indicating that SAQ correctly
determines the table and avoids class confusion. The biggest error
occurs on camera accessories, where failure to understand free to-
kens (e.g., “batteries” in query “nikon d40 camera batteries”) can
result in producing high score annotations for the Cameras table.

6.5 Efficiency of Annotation Process
We performed an experiment to measure the total time required

by SAQ to generate and score annotations for the queries of our
full web log. The number of tables was varied in order to quan-
tify the effect of increasing table collection size on annotation ef-
ficiency. The experimental results are depicted in Figure 12. The
figure presents the mean time required to annotate a query: approx-
imately1 millisecondis needed to annotate a keyword query in the
presence of 1176 structured data tables. Evidently, the additional
overhead to general search-engine query processing is minuscule,
even in the presence of a large structured data collection. We also

Figure 11: Free tokens in incorrect annotations.

Predicted→
Actual↓

Cameras Camcorders Lenses Accessories OLM

Cameras 92% 2% 4% 2% 0%
Camcorders 4% 96% 0% 0% 0%
Lenses 2% 0% 94% 4% 0%%
Accessories 13% 3% 3% 81% 0%
OLM 7% 2% 0% 1% 90%

Table 1: Confusion matrix for SAQ -L OW.

observe a linear increase of annotation latency with respect to the
number of tables. This can be attributed to the number of structured
annotations generated and considered by SAQ increasing at worst
case linearly with the number of tables.

The experiment was executed on a single server and the closed
structured model for all 1176 tables required 10GB of memory. It
is worth noting that our solution is decomposable, ensuringhigh
parallelism. Therefore, besides low latency that is crucial for web
search, a production system can afford to use multiple machines to
achieve high query throughput. For example, based on a latency of
1ms per query, 3 machines would suffice for handling a hypotheti-
cal web search-engine workload of 250M queries per day.

0

0.2

0.4

0.6

0.8

1

0 500 1000

T
im

e
 p

e
r

Q
u

e
ry

 (
m

s)

of Tables

SAQ Linear (SAQ)

Figure 12: SAQ: On-line efficiency.

7. RELATED WORK
A problem related to generating plausible structured annotations,

referred to asweb query tagging, was introduced in [17]. Its goal
is to assign each query term to a specified category, roughly corre-
sponding to a table attribute. A Conditional Random Field (CRF)
is used to capture dependencies between query words and identify
the most likely joint assignment of words to “categories”. Query
tagging can be viewed as a simplification of the query annotation
problem considered in this work. One major difference is that in
[17] structured data are not organized into tables.This assumption
severely restricts the allowed applicability of the solution to mul-
tiple domains, as there is no mechanism to disambiguate between
arbitrary combinations of attributes. Second, the possibility of not
attributing a word to any specific category is not considered. This
assumption is incompatible with the general web setting. Finally,
training of the CRF is performed in asemi-supervisedfashion and
hence the focus of [17] is on automatically generating and utilizing
training data for learning the CRF parameters. Having said that, the
scale of the web demands an unsupervised solution; anythingless
will encounter issues when applied to diverse structured domains.

Keyword search on relational [12, 18, 15], semi-structured[10,
19] and graph data [14, 11] (Keyword Search Over Structured Data,
abbreviated as KSOSD) has been an extremely active researchtopic.
Its goal is the efficient retrieval of relevant database tuples, XML
sub-trees or subgraphs in response to keyword queries. The prob-
lem is challenging since the relevant pieces of informationneeded
to assemble answers are assumed to be scattered across relational
tables, graph nodes, etc. Essentially, KSOSD techniques allow
users to formulate complicated join queries against a database using
keywords. The tuples returned are ranked based on the “distance”
in the database of the fragments joined to produce a tuple, and the
textual similarity of the fragments to query terms.

The assumptions, requirements and end-goal of KSOSD are rad-
ically different from the web query annotation problem thatwe con-
sider. Most importantly, KSOSD solutions implicitly assume that
users are aware of the presence and nature of the underlying data
collection, although perhaps not its exact schema, and thatthey
explicitly intent to query it. Hence, the focus is on the assembly,
retrieval and ranking of relevant results (tuples). On the contrary,
web users are oblivious to the existence of the underlying data col-
lection and their queries might even be irrelevant to it. Therefore,
the focus of the query annotation process is on discovering latent
structure in web queries and identifying plausible user intent. This
information can subsequently be utilized for the benefit of struc-
tured data retrieval and KSOSD techniques. For a thorough survey
of the KSOSD literature and additional references see [7].

