
Generating Labels from Clicks

R. Agrawal A. Halverson K. Kenthapadi N. Mishra P. Tsaparas
Search Labs, Microsoft Research

{rakesha,alanhal,krisken,ninam,panats}@microsoft.com

ABSTRACT
The ranking function used by search engines to order resultsis
learned from labeled training data. Each training point is a(query,
URL) pair that is labeled by a human judge who assigns a score of
Perfect, Excellent, etc., depending on how well the URL matches
the query. In this paper, we study whether clicks can be used to
automatically generate good labels. Intuitively, documents that are
clicked (resp., skipped) in aggregate can indicate relevance (resp.,
lack of relevance). We give a novel way of transforming clicks into
weighted, directed graphs inspired by eye-tracking studies and then
devise an objective function for finding cuts in these graphsthat in-
duce a good labeling. In its full generality, the problem is NP-hard,
but we show that, in the case of two labels, an optimum labeling
can be found in linear time. For the more general case, we propose
heuristic solutions. Experiments on real click logs show that click-
based labels align with the opinion of a panel of judges, especially
as the consensus of the panel grows stronger.

Categories and Subject Descriptors
H.3.3 [Information Retrieval ]: Search; G.2.2 [Discrete Math]:
Graph Algorithms

General Terms
Algorithms, Experimentation

Keywords
Generating Training Data, Graph Partitioning

1. INTRODUCTION
Search engines order web results via a ranking function that,

given a query and a document, produces a score indicating how
well the document matches the query. The ranking function isit-
self learned via a machine learning algorithm such as [15]. The
input to the learning algorithm is typically a collection of(query,
URL) pairs, labeled with relevance labels such as Perfect, Excel-
lent, Good, Fair or Bad indicating how well the document matches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM 978-1-60558-390-7 ...$5.00.

the query. Obtaining labels of high quality is of critical impor-
tance: the quality of training data heavily influences the quality of
the ranking function.

Currently, the labels for training data are collected usinghuman
judges. Typically, each (query, URL) pair is assigned to a single
judge. However, this leads to error-prone judgments since it is very
hard for a single judge to capture all the intents and nuancesof a
query posed by a user. To alleviate such errors, a panel of judges
can be used to obtain multiple judgments for the same (query,URL)
pair. The final label of the pair is then derived by aggregating the
multiple judgments.

This manual way of obtaining labels is time-consuming, labor-
intensive, and costly. Furthermore, as ranking models become more
complex, the amount of labeled data needed to learn an accurate
model increases [23]. Further, to ensure temporal relevance of la-
bels, the labeling process must be repeated quite often. Conse-
quently, there is a pressing need for search engines to automate the
labeling process as much as possible.

It has been observed [20] that the click logs of a search engine
can be used to automate the generation of training data. The click
log records all queries posed to a search engine, the URLs that
were shown to the user as a result of the query, and the clicks.The
logs capture the preferences of the users: Clicked documents are
most likely relevant to the needs and the intent of the user, while
skipped (not clicked) documents are most likely not. Aggregation
of the activities of many users provides a powerful signal about the
quality of a (query, URL) pair. This data can thus be used for the
task of automatically generating labels.

Joachims et al’s seminal work [20, 22] proposes a collection
of preference rulesfor interpreting click logs. These rules (e.g.,
clicked documents are better than preceding skipped documents)
when applied to a click log produce pairwise preferences between
the URLs of a query, which are then used as a training set for a
learning algorithm.

Applying the ideas of Joachims et al to a search engine click log
uncovers several shortcomings. First, the preference rules defined
by Joachims et al assume a specific user browsing model that is
overly simplified. As we outline in Section 3, the rules do notfully
capture the aggregate behavior of users and also limits the genera-
tion of training data.

Second, the work tacitly assumes a relatively controlled environ-
ment with a stable search engine, i.e., one that always produces
search results in the same order. It also assumes a small set of users
that behave consistently. Each preference rule produces a consis-
tent set of preferences between URLs. These assumptions arenot
satisfied in the environment of a real search engine: the observed
behavior for a query changes dynamically over time, different or-
derings may be shown to different users, and the same users may



exhibit different behavior depending on the time of day. When ap-
plying preference rules on click logs, many contradicting pairwise
preferences must be reconciled to obtain a consistent labeling.

Third, the goal is to generate pairwise preferences which are then
used directly for training. However, several learning algorithms
operate on labeled training data [3, 28]. For such algorithms it is
important to produce labels for the (query, URL) pairs.

Contributions: The main contribution of this paper is a method for
automatically generating labels for (query, URL) pairs from click
activity. The method directly address the three shortcomings men-
tioned above.

More concretely, we propose a new interpretation of the click log
that utilizes the probability a user has seen a specific URL toinfer
expected click/skip behavior. This new model more accurately cap-
tures the aggregate behavior of users. We model the collection of
(often contradicting) pairwise preferences as a graph and formulate
the label generation problem as a novel graph partitioning problem
(MAXIMUM -ORDERED-PARTITION),where the goal is to partition
nodes in the graph into labeled classes, such that we maximize the
number of users that agree with the labeling minus the numberof
users that disagree with the labeling.

The MAXIMUM -ORDERED-PARTITION problem is of indepen-
dent theoretical interest. We show that in the case of findingtwo
labels, i.e., relevant and not relevant, it surprisingly turns out that
the optimum labeling can be found in linear time. On the other
hand, we show that the problem of finding the optimumn label-
ing, wheren is the number of vertices in the graph, is NP-hard.
We propose heuristics for addressing the problem of label gener-
ation for multiple labels. Our methods compute a linear ordering
of the nodes in the graph, and then find the optimal partition using
dynamic programming.

We conduct an extensive experimental study of both the pref-
erence rules and the labeling methods. The experiments compare
click inferences to the aggregate view of a panel of judges. We
demonstrate that our probabilistic interpretation of the click log is
more accurate than prior deterministic interpretations via this panel.
Further, we show that the stronger the consensus of the panel, the
more likely our click labels are to agree with the consensus.In the
event that click labels disagree with a strong consensus, weshow
that it can often be attributed to short queries where the intent is
ambiguous.

2. RELATED WORK
The idea of using clicks as a basis for training data was first pro-

posed by Joachims [20, 22]. We explain this work in more detail
in the next section. Subsequently, a series of papers proposed more
elaborate models for interpreting how users interact with asearch
engine. For instance, Radlinski and Joachims [25] stitch together
preferences from multiple sessions. Craswell et al [6] propose a
cascade model that is used to predict the probability a user will
click on a result. The model assumes that users view search re-
sults from top to bottom, deciding at each position whether to click,
or skip and move to the next result. Dupret and Piwowarski [10]
also assume that users read from top to bottom, but are less likely
to click the further the distance from their last click. These ideas
could be used to extend the results in this paper. We leave this as a
promising direction for future work.

Training on Pairs: The idea of sorting URLs by the number of
clicks and then training on the induced ordered pairs was explored
in [9]. Whereas skipped documents are ignored in that work, we
explicitly utilize skips in making relevance assertions. Further, no

correction is made forpresentation bias, a user’s decision to click
on a result based on its position as opposed to its relevance.We
overcome this problem to a certain extent by appealing to eye-
tracking studies (Section 3).

