Generating Labels from Clicks

R. Agrawal A. Halverson K. Kenthapadi N. Mishra P. Tsaparas

Search Labs, Microsoft Research
{rakesha, al anhal , kri sken, ni nam panat s} @ri cr osoft.com

ABSTRACT the query. Obtaining labels of high quality is of critical por-
tance: the quality of training data heavily influences thaligy of
the ranking function.

Currently, the labels for training data are collected uginghan
judges. Typically, each (query, URL) pair is assigned toralsi
judge. However, this leads to error-prone judgments sirisevery
hard for a single judge to capture all the intents and nuaotes
query posed by a user. To alleviate such errors, a panel gégud
can be used to obtain multiple judgments for the same (qUiRiL)
pair. The final label of the pair is then derived by aggreggtire
multiple judgments.

This manual way of obtaining labels is time-consuming, fabo
intensive, and costly. Furthermore, as ranking modelsrbecaore
complex, the amount of labeled data needed to learn an decura
model increases [23]. Further, to ensure temporal relevahéa-
bels, the labeling process must be repeated quite often.sezon
quently, there is a pressing need for search engines to atedhe
labeling process as much as possible.

It has been observed [20] that the click logs of a search engin

The ranking function used by search engines to order remults
learned from labeled training data. Each training point (gueery,
URL) pair that is labeled by a human judge who assigns a sdore o
Perfect, Excellent, etc., depending on how well the URL imesgc
the query. In this paper, we study whether clicks can be used t
automatically generate good labels. Intuitively, docute¢hat are
clicked (resp., skipped) in aggregate can indicate retevdresp.,
lack of relevance). We give a novel way of transforming diakto
weighted, directed graphs inspired by eye-tracking st then
devise an objective function for finding cuts in these graphasin-
duce a good labeling. In its full generality, the problem RB-Nard,
but we show that, in the case of two labels, an optimum lagelin
can be found in linear time. For the more general case, weopep
heuristic solutions. Experiments on real click logs shoat tick-
based labels align with the opinion of a panel of judges, @afig

as the consensus of the panel grows stronger.

Categories and Subject Descriptors can be used to automate the generation of training data. fitke ¢
H.3.3 [Information Retrieval]: Search; G.2.2[Discrete Math]: log records all queries posed to a search engine, the URlts tha
Graph Algorithms were shown to the user as a result of the query, and the clidies.

logs capture the preferences of the users: Clicked docunazat

most likely relevant to the needs and the intent of the usbilew
General Terms skipped (not clicked) documents are most likely not. Aggtem
Algorithms, Experimentation of the activities of many users provides a powerful signalutthe

quality of a (query, URL) pair. This data can thus be usedHer t
Keywords task of automatically generating labels.

Joachims et al's seminal work [20, 22] proposes a collection
of preference ruledor interpreting click logs. These rules (e.g.,
clicked documents are better than preceding skipped dausine
1. INTRODUCTION when applied to a click log produce pairwise preferencewéen

Search engines order web results via a ranking function that the URLs of a query, which are then used as a training set for a
given a query and a document, produces a score indicating how!€arning algorithm.

Generating Training Data, Graph Partitioning

well the document matches the query. The ranking functidt is Applying the ideas of Joachims et al to a search engine aigk |
self learned via a machine learning algorithm such as [13je T ~ uncovers several shortcomings. First, the preference deéned
input to the learning algorithm is typically a collection @fuery, by Joachims et al assume a specific user browsing model that is
URL) pairs, labeled with relevance labels such as PerfeateE ~ Overly simplified. As we outline in Section 3, the rules do fusly

lent, Good, Fair or Bad indicating how well the document rhasc capture the aggregate behavior of users and also limitseherg-
tion of training data.

Second, the work tacitly assumes a relatively controlladren-
ment with a stable search engine, i.e., one that always pesdu
search results in the same order. It also assumes a smdlusetre

Permission to make digital or hard copies of all or part of thwork for that behave consistently. Each preference rule producessise

personal or classroom use is granted without fee providatidbipies are tent set of preferences between URLs. These assumptiomoiare

EOt ”"tﬁi‘len%rtigft::é‘t;‘i ‘;3“ Eggtlito%r gﬁ’::}’:ff’irr‘gt"’" :dgaq_tagé ti‘:flv?gg'fs satisfied in the environment of a real search engine: therebde
ear . Toyooth , - . . .

republish, to post on servers or to redistribute tgligtqu'mes prior specific behawor for a query Chang.es dynamically over time, diffexe-

permission and/or a fee. derings may be shown to different users, and the same usgrs ma

Copyright 2009 ACM 978-1-60558-390-7 ...$5.00.

exhibit different behavior depending on the time of day. Whe-
plying preference rules on click logs, many contradictimgnpise
preferences must be reconciled to obtain a consistenttapel
Third, the goal is to generate pairwise preferences whielhem
used directly for training. However, several learning aidpons
operate on labeled training data [3, 28]. For such algotlits
important to produce labels for the (query, URL) pairs.