Some additional work in the context KSOSD, that is close to our
work appears in [5, 9]. This work identifies that while a keyword
query can be translated into multiple SQL queries, not all structured
queries are equally likely. A Bayesian network is used to score and
rank the queries, based on the data populating the database.Simi-
lar ideas for XML databases are presented in [16]. This information
is subsequently used in ranking query results. All three techniques
consider therelativelikelihood of each alternative structured query,
without considering their plausibility. In other words, the intent of
the user to query the underlying data is taken for granted. Explicit
treatment of free tokens in a keyword query and the successful use
of query log data further distinguishes our approach from the afore-
mentioned line of work.

The focus of [23] is on pre-processing a keyword query in order
to derive “high scoring” segmentations of it. A segmentation is a
grouping of nearby semantically related words. However, a high-
scoring query segmentation is a poorer construct than a structured
annotation. Finally, [4] study the problem of queryingfor tables
present in a corpus of relational tables, extracted from theHTML
representation of web pages. The precise problem addressedis the
retrieval of the top-k tables present in the corpus, which is different
from the more elaborate one considered in this work.

8. CONCLUSIONS
Fetching and utilizing results from structured data sources in re-

sponse to web queries presents unique and formidable challenges,
with respect to both result quality and efficiency. Towards address-
ing such problems we defined the novel notion ofStructured An-
notationsas a mapping of a query to a table and its attributes. We
showed an efficient process that creates all such annotations and
presented a probabilistic scorer that has the ability to sort and filter
annotations based on the likelihood they represent meaningful in-
terpretations of the user query. The end to end solution is highly ef-
ficient, demonstrates attractive precision/recall characteristics and
is capable of adapting to diverse structured data collections and
query workloads in a completely unsupervised fashion.

9. REFERENCES
[1] J. L. Bentley and R. Sedgewick. Fast Algorithms for Sorting

and Searching Strings. InSODA, 1997.
[2] M. Bergman. The Deep Web: Surfacing Hidden Value.

Journal of Electronic Publishing, 7(1), 2001.
[3] C. M. Bishop.Pattern Recognition and Machine Learning.

Springer, 1st edition, 2006.
[4] M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and

Y. Zhang. WebTables: Exploring the Power of Tables on the
Web.PVLDB, 1(1):538–549, 2008.

[5] P. Calado, A. S. da Silva, A. H. F. Laender, B. A.
Ribeiro-Neto, and R. C. Vieira. A Bayesian Network
Approach to Searching Web Databases through
Keyword-based Queries.Inf. Process. Man., 40(5), 2004.

[6] S. Chaudhuri, V. Ganti, and D. Xin. Exploiting Web Search
to Generate Synonyms for Entities. InWWW, 2009.

[7] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword Search on
Structured and Semi-structured Data. InSIGMOD, 2009.

[8] T. Cheng, H. Lauw, and S. Paparizos. Fuzzy Matching of
Web Queries to Structured Data. InICDE, 2010.

[9] F. de Sá Mesquita, A. S. da Silva, E. S. de Moura, P. Calado,
and A. H. F. Laender. LABRADOR: Efficiently Publishing
Relational Databases on the Web by Using Keyword-based
Query Interfaces.Inf. Process. Manage., 43(4), 2007.

[10] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents.
In SIGMOD, 2003.

[11] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: Ranked
Keyword Searches on Graphs. InSIGMOD, 2007.

[12] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient
IR-Style Keyword Search over Relational Databases. In
VLDB, 2003.

[13] Y. E. Ioannidis. The History of Histograms. InVLDB, 2003.
[14] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,

R. Desai, and H. Karambelkar. Bidirectional Expansion For
Keyword Search on Graph Databases. InVLDB, 2005.

[15] E. Kandogan, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar Semantic Search: A
Database Approach to Information Retrieval. InSIGMOD06.

[16] J. Kim, X. Xue, and W. B. Croft. A Probabilistic Retrieval
Model for Semistructured Data. InECIR, 2009.

[17] X. Li, Y.-Y. Wang, and A. Acero. Extracting Structured
Information from User Queries with Semi-supervised
Conditional Random Fields. InSIGIR, 2009.

[18] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury. Effective
Keyword Search in Relational Databases. InSIGMOD, 2006.

[19] Z. Liu and Y. Chen. Reasoning and Identifying Relevant
Matches for XML Keyword Search.PVLDB, 1(1), 2008.

[20] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava,
and T. M. Tran. Consistent selectivity estimation via
maximum entropy.VLDB J., 16(1), 2007.

[21] G. A. Miller. WordNet: A Lexical Database for English.
Commun. ACM, 38(11):39–41, 1995.

[22] S. Paparizos, A. Ntoulas, J. C. Shafer, and R. Agrawal.
Answering Web Queries Using Structured Data Sources. In
SIGMOD, 2009.

[23] K. Q. Pu and X. Yu. Keyword Query Cleaning.PVLDB,
1(1):909–920, 2008.