In our work, we construct one directed, weighted graph per query.
Given such a graph, a natural question is why not directly provide
the edges as pairwise training data to a machine learning algorithm
such as [4, 15, 20]? A few issues arise. First, the graphs we cre-
ate are incomplete in the sense that edges(u, v) and(v, w) may
be present in the graph while(u, w) may not be. In this scenario,
we do want a machine learning algorithm to also train on(u, w),
but the edge is not present. Second, the graphs we create contain
cycles. For example, in the case of an ambiguous query, some users
may preferu to v, while others may preferv to u. Providing both
pairsu > v andv > u to a machine learning algorithm is not con-
sistent. Finally, we cannot create training data of the form: u andv
are equally relevant. Such “equally good” training data hasproved
to be useful in the context of ranking search results [30]. The la-
beling that we generate has the power to overcome these problems.
Indeed, our experiments demonstrate that our ordered graphpar-
titioning creates more training pairs that are more likely to agree
with a panel of judges than the edges of the graph.

Rank Aggregation: The techniques that we use for generating a la-
beling from a graph involve first ordering the vertices by relevance,
then partitioning this ordering into classes and then assigning la-
bels to these classes. To construct an ordering of the vertices, a
ranking is sought that minimizes the total number of flipped pref-
erences, i.e., for all URLsu andv, the number of users that prefer
u to v, but v > u in the final ranking. Such a ranking is known
as aconsensus ranking. Rank aggregation methods [1, 2, 11, 12,
13] produce a consensus ranking based on either totally or partially
ordered preferences. Ailon et al [2] show that given a tournament
graph, i.e., one where for every pair of verticesu andv there is
either an edge fromu to v or v to u, a 2-approximate consensus
ranking can be found under certain assumptions. Since our graph
is not a tournament, such techniques do not apply. However, we
do use other methods suggested in the literature. For example, we
rank vertices based on a page-rank style random walk that waspre-
viously investigated in [11, 24]. Actually, since our final goal is
to produce ordered labels, the work that most closely matches our
problem is the bucket ordering work described in [16]. We elabo-
rate further on this technique in the experiments.

Limitations of Clicks: Clicks are known to possess several limita-
tions. Some of these limitations can be addressed by existing work
on clicks, while others lie at the forefront of research. Forinstance,
spurious clicks pose a problem in that a small number of bad clicks
can trigger a cascade of incorrect inferences. We address this prob-
lem by making decisions based on only a large number of users.
Presentation bias is another issue with clicks that we already men-
tioned. Another method for coping with presentation bias includes
randomly altering the order in which results are presented [26, 27].
Clicks pose further problems that are under active investigation in
other research communities. For instance, fraudulent clicks need to
be detected and removed [18, 19]. The bot traffic that we are able
to detect is removed from our click logs, but we know more exists.
Also, clicks are more an indication of the quality of the caption than
the quality of the page [5, 8, 29]. We believe that continued future
work on these topics will address issues with clicks.

3. INTERPRETING CLICK LOGS
The click log of a search engine consists of a sequence of query

impressions; each impression corresponds to a user posing a query



to the search engine. Each impression may have one or more clicks
on the document URLs returned in the result set. The ordered list
of document URLs presented to the user, and the position of each
document click is stored in the click log. The goal is to use this
information to derive preferences between the URLs.

In this section we describe how to interpret the click logs for
obtaining pairwise preferences between URLs. We begin by dis-
cussing the work of Joachims et al in detail, and its limitations
when applied to a search engine click log. We then propose our
own probabilistic model for the query log interpretation.

3.1 Prior Work on Interpreting Query Click
Logs

Joachims et al [20, 22] proposed a set of preference rules forin-
terpreting the click logs. These rules generate pairwise preferences
between URLs and are based on eye-tracking studies. We group
the rules proposed by Joachims into two categories, rules that rein-
force the existing ranking (positive rules) and rules that contradict
the existing ranking (negative rules).

Rules that Reinforce the Existing Order of Search Results:This
category includes the rule “Click> Skip Next” which states that
if a person clicks on URLA at positioni and skips URLB at
position i + 1 then URL A is preferable to URLB (A > B).
This rule is based on eye-tracking studies: a user who clicked on
a document at positioni is likely to have also seen the URL at
position i + 1. While this may capture the most common user’s
behavior, it does not capture the aggregate behavior: some users
may browse more URLs below positioni. This is especially true
when clicking at position 1 as there are users that do read below
position 2. Furthermore, this rule generates sparse data. For each
click on a URL we obtain only a single pairwise preference.

Rules that Contradict the Existing Order: This category in-
cludes the rules “Click> Skip Above”, “Click > Skip Previous”,
“Last Click > Skip Above”, “Click > Click Above”. These rules
rely on the eye-tracking observation that if a user clicks ona docu-
ment at positioni, then with some probability they have seen all the
URLs preceding positioni. The rule “Click> Skip Above” is the
most aggressive: it generates a preference for all preceding URLs
that were skipped. The rules “Click> Skip Previous”, and “Last
Click > Skip Above” are more conservative in generating prefer-
ences. The former generates a preference only with the preceding
URL, while the latter assumes that only the last click was a suc-
cessful click. The rule “Click > Click Above” creates preferences
for failed clicks.

These rules attempt to generate data that will “correct” therank-
ing. One limitation is that they do not fire in the case that there is
a single click on the first result, a common case in the contextof a
real search engine.

In isolation, these rules can lead to incorrect inferences.If we
only apply positive rules we cannot obtain information about in-
correct decisions made by the ranking function. On the otherhand,
negative rules do not provide any information about the correct de-
cisions of the ranking function.

Even in combination, these rules can lead to non-intuitive infer-
ences. Consider combining the “Click> Skip Next” rule with the
“Click > Skip Above” rule and suppose that 100 people click only
on position 1, while 10 people click on position 3. Then the com-
bination of these rules implies that users prefer 1 to 2, users prefer
3 to 1 and also 3 to 2. Chaining the inferences together, we have
that3 > 1 > 2. For many queries this turns out to be an incorrect

0 . 40 . 50 . 60 . 70 . 80 . 9 1 P r o b a b i l i t y o f r e a d i n g p o s i t i o n i g i v e n c l i c k j
00 . 10 . 20 . 30 . 4 1 2 3 4 5 6 7 8 9 1 0P r ( R e a d i | C l i c k 1 ) P r ( R e a d i | C l i c k 2 ) P r ( R e a d i | C l i c k 3 ) P r ( R e a d i | C l i c k 4 )P r ( R e a d i | C l i c k 5 ) P r ( R e a d i | C l i c k 6 ) P r ( R e a d i | C l i c k 7 ) P r ( R e a d i | C l i c k 8 )

Figure 1: The probability a user reads positioni given that they
clicked on positionj.

conclusion. For example, if the query is ambiguous, 1 could be the
most popular intent, and 3 the second intent.