Contributions: The main contribution of this paper is a method for
automatically generating labels for (query, URL) pairsnirolick
activity. The method directly address the three shortcgsimen-
tioned above.

More concretely, we propose a new interpretation of thédtig
that utilizes the probability a user has seen a specific URhfey
expected click/skip behavior. This new model more acclyasp-
tures the aggregate behavior of users. We model the calfeofi
(often contradicting) pairwise preferences as a graph amdiflate
the label generation problem as a novel graph partitionioglpm
(MAXIMUM -ORDERED-PARTITION), where the goal is to partition
nodes in the graph into labeled classes, such that we maiiméz
number of users that agree with the labeling minus the nurober
users that disagree with the labeling.

The MAXIMUM -ORDERED-PARTITION problem is of indepen-
dent theoretical interest. We show that in the case of fintig
labels, i.e., relevant and not relevant, it surprisinglgnguout that
the optimum labeling can be found in linear time. On the other
hand, we show that the problem of finding the optimunabel-
ing, wheren is the number of vertices in the graph, is NP-hard.
We propose heuristics for addressing the problem of labetige
ation for multiple labels. Our methods compute a linear orde
of the nodes in the graph, and then find the optimal partit&ingu
dynamic programming.

We conduct an extensive experimental study of both the pref-
erence rules and the labeling methods. The experimentsaremp
click inferences to the aggregate view of a panel of judgee W
demonstrate that our probabilistic interpretation of thekdog is
more accurate than prior deterministic interpretatioadhvis panel.
Further, we show that the stronger the consensus of the,taeel
more likely our click labels are to agree with the consensushe
event that click labels disagree with a strong consensushoe/
that it can often be attributed to short queries where theninis
ambiguous.

2. RELATED WORK

The idea of using clicks as a basis for training data was ficst p
posed by Joachims [20, 22]. We explain this work in more dletai
in the next section. Subsequently, a series of papers pedpuosre
elaborate models for interpreting how users interact wisiearch
engine. For instance, Radlinski and Joachims [25] stitgettoer
preferences from multiple sessions. Craswell et al [6] psepa
cascade model that is used to predict the probability a ugéer w
click on a result. The model assumes that users view search re
sults from top to bottom, deciding at each position whetbetitk,
or skip and move to the next result. Dupret and Piwowarskj [10
also assume that users read from top to bottom, but are ketg li
to click the further the distance from their last click. Teedeas
could be used to extend the results in this paper. We leavathi
promising direction for future work.

Training on Pairs: The idea of sorting URLs by the number of
clicks and then training on the induced ordered pairs wakexqgh
in [9]. Whereas skipped documents are ignored in that wokk, w
explicitly utilize skips in making relevance assertionsirtRer, no

correction is made fopresentation biasa user’s decision to click
on a result based on its position as opposed to its relevanee.
overcome this problem to a certain extent by appealing te eye
tracking studies (Section 3).

In our work, we construct one directed, weighted graph pengu
Given such a graph, a natural question is why not directlyigeo
the edges as pairwise training data to a machine learnirgitim
such as [4, 15, 20]? A few issues arise. First, the graphs &« cr
ate are incomplete in the sense that edges) and (v, w) may
be present in the graph while, w) may not be. In this scenario,
we do want a machine learning algorithm to also train(onw),
but the edge is not present. Second, the graphs we creatgrcont
cycles. For example, in the case of an ambiguous query, ssete u
may preferu to v, while others may prefer to . Providing both
pairsu > v andv > u to a machine learning algorithm is not con-
sistent. Finally, we cannot create training data of the fazrandv
are equally relevant. Such “equally good” training data prased
to be useful in the context of ranking search results [30]e TEh
beling that we generate has the power to overcome thesespnebl
Indeed, our experiments demonstrate that our ordered graph
titioning creates more training pairs that are more likayagree
with a panel of judges than the edges of the graph.

Rank Aggregation: The techniques that we use for generating a la-
beling from a graph involve first ordering the vertices bewance,
then partitioning this ordering into classes and then asgsigla-
bels to these classes. To construct an ordering of the gsrt
ranking is sought that minimizes the total number of flippeefp
erences, i.e., for all URL8 andv, the number of users that prefer
u to v, butv > w in the final ranking. Such a ranking is known
as aconsensus rankingRank aggregation methods [1, 2, 11, 12,
13] produce a consensus ranking based on either totallyrbalha
ordered preferences. Ailon et al [2] show that given a toonerat
graph, i.e., one where for every pair of verticegindv there is
either an edge fromy to v or v to u, a 2-approximate consensus
ranking can be found under certain assumptions. Since aphgr
is not a tournament, such techniques do not apply. Howewver, w
do use other methods suggested in the literature. For eranvpl
rank vertices based on a page-rank style random walk thapreas
viously investigated in [11, 24]. Actually, since our finaaj is

to produce ordered labels, the work that most closely matolne
problem is the bucket ordering work described in [16]. Weela
rate further on this technique in the experiments.