3.2 A Probabilistic Interpretation of the Click
Log

As we outlined above, Joachims et al’s rules rely on the most
common behavior of the users to generate preferences. How can we
capture the aggregate behavior of users instead of the most common
user’s behavior? We give a probabilistic method of interpreting the
click log that is also informed by eye-tracking studies. In Figure 1,
we show a chart adapted from the work of Cutrell and Guan [7, 8,
17] describing the probability a user reads positioni given that they
click on positionj. In their study, hand-crafted search engine result
pages were created in an information-seeking exercise, varying the
position of the definitive document URL. They measured the posi-
tions viewed by the test subjects when a click occurred at a specific
position in the top 10 result set. We augment this study with the
rules Click > Skip Next and Click > Skip Above, so thatPr(Read
i| Click j) = 1 for 1 ≤ i ≤ j + 1. For example, consider the
Pr(Readi| Click 1) line denoted by a diamond. The chart shows
that with probability 1 position 2 is read, with probability0.5 posi-
tion 3 is read, etc. Note that the drop-off is surprisingly not steep
with about 10% of users actually reading position 10. The second
line Pr(Readi| Click 2), denoted with a square, is similar to the
first, but “pulled over” one position. In fact, each subsequent line
seems pulled from the previous. In all of these cases, the drop-off
in reading lower positions is gradual. Note that the linesPr(Read
i| Click 9) andPr(Readi| Click 10) are omitted as they are equal
to 1 for all i.

Using this observed behavior of the users, we generate prefer-
ences between URLs for a given query with probability propor-
tional to what is observed in Figure 1. First, we decide on therules
that we apply. We want to capture both the positive and the neg-
ative feedback of the clicks, thus we use the “Click > Skip Next”
and “Click > Skip Above” rules. Our goal is to create a per query
preference graph: for each query, we construct a weighted directed
graph where the vertices correspond to URLs and a directed edge
from vertexu to v indicates the number of users who readu and
v, clicked onu and skippedv. This graph forms the basis for the
labels we construct.

Our method of interpreting the click log proceeds as follows.

1. Letpij = Pr(Readi | Click j) (from Figure 1). Suppose that
for a given query in a given session a user clicks on position
j. Then for all skipped URLs at positioni 6= j, with proba-
bility pij we increase the weight of edge(URL at positionj,
URL at positioni) by 1 and with probability1 − pij , we do



nothing.

2. Aggregating this probabilistic information over all users, we
obtain an initial preference graph. Edges/preferences with
very low weight are then removed entirely. The reason is that
we do not want to create edge preferences based on spurious
or inadvertent clicks.

Note that the way we generate the preferences addresses the lim-
itations of Joachims et al’s rules. We incorporate both positive and
negative feedback, and we make use of the aggregate behaviorof
the users. Also, as a result of the probabilistic interpretation, the
problem of incorrect inferences is alleviated. In the previous exam-
ple, clicks on position 1 generate preferences to all positions from
2 to 10 (of varying weight).

Remark:The data in Figure 1 is limited in many regards. First, it
is based on an eye-tracking study that involved a limited number of
participants in a laboratory setting. Thus, the number may not re-
flect the true probability that a user reads a position. Furthermore,
reading probability is often query dependent: navigational queries
are unlikely to lead to reading many URLs after the navigational re-
sult, while informational or observational queries are likely to lead
to much more reading behavior among all ten positions. Queryde-
pendent reading probabilities could be adapted from the work of [6,
10] and we leave this as a direction for future work. Finally,read-
ing probabilities may be user dependent (targeted vs. browsing)
and time dependent (weekday vs. weekend).

At this point, we could simply provide the edges of the graph as
training data to a machine learning algorithm. The problem is that
the edges do not tell a complete story of user preferences: Some
edges that do exist should be removed as they form contradictory
cycles. Also, some edges that do not exist should be added as they
can be transitively inferred. In the next section, we show how to au-
tomatically generate labels from the graph with the goal of building
a more complete story.

4. COMPUTING LABELS USING PAIRWISE
PREFERENCES

Given the collection of user preferences for a query we now as-
sign labels to the URLs such that the assignment is consistent with
the preferences of the users. Recall that we model the collection
of preferences for a query as a directed graph. The set of vertices
corresponds to URLs for which we generated a pairwise prefer-
ence. The set of edges captures the pairwise preferences between
the URLs. The weight of an edge captures the strength of the pref-
erence. Given this graph representation, we define the labeling
problem as a graph partition problem: assign the vertices toor-
dered classes so as to maximize the weight of the edges that agree
with the classes minus the weight of the edges that disagree with
the classes. The classes correspond to the relevance labels, e.g.,
Perfect, Excellent, Good, Fair and Bad.

4.1 Problem Statement and Complexity
We now formally define the problem. LetG = (V, E) denote

the preference graph, and letΛ = {λ1, . . . , λK} denote a set of
K orderedlabels, whereλi > λj , if i < j. Let L : V → Λ de-
note a labeling of the nodes inG, with the labels inΛ, andL(v) be
the label of nodev. The labeling function defines an ordered parti-
tion of the nodes in the graph intoK disjoint classes{L1, ..., LK}
whereLi = {v : L(v) = λi}. We useL interchangeably to de-
note both the labeling and the partition. We say that the edge(u, v)

is a forward edge in the labelingL, if L(u) > L(v) and that the
edge(u, v) is a backwardedge ifL(u) < L(v). We defineF to
be the set of forward edges andB to be the set of backward edges.
These are the edges that cross the classes in the partition ineither
forward or backward direction. Intuitively, the edges inF capture
the preferences that agree with the labelingL, while the edges inB
capture the preferences that disagree with the labeling. Given the
graphG, our objective is to find a labelingL that maximizes the
weight of edges inF and minimizes the weight of edges inB. We
thus define our problem as follows.

PROBLEM 1. (MAXIMUM -ORDERED-PARTITION)Given a di-
rected graphG = (V, E), and an ordered setΛ of K labels find a
labelingL such that thenet agreement weight

AG(L) =
X

(u,v)∈F

wuv −
X

(u,v)∈B

wuv

is maximized.

We now study the complexity of the MAXIMUM -ORDERED-
PARTITION problem. We first consider the case thatK = 2, that
is, we want to partition the data points into two classes, so as to
maximize the net agreement weight. The problem is reminiscent of
MAX DI-CUT, the problem of finding a maximum directed cut in
a graph, which is known to be NP-hard. However, surprisingly, our
problem is not NP-hard. In the next theorem we show that there
is a simple linear-time algorithm to compute the optimal partition:
Vertices with net weighted outdegree greater than net weighted in-
degree are placed on one side of the partition and all other vertices
are placed on the other side of the partition.

THEOREM 1. TheMAXIMUM -ORDERED-PARTITION problem
can be solved in timeO(|E|) when the label setΛ containsK = 2
classes.

PROOF. Let Λ = {λ1, λ2} be the ordered classes, and letL =
{L1, L2} denote a labelingL. For every nodeu ∈ V , we also
compute the difference between the outgoing and incoming edge
weight for nodeu,

∆u =
X

v∈V :(u,v)∈E

wuv −
X

v∈V :(v,u)∈E

wvu . (1)

The key observation is that the net agreement weight of labeling L
can be expressed asAG(L) =

P

u∈L1
∆u. We have that

X

u∈L1

∆u =
X

u∈L1

0

@

X

v∈V :(u,v)∈E

wuv −
X

v∈V :(v,u)∈E

wvu

1

A

=
X

u∈L1,v∈L1:(u,v)∈E

wuv −
X

u∈L1,v∈L1:(v,u)∈E

wvu

+
X

u∈L1,v∈L2:(u,v)∈E

wuv −
X

u∈L1,v∈L2:(v,u)∈E

wvu

=
X

(u,v)∈F

wuv −
X

(v,u)∈B

wvu

= AG(L)

Note that the values∆u for nodesu ∈ V depend only on the
graphG, and can be computed independent of the actual labeling
L. Given a set of positive and negative numbers, the subset that
maximizes the sum is the set of all positive numbers. Therefore,
it follows that in order to maximizeAG(L), the optimal labeling
L∗ should place all nodesu with ∆u > 0 in classL1, and all the
nodes with∆u < 0 in classL2 (nodes with∆u = 0 can be placed



in either class). Computing∆u for all nodes can be done in time
O(|E|).

In the general case, when the number of classes is unlimited,
the problem is NP-hard. The proof, given in the Appendix, follows
even in the case thatK = n−O(1). We leave open the complexity
of the problem forK > 2, andK < n − O(1).

THEOREM 2. TheMAXIMUM -ORDERED-PARTITION problem
is NP-hard when the set of labelsΛ containsK = n labels.

4.2 Algorithms
We discuss heuristics for MAXIMUM -ORDERED-PARTITION next.

Our algorithms proceed in two steps. First, we describe algorithms
for computing a linear ordering (possibly with ties) of the nodes in
the graph that tend to rank higher the nodes that attract morepref-
erences. Then, we apply a dynamic programming algorithm to find
the optimal partitionL∗ of this linear order into at mostK classes
such thatA(L) is maximized.

4.2.1 Obtaining a Linear Ordering
We consider three different techniques for obtaining a linear or-

dering (possibly with ties) which we outline below.

∆-ORDER: We compute the value∆u as defined in Equation 1 for
each node in the graph. We then order the nodes in decreasing order
of these values. This technique is inspired by the fact that dynamic
programming applied to this ordering gives an optimal solution in
the case of a 2-partition (Theorem 1).

PIVOT : We adapt the Bucket Pivot Algorithm (PIVOT) proposed
by Gionis et al. [16] which is a method for finding good bucket
orders. A bucket order is a total order with ties, that is, we par-
tition the set of nodes into ordered buckets such that nodes in an
earlier bucket precede nodes in a later bucket but nodes within a
bucket are incomparable. First we compute the transitive closure
of the graph so as to capture transitive preference relationships be-
tween pairs of nodes. The algorithm proceeds recursively asfol-
lows: select a random vertexv as the pivot and divide the remain-
ing nodes into three classes (“left”, “same”, “right”) by compar-
ing with v. The “left” class contains all nodes that are incoming
neighbors ofv but not outgoing neighbors ofv (formally, the set
{u|(u, v) ∈ E and(v, u) 6∈ E}) and the “right” class contains all
nodes that are outgoing neighbors ofv but not incoming neighbors
of v. The “same” class containsv and also the remaining nodes
(nodes that are not neighbors ofv and nodes that have both incom-
ing edge and outgoing edge withv). The algorithm then recurses on
the “left” class, outputs the “same” class as a bucket and recurses
on the “right” class.

PAGERANK : PageRank is a popular algorithm for ranking web
pages based on the web graph. The algorithm performs a random
walk on the graph, where at each step, when at nodeu, with prob-
ability 1− α the random walk follows one of the outgoing links of
nodeu chosen uniformly at random, or with probabilityα it jumps
to a page chosen uniformly at random from the set of all pages in
the graph.

The algorithm is easy to adapt to our setting. Given the graph
G, we create thetransposegraphGT , where the direction of all
edges is inverted. Intuitively, in graphG, an edge(u, v) means
that u is preferred overv. In graphGT , the corresponding edge
(v, u) means that nodev gives a recommendation for nodeu to
be ranked high. A very similar intuition governs the application
of PageRank on the Web. Instead of choosing outgoing links of

nodeu uniformly at random, we choose an outgoing link(u, v)
proportional to its weight,wuv.

The result of the PageRank algorithm on the graphGT is a score
for each node in the graph given by the stationary distribution of
the random walk. We order the nodes of the graph in decreasing
order of these scores.

4.2.2 Finding the Optimal Partition
Given the linear ordering of the nodes we now want to segment it

into K classes, such that we maximize net agreement. We can find
the optimal segmentation using dynamic programming. Assume
that the linear ordering produced by the algorithm isv1, v2, . . . , vn.
Generating aK-segmentation is equivalent to placingK−1 break-
points in the interval[1, ..., n − 1]. A breakpoint at positioni par-
titions the nodes into sets{v1, . . . , vi} and{vi+1, . . . , vn}. Let
OPT denote a two-dimensional matrix, whereOPT [k, i] is the
optimal net agreement when havingk breakpoints, where the last
breakpoint is at positioni. Given the values of this matrix, we can
find the optimal net agreement for a segmentation withK classes
by computing the maximum of the(K − 1)-th row. That is, for the
optimal partitionL∗ we have that

AG(L∗) = max
K−1≤i≤n−1

OPT [K − 1, i].

We will fill the entries of theOPT matrix using dynamic pro-
gramming. We define another two-dimensional matrixB, where
B[j, i] is the added benefit to the net agreement if we insert a new
breakpoint at positioni to a segmentation that has the last break-
point at positionj. Fork > 1, it is easy to see that

OPT [k, i] = max
k−1≤j≤i

{OPT [k − 1, j] + B[j, i]}. (2)

For k = 1 we have thatOPT [1, i] = B[0, i]. We can now fill the
matrixOPT in a bottom up fashion using Equation 2. The cost of
the algorithm isO(Kn2), since in order to fill the cellOPT [k, i]
for row k, and columni we need to checki − 1 previous cells. We
haveK − 1 rows andn columns, henceO(Kn2).

Computing the values of matrixB can be done by streaming
through the edges of the graph, and incrementing or decrementing
the entries of the table that a specific edge affects. Given anedge
e = (vx, vy), let ℓ = min{x, y} andr = max{x, y}. We only
need to update the cellsB[j, i], where0 ≤ j ≤ ℓ − 1, andℓ ≤
i ≤ r. In this case, the edgee falls after the last endpointj of
the existing segmentation, andi falls between the two endpoints
of e. That is, the new breakpoint ati will be the first to cut the
edge(vx, vy). If x < y then the edgee is a forward edge and we
incrementB[j, i] by we. If x > y then edgee is a backwards edge
and we decrementB[j, i] by we. This computation is described in
Algorithm 1. The cost of the algorithm isO(n2|E|), since for each
edge we need to updateO(n2) cells.

Finding the optimalK-segmentation comes as a byproduct of the
computation of the matrixOPT , by keeping track of the decisions
made by the algorithm, and tracing back from the optimal solution.

4.2.3 Label Assignment
We run the above algorithms withK = 5 as we want to assign

URLs for a given query into five ordered classes. If the dynamic
programming returns five non-empty classes, this assignment is
unique. Otherwise if there areM < 5 non-empty classes, we
provide a heuristic to steer us towards a desirable labeling. For
space reasons, we omit the details as the pairwise comparison ex-
periments in Section 5 are unaffected by this choice of labeling.
The main idea is as follows. Since we are interested in a small
number of labels, we enumerate over all possible assignments of



Algorithm 1 The algorithm for computing matrixB
Input: The edge setE of the graphG.
Output: The added benefit matrixB.
1: for all e = (vx, vy) ∈ E do
2: ℓ = min{x, y}; r = max{x, y}.
3: for all j = 0, . . . , ℓ − 1 do
4: for all i = ℓ, . . . , r do
5: if x < y then
6: B[j, i] = B[j, i] + w(vx, vy)
7: else
8: B[j, i] = B[j, i] − w(vx, vy)
9: end if

10: end for
11: end for
12: end for

five labels to theM classes. Each assignment is scored using the
inter-cluster and the intra-cluster edges. For inter-cluster edges, if
users express a strong preference for one class over another, the la-
beling is rewarded for a class assignment that separates theclasses
as much as possible. For a cluster with many intra-cluster edges,
the labeling is penalized for assigning the extreme classesPerfect
and Bad. The justification is that we would not expect users topre-
fer one URL over another within a cluster of Perfect URLs (or Bad
URLs). These inter and intra-cluster scores can then be appropri-
ately combined to produce a single score. The labeling with the
highest score is selected as the best labeling.

5. EXPERIMENTS
The goal of our experiments is to understand whether click-based

labels align with the opinion of a panel of judges. We compare
different techniques for generating the preference graph and then
evaluate different labeling algorithms. Before delving into these
components, we describe our experimental setup.

5.1 Experimental Setup
We obtained a collection of 2000 queries with an average of 19

URLs per query, where each (query, URL) pair was manually la-
beled by eleven judges for relevance. The ordinal judgmentswere
converted into numeric values by assigning the scores 1-5 tothe la-
bels Bad-Perfect, respectively. For this collection of 2000 queries,
we also obtained click activity for one month of click logs.

Performance is based on the extent to which click labels align
with the Consensus Opinion as well as with the Contrasting Opin-
ion of the panel of judges.

Consensus Opinion:For a given query, consider two URLs that
are evaluated by the same eleven judges. Intuitively, we would
like to show that the more the judges reach a consensus about the
two URLs, the more click preferences agree. This is exactly the
intuition for our Consensus charts. Pairs of URLs are grouped into
those where six, seven,..., eleven out of eleven judgesagreeon two
URLs, whereagreemeans the two URLs are either given the same
label by the group or all agree that one is better than the other. In the
graph construction experiments, we compare the extent to which
our edgesalign with increasing consensus opinion. In the labeling
experiments, we compare the extent to which ourclick-labelsalign
with increasing consensus.

Contrasting Opinion: A different question is whether click labels
are more likely to agree the sharper the contrast in the opinion of the
judges. We quantify the panel’s opinion of a URL by the average

score assigned to the URL. The contrast between two URLs is the
difference between the average scores. Intuitively, the sharper the
contrast in opinion between two URLs, the more click preferences
ought to agree. Note the difference between Consensus and Con-
trasting opinions: Judges can reach a consensus by agreeingthat
two URLs are an equal match to a query, but equally good matches
are not a contrast of opinion.

5.2 Evaluating the Preference Graph
In Section 3 we outlined several methods that have been previ-

ously explored in the literature, as well as a probabilisticinterpre-
tation that generates a preference between two URLs according to
the expected number of times that a URL was clicked and another
URL below it was read but not clicked. In this section, we con-
sider six rules for interpreting click data and the quality of each
rule for generating the preference graph. Table 1 contains the six
rules, and the associated rule identifier used in subsequenttables to
refer to the rule. Rules R1 to R5 are taken from [21], and R6 is the
probabilistic click log interpretation developed in Section 3.

Table 1: Rules for using click data to generate a preference
graph

Rule ID Rule
R1 Click > Skip Above
R2 Last Click > Skip Above
R3 Click > Click Above
R4 Click > Skip Previous
R5 Click > Skip Next
R6 Probabilistic Click Log Rule

To evaluate the rules, we generate a graph for each of the rules
R1 to R6. Edges are added to the graph when the number of user
clicks generating the rule exceed a predefined threshold of 15. Due
to ranking instability over time and the bidirectional nature of some
of the rules, the graph is a directed graph and edges can existin both
directions between two URLs. Once the graph is complete, we enu-
merate the edges of the graph and compare the relative preferences
to those of the judges.

We present the results of the comparison in Table 2. For the
column labeled “Judges Agree”, we have values6 through11 that
represent the number of judges agreeing on a relative preference
for a pair of URLs. Their agreement may be that one URL is
more relevant to the query than the other, or that the two URLs
have the same relevance. We use the edges of the graph to find
the click-based preference according to the rule that generated the
edge. When both directional edges between the two URL vertices
in the graph exist, the preference is generated according tothe edge
with the highest click count. Therefore, the click rules will almost
always express a preference of one URL or the other. When the
judges have a consensus of the two URLs being equally relevant,
this will almost always show up as the click rule disagreeingwith
the consensus of the judges. The columns labeled “A” and ”D”
in the table refer to the rule Agreement or Disagreement withthe
judge consensus, respectively.

The results show that R6 is the best performing rule on our dataset.
The total agreement with our judges for R6 is401 out of 809 to-
tal URL pairs, or49.6%. The next best performing rule is R5 at
44.2%, but has only224 total pairs in common with our judges.
Note that each rule generates a different count of preference pairs.
For example, rule R3 (Click > Click Above) has a very low count
of pairs (6 + 97 = 103) due to the requirement of two clicks in the
same query impression. The strength of R6 as a preference rule is



Table 2: For each rule (R1-R6), the table shows the number of edges that agree (A), disagree (D) together with the percent of edges
that agree (A %) as the consensus of the judges grows stronger. The last row shows the net agreement

Judges R1 R2 R3 R4 R5 R6
Agree (A;D) A % (A;D) A % (A;D) A % (A;D) A % (A;D) A % (A;D) A %

6 (16;72) 18.2% (15;69) 17.9% (2;20) 9.1% (5;22) 18.5% (10;32) 23.8% (47;121) 28.0%
7 (11;69) 13.8% (10;64) 13.5% (1;19) 5.0% (5;18) 21.7% (13;30) 30.2% (55;95) 36.7%
8 (12;60) 16.7% (10;55) 15.4% (1;26) 3.7% (4;19) 17.4% (18;18) 50.0% (66;70) 48.5%
9 (9;31) 22.5% (9;27) 25.0% (1;13) 7.1% (4;14) 22.2% (10;14) 41.7% (47;43) 52.2%

10 (8;45) 15.1% (7;42) 14.3% (1;19) 5.0% (3;22) 12.0% (28;21) 57.7% (74;46) 61.7%
11 (5;40) 11.1% (5;36) 12.2% (0;0) 0.0% (3;8) 27.3% (20;10) 66.7% (112;33) 77.2%

Total (61;317) 16.1% (56;293) 16.0% (6;97) 5.8% (24;103) 18.9% (99;125) 44.2% (401;408) 49.6%

that it does not have to trade accuracy for less number of generated
preference pairs. Rather, it has both higher accuracy and a higher
number of preference pairs than any other rule.

Drilling into the breakdown of the number of judges in con-
sensus, we note that the performance of R6 improves when more
judges are in consensus. For example, when11 judges are in con-
sensus, rule R6 agrees112 times and disagrees33 times on the
relative order of URLs. We also note that R6 has nearly50% or
better agreement when eight or more judges are in consensus.It
is impressive considering that a disagreement ensues when there is
consensus among judges that two URLs are equal.

We observe that the rules that contradict the existing order(R1,
R2, R3, R4) perform worse compared to the rules that fully or par-
tially reinforce the existing order (R5 and R6). This suggests that,
for the queries in our dataset, the order of search results isin agree-
ment with the judgments. Thus, the conclusions may not be com-
pletely indicative of the performance of different rules.

5.3 Evaluating Click Labels
We now compare the different algorithms for generating labels.

For all the experiments we use the preference graph generated by
Rule R6. We consider the three algorithms described in Section 4
for generating a linear ordering of the URLs and then find the opti-
mal partition using dynamic programming. The algorithms will be
compared in terms of Consensus and Contrasting Opinion.

The baseline algorithm assigns labels at random, denoted by
RANDOM. In order to make a fair comparison, RANDOM selects
labels according to the same distribution as the manually judged
labels over the URLs labeled by our algorithm. This distribution
is (10%, 16%, 30%, 30%, 14%) for the labels (Perfect, Excellent,
Good, Fair, Bad) respectively. Given a query and two URLs,u1

andu2, if we guess according to this distribution then the proba-
bility that u1 has the same label asu2 is 0.12 + 0.162 + 0.32 +
0.32 + 0.142 = 0.24. The probability thatu1 is better thanu2 is
equal to the probability thatu1 is worse thanu2 and consequently
is (1 − 0.24)/2 = 0.38. RANDOM is used to show that our results
are not due to chance.

Prior to showing the charts, we remark on a few experimental
details. First, clicks with low dwell time were removed. Prior work
suggests that low-dwell time clicks may be spurious and not neces-
sarily an indication of relevance [14]. We do not report results on
dwell time values, but only mention that after trying several thresh-
olds, removed clicks with dwell time of less than fifteen seconds. A
second practical issue is duplicate URLs that surface in thetop ten
results. In such a situation, users prefer to click on the more defini-
tive URL. In our experiments, among the duplicate URLs, we keep
only the URL with the highest label.

5.3.1 Consensus Opinion

Table 3: Click Label Consensus: The chart shows the agree-
ment of each labeling method as the consensus of the panel
grows stronger. Click labels are more likely to agree the
stronger the consensus

Judges RANDOM PIVOT ∆-ORDER PAGERANK

Agree
6 31.0% 42.6% 34.1% 38.9%
7 29.4% 43.3% 42.8% 50.2%
8 31.7% 43.0% 42.9% 49.5%
9 37.8% 57.8% 47.9% 56.9%
10 32.9% 53.1% 60.0% 59.6%
11 33.9% 65.7% 73.3% 79.0%
Total 32.4% 49.4% 48.4% 54.0%

We begin by showing that the stronger the consensus opinion,
the more likely click labels are to agree. The results are shown
in Table 3. Observe that the baseline RANDOM does not improve
whether the consensus consists of six or eleven out of elevenjudges.
On the other hand, the agreement with all three labeling algorithms
progressively increases the stronger the consensus. The PAGER-
ANK ordering has the most affinity with the consensus.

Next, we compare Click Label Consensus (Table 3) with Graph
Consensus (Table 2). The first observation is that the total PAGER-
ANK percent agreement (54%) is higher than the graph generation
consensus percent agreements (50% for R6)). In addition, there are
more actual agreement pairs. For the PAGERANK method, there is
agreement on 570 pairs and disagreement on 486 pairs compared
with R6 which agrees on 401 pairs and disagrees on 408 pairs.

When Click Labels Disagree with the Consensus:We find that
the stronger the judge consensus, the more click labels agree. How-
ever, the results raise a legitimate concern: when ten or eleven out
of eleven judges agree on a pair of URLs, how could click labels
possibly disagree? We studied these (query, URL) pairs and the re-
sults were quite interesting: the largest difference stemsfrom am-
biguous query intent.

Most of the (query, URL) pairs (83%) where the consensus pref-
erence deviated from the click preference were short, i.e.,one or
two key words. This gave us an early indication that the queries
could be ambiguous. Second, more than half (57%) of the (query,
URL) pairs were judged to be equally good by the entire panel.In
other words, these were pairs of URLs where the judges had a diffi-
cult time distinguishing between their relevance, while click-labels
had a preference.

We manually grouped the queries and pairs of URLs where click
labels disagree with the consensus into five categories listed in Ta-
ble 4. The largest category is ‘Depends on Intent’ constituting 45%
of the queries. One example of such a query is “vogue” where the



Table 4: Breakdown of where Judge Consensus Deviates from
Click Labels

Category % Queries
Depends on Intent 44.7%
Click Labels Incorrect 21.1%
Duplicate URLs 15.8%
Click Labels Correct 1.3%
Other 17.1%

two choices are the UK Vogue home page and the Australian Vogue
home page. To a judge, the pages seem equally good, but the US
clickers express a preference for the UK site. Another example is
“dutch oven cooking” where one URL gives recipes for cooking
in a dutch oven and another gives information on how to purchase
dutch oven cookware. The judges claim the sites are equally good,
but clickers strongly prefer the recipes. It is difficult forus to know
which is correct: we did not pose the query with a specific intent
and it is not likely that the panel of judges did either. The people
who do know the intent are the clickers who themselves posed the
query with a specific interest in mind. Arguably, we believe that
the aggregate click signal is thus better able to resolve thepopular
preference between these URLs than a judge who never asked the
query.

The second largest category of queries is where we find the judg-
ment of the panel of judges correct (21%). Further manual analysis
revealed that one source of the problem (25% of the cases where
the panel of judges is correct) was due to presentation bias in search
results. In other words, some URLs were assigned a higher click
label simply because they were positioned higher on the pageand
thus received more clicks. Thus, although our technique hassome
implicit correction for position bias inbuilt, it may benefit from fur-
ther work in removing the bias.

A third category of queries is ‘duplicate URLs’ (16%). While
we did remove the duplicates we found, our duplicate detection
method is not perfect. The remaining duplicates actually raised our
awareness of another difference between clicks and judges.For ex-
ample, for the query “donald trump”, the two pagestrump.com
andtrump.com/main.htm are duplicates of each other. The
labels assigned by the panel of human judges are, as expected, the
same for these two URLs. However, the click signal is stronger
for the first, shorter URL. We observed this common trend among
duplicate URLs: given two identical pages, a snippet containing
a shorter URL is more likely to attract clicks than a longer URL.
Thus, it may actually be desirable to train a machine learning algo-
rithm to prefer URLs that are shorter in length.

The last two categories are where click labels are definitelycor-
rect (1%) and Other (17%). The other category includes foreign
language queries, together with English queries that we could not
understand.

To summarize, while click labels are not perfect in that presenta-
tion bias is an issue, the largest difference is queries withambigu-
ous intent. Our belief is that clickers are better able to tease out the
relative relevance of URLs when queries are ambiguous.

5.3.2 Contrasting Opinion
In the next set of experiments, we show that the sharper the con-

trast of opinion between two URLs, the more likely that clicklabels
agree. The opinion of a panel for a (query, URL) pair is just the av-
erage score of the eleven judges. The contrast of opinion between
two URLs is the difference in the average score. We denote this
difference byδ. If the difference is small (< γ ) then we say there
is no contrast. The valueγ is set to0.4 in our experiments.

Table 5: Guide to the definition of strong and weak
(dis)agreements

Clicks Clicks Clicks
u1 > u2 u1 = u2 u1 < u2

Avg(u1) > Avg(u2) + γ Strong A Weak D Strong D
|Avg(u1)− Avg(u2)| < γ Weak D Weak A Weak D

Table 6: Agreement metric for different label generation algo-
rithms

Agree RANDOM PIVOT ∆-ORDER PAGERANK

Weak A 8.40% 15.3% 10.5% 10.3%
Strong A 25.30% 32.1% 38.5% 44.1%
Total A 33.70% 47.4% 49.0% 54.4%
Disagree
Weak D 42.40% 42.9% 37.0% 36.6%
Strong D 23.80% 9.7% 13.9% 9.0%
Total D 66.30% 52.6% 51.0% 45.6%

To facilitate the discussion, we introduce the terminologyweak
and strong (dis)agreements based on the confusion matrix between
click-label preferences and panel preferences, Table 5. Strong agree-
ments are important in that they preserve the pairs of URLs used for
training. Weak agreements are good but less important for training
algorithms that do not train on pairs with the same label. Strong
disagreements are training pairs that are flipped in the opposite di-
rection. All other disagreements are weak.

Then we consider sharp contrasts of opinion. It is important
that pronounced judge preferences be accurately reflected in click
labels. Judges are typically very good at discriminating between
Perfect and Bad results. It is less important to accurately capture
slight judge preferences since judges often randomly decide be-
tween nearby labels such as Good and Fair – equally likely going
one way or the other. Consequently, we bucket the triples (query,
URL1, URL2) into those where the contrast of opinionδ is low to
high and study the extent to which click labels agree.

Net Agreements:Table 6 shows the agreement metrics for the dif-
ferent algorithms. The PAGERANK algorithm produces the highest
agreement and lowest disagreement. The PIVOT algorithm pro-
duces a small fraction of strong disagreements, but many more
weak agreements and weak disagreements. This is due to the fact
that it over zealously groups many URLs into the same bucket,
probably due to poor pivot choices. The∆-ORDER algorithm is
better than the PIVOT algorithm, but not as good as the PAGER-
ANK algorithm. This is mostly due to the fact that the ordering by
the∆u values is performed via only “local” information for a node,
and not incorporating information about the graph as a whole. This
information is incorporated to some extent by the PAGERANK al-
gorithm, which captures the transitivity of preferences, and thus
yields an ordering with a more “global” view.

Sharper Contrasts: Next, we show that click-labels are more likely
to agree with the panel of judges the sharper the contrast, i.e., the
larger the value ofδ. A good labeling algorithm should have higher
agreement for larger values ofδ since it guarantees that pairs of
URLs with a marked contrast in panel preference are similarly pre-
ferred by click labels.

The results are shown in Figure 2. For RANDOM, click label
agreements do not increase with sharper contrast. The PIVOT al-
gorithm is dominated by weak disagreements, even for strongcon-
trasts. On the other hand, for both∆-ORDER and PAGERANK ,



5 0 %6 0 %7 0 %8 0 %9 0 %1 0 0 % R a n d o m S t r o n g D0 %1 0 %2 0 %3 0 %4 0 %5 0 %
γ < δ < 1 1 ≤ δ < 2 2 ≤ δ < 3 3 ≤ δ < 4 W e a k DS t r o n g A 5 0 %6 0 %7 0 %8 0 %9 0 %1 0 0 % P i v o t S t r o n g D0 %1 0 %2 0 %3 0 %4 0 %5 0 % γ < δ < 1 1 ≤ δ < 2 2 ≤ δ < 3 3 ≤ δ < 4 W e a k DS t r o n g A

5 0 %6 0 %7 0 %8 0 %9 0 %1 0 0 % ∆ - o r d e r S t r o n g D0 %1 0 %2 0 %3 0 %4 0 %5 0 % γ < δ < 1 1 ≤ δ < 2 2 ≤ δ < 3 3 ≤ δ < 4 W e a k DS t r o n g A 5 0 %6 0 %7 0 %8 0 %9 0 %1 0 0 % P a g e R a n k S t r o n g D0 %1 0 %2 0 %3 0 %4 0 %5 0 %
γ < δ < 1 1 ≤ δ < 2 2 ≤ δ < 3 3 ≤ δ < 4 W e a k DS t r o n g A

Figure 2: Contrasting Opinions: The figure shows that the sharper the contrast between the opinion of the judges, measured by
larger values ofδ, the more likely click labels agree.

the sharper the contrast the greater the agreement. PAGERANK ac-
tually agrees completely when the contrast is at least three, and
nearly completely when the contrast is at least two. The charts
demonstrate the success of click labels: the further apart the panel’s
average scores are, the more likely that click labels agree.

6. SUMMARY AND FUTURE WORK
We described a method for inferring a per query click-skip graph

based on eye-tracking studies. Relevance labeling was modeled as
an ordered graph partitioning problem, and an optimum linear-time
solution was given in the two labeling case. While the optimum n
labeling is NP-hard, heuristics were proposed to address the multi-
ple label generation problem.

Experiments demonstrate that our method of inferring prefer-
ences align more with the consensus opinion of a panel of judges
than prior methods. Further, our click labeling proceduresalso
align with the consensus opinion of a panel of judges. In the event
that click labels do not agree with the panel, it is often due to am-
biguous queries where our belief is that clickers are betterable to
resolve popular intent. Finally, as the panel’s view of one URL
sharply contrasts with their view another URL for a query, wefind
that click labels are more likely to agree.

For future work, we would like to train ranking functions with
click labels. Some practical problems will have to be tackled. Clicks
can generate labels for many queries – potentially more queries
than any ranking algorithm can use. Thus, it may be useful to find
ways to score click labels by the confidence of the label. Sucha
scoring could be used to determine which click labels to use while
training. Another question is one of evaluation: it will be impor-
tant to determine when a ranking function trained on clicks per-
forms better than a ranking function trained on human judgments.
A ranking function trained on click labels will likely perform better
on a click-label test set than a ranking function trained on human

judgments. On the other hand, a ranking function trained on human
judgments will likely perform better on a human judgment test set.
We leave questions related to training ranking functions with click
labels as an interesting avenue for future work.

7. ACKNOWLEDGMENTS
We are grateful to Sreenivas Gollapudi, Nazan Khan, Rina Pan-

igrahy and John Shafer for valuable insights. We also thank Eric
Brill, Chris Burges, Ken Church, Ed Cutrell, Dennis Decoste, Girish
Kumar, Greg Linden, Rangan Majumder, Alex Ntoulas, Ryan Stew-
art, Krysta Svore, Rohit Wad and Yi-Min Wang for thoughtful feed-
back. Finally, we thank Gu Xu for help with URL deduplication.

8. REFERENCES
[1] Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi.

Context-sensitive ranking. InSIGMOD, pages 383–394,
2006.

[2] Nir Ailon, Moses Charikar, and Alantha Newman.
Aggregating inconsistent information: ranking and
clustering. InSTOC, pages 684–693, 2005.

[3] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le.
Learning to rank with nonsmooth cost functions. InNIPS,
pages 193–200, 2006.

[4] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari
Lazier, Matt Deeds, Nicole Hamilton, and Gregory N.
Hullender. Learning to rank using gradient descent. InICML,
volume 119, pages 89–96, 2005.

[5] Charles L. A. Clarke, Eugene Agichtein, Susan T. Dumais,
and Ryen W. White. The influence of caption features on
clickthrough patterns in web search. InSIGIR, pages
135–142, 2007.

[6] Nick Craswell and Martin Szummer. Random walks on the
click graph. InSIGIR, pages 239–246, 2007.



[7] Edward Cutrell. Private communication. 2008.
[8] Edward Cutrell and Zhiwei Guan. What are you looking

for?: an eye-tracking study of information usage in web
search. InCHI, pages 407–416, 2007.

[9] Zhicheng Dou, Ruihua Song, Xiaojie Yuan, and Ji-Rong
Wen. Are click-through data adequate for learning web
search rankings? InCIKM, pages 73–82, 2008.

[10] Georges Dupret and Benjamin Piwowarski. A user browsing
model to predict search engine click data from past
observations. InSIGIR, pages 331–338, 2008.

[11] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar.
Rank aggregation methods for the web. InWWW, pages
613–622, 2001.

[12] Ronald Fagin, Ravi Kumar, Mohammad Mahdian,
D. Sivakumar, and Erik Vee. Comparing and aggregating
rankings with ties. InPODS, pages 47–58, 2004.

[13] Jianlin Feng, Qiong Fang, and Wilfred Ng. Discovering
bucket orders from full rankings. InSIGMOD, pages 55–66,
2008.

[14] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan
Dumais, and Thomas White. Evaluating implicit measures to
improve web search.ACM Trans. Inf. Syst., 23(2):147–168,
2005.

[15] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram
Singer. An efficient boosting algorithm for combining
preferences.JMLR, 4:933–969, 2003.

[16] Aristides Gionis, Heikki Mannila, Kai Puolamäki, and Antti
Ukkonen. Algorithms for discovering bucket orders from
data. InKDD, pages 561–566, 2006.

[17] Zhiwei Guan and Edward Cutrell. An eye tracking study of
the effect of target rank on web search. InCHI, pages
417–420, 2007.

[18] Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and
Kunal Talwar. Click fraud resistant methods for learning
click-through rates. InWINE, pages 34–45, 2005.

[19] Bernard J. Jansen. Click fraud.IEEE Computer,
40(7):85–86, 2008.

[20] Thorsten Joachims. Optimizing search engines using
clickthrough data. InKDD, pages 133–142, 2002.

[21] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene
Hembrooke, and Geri Gay. Accurately interpreting
clickthrough data as implicit feedback. InSIGIR, pages
154–161, 2005.

[22] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene
Hembrooke, Filip Radlinski, and Geri Gay. Evaluating the
accuracy of implicit feedback from clicks and query
reformulations in web search.ACM Trans. Inf. Syst, 25(2),
2007.

[23] Michael J. Kearns and Umesh V. Vazirani.An Introduction to
Computational Learning Theory. MIT press, Cambridge,
Massachusetts, 1994.

[24] Nathan N. Liu and Qiang Yang. Eigenrank: a
ranking-oriented approach to collaborative filtering. In
SIGIR, pages 83–90, 2008.

[25] Filip Radlinski and Thorsten Joachims. Query chains:
learning to rank from implicit feedback. InKDD, pages
239–248, 2005.

[26] Filip Radlinski and Thorsten Joachims. Minimally invasive
randomization for collecting unbiased preferences from
clickthrough logs. InAAAI, 2006.

[27] Filip Radlinski and Thorsten Joachims. Active exploration

for learning rankings from clickthrough data. InKDD, pages
570–579, 2007.

[28] Michael J. Taylor, John Guiver, Stephen Robertson, andTom
Minka. Softrank: optimizing non-smooth rank metrics. In
WSDM, pages 77–86, 2008.

[29] Ramakrishna Varadarajan and Vagelis Hristidis. A system for
query-specific document summarization. InCIKM, pages
622–631, 2006.

[30] Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu.
Learning to rank with ties. InSIGIR, pages 275–282, 2008.

APPENDIX

A. PROOF OF THEOREM 2
We will first show that whenK = n there exists an optimal

labeling such that each node is assigned a different label, that is,
all classes defined by the labeling are singleton sets. Assume that
this is not true, that is, for any optimal solutionL, the number of
non-empty classes generated byL is at mostM for someM <
n. Consider such an optimal labeling with exactlyM non-empty
classes. Then there must exist a labelλi that is assigned to at least
two nodes, and a labelλj that is assigned to no node. Without loss
of generality assume thatj = i + 1. Let u be one of the nodes in
the classLi. Also let

∆u(Li) =
X

v∈Li:(u,v)∈E

wuv −
X

v∈Li:(v,u)∈E

wvu

denote the total weight of the outgoing edges, minus the weight
of the incoming edges, foru when restricted to nodes inLi. If
∆u(Li) ≥ 0, then we assign all the nodesLi \ {u} to labelλi+1,
resulting in a new labelingL′. The net agreement weight ofL′ dif-
fers from that ofL, only with respect to the backward and forward
edges introduced between classL′

i = {u} andL′
i+1 = Li \ {u}.

Therefore, we have thatAG(L′) = AG(L) + ∆u(Li) ≥ AG(L).
Similarly, if ∆u(Li) < 0, we create a labelingL′ with classes
L′

i = Li \ {u} and L′
i+1 = {u}, with net weightAG(L′) =

AG(L) − ∆u(Li) ≥ AG(L). In both casesL′ has net weight at
least as high as that ofL; thereforeL′ is an optimal solution with
M + 1 classes, reaching a contradiction.

In the case thatK = n, the problem becomes that of finding a
linear orderingL of the nodes inV that maximizesAG(L). Note
that in this case every edge of the graph will contribute to the net
weightAG(L) either positively or negatively. That is, we have that
E = F ∪ B, and therefore,

AG(L) =
X

(u,v)∈F

wuv −
X

(u,v)∈B

wuv

=
X

(u,v)∈F

wuv −

0

@

X

(u,v)∈E

wuv −
X

(u,v)∈F

wuv

1

A

= 2
X

(u,v)∈F

wuv −
X

(u,v)∈E

wuv .

The term
P

(u,v)∈E
wuv is constant, thus maximizingAG(L) is

equivalent to maximizing
P

(u,v)∈F wuv. This problem is equiva-
lent to the MAXIMUM -ACYCLIC-SUBGRAPHproblem, where, given
a directed graphG = (V, E), the goal is to compute a subset
E′ ⊆ E of the edges inG such that the graphG′ = (V, E′) is
an acyclic graph and the sum of edge weights inE′ is maximized.
As the MAXIMUM -ACYCLIC-SUBGRAPHproblem is NP-hard and
the edges inF are a solution to it, our problem is also NP-hard.