Limitations of Clicks: Clicks are known to possess several limita-
tions. Some of these limitations can be addressed by exigtimk

on clicks, while others lie at the forefront of research. fstance,
spurious clicks pose a problem in that a small number of bakscl
can trigger a cascade of incorrect inferences. We addrissgrtib-
lem by making decisions based on only a large number of users.
Presentation bias is another issue with clicks that we dyrezen-
tioned. Another method for coping with presentation biadudes
randomly altering the order in which results are preser2éd27].
Clicks pose further problems that are under active invattg in
other research communities. For instance, frauduleritsheed to
be detected and removed [18, 19]. The bot traffic that we dee ab
to detect is removed from our click logs, but we know more tsxis
Also, clicks are more an indication of the quality of the ¢apthan
the quality of the page [5, 8, 29]. We believe that continugdre
work on these topics will address issues with clicks.

3. INTERPRETING CLICK LOGS

The click log of a search engine consists of a sequence ofquer
impressionseach impression corresponds to a user posing a query

to the search engine. Each impression may have one or moks cli

on the document URLSs returned in the result set. The ordésed |
of document URLSs presented to the user, and the positionabf ea
document click is stored in the click log. The goal is to usis th

information to derive preferences between the URLs.

In this section we describe how to interpret the click logs fo
obtaining pairwise preferences between URLs. We begin by di
cussing the work of Joachims et al in detail, and its limitasi
when applied to a search engine click log. We then propose our
own probabilistic model for the query log interpretation.

3.1 Prior Work on Interpreting Query Click
Logs
Joachims et al [20, 22] proposed a set of preference ruléa-for
terpreting the click logs. These rules generate pairwiséepences

Probability of reading position i given click j
N\ N\ \
S\ \
\

N\ —\
S

4 5 6 7 8 9

1 2 3 10

—e—Pr(Read i | Click 1) ~—Pr(Read i | Click 2) —&—Pr(Read i | Click 3) =>=Pr(Read i | Click 4)

—#—Pr(Read i | Click 5) ~—Pr(Read i | Click 6) ——Pr(Read i | Click 7) —— Pr(Read i | Click 8)

Figure 1: The probability a user reads position: given that they
clicked on positionj.

between URLs and are based on eye-tracking studies. We group

the rules proposed by Joachims into two categories, rusggém-
force the existing ranking (positive rules) and rules thattcadict
the existing ranking (negative rules).

Rules that Reinforce the Existing Order of Search ResultsThis
category includes the rule “Clicke Skip Next” which states that
if a person clicks on URLA at position: and skips URLB at
positioni + 1 then URL A is preferable to URLB (A > B).
This rule is based on eye-tracking studies: a user who dicke
a document at position is likely to have also seen the URL at
positioni 4+ 1. While this may capture the most common user’s
behavior, it does not capture the aggregate behavior: s u
may browse more URLSs below positian This is especially true
when clicking at position 1 as there are users that do reamibel
position 2. Furthermore, this rule generates sparse dataedeh
click on a URL we obtain only a single pairwise preference.

Rules that Contradict the Existing Order: This category in-
cludes the rules “Click> Skip Above”, “Click > Skip Previous”,
“Last Click > Skip Above”, “Click > Click Above”. These rules
rely on the eye-tracking observation that if a user clickaawcu-
ment at position, then with some probability they have seen all the
URLSs preceding position. The rule “Click > Skip Above” is the
most aggressive: it generates a preference for all pregadiRis
that were skipped. The rules “Click Skip Previous”, and “Last
Click > Skip Above” are more conservative in generating prefer-
ences. The former generates a preference only with the girece
URL, while the latter assumes that only the last click was @& su
cessful click. The rule “Click > Click Above” creates prefeces
for failed clicks.

These rules attempt to generate data that will “correct’raimd-
ing. One limitation is that they do not fire in the case thatetis
a single click on the first result, a common case in the conmteat
real search engine.

In isolation, these rules can lead to incorrect inferendésve
only apply positive rules we cannot obtain information abiod
correct decisions made by the ranking function. On the dthad,
negative rules do not provide any information about theemirde-
cisions of the ranking function.

Even in combination, these rules can lead to non-intuitiNert
ences. Consider combining the “Click Skip Next” rule with the
“Click > Skip Above” rule and suppose that 100 people click only
on position 1, while 10 people click on position 3. Then theneo
bination of these rules implies that users prefer 1 to 2,sugefer
3to 1 and also 3 to 2. Chaining the inferences together, we hav
that3 > 1 > 2. For many queries this turns out to be an incorrect

conclusion. For example, if the query is ambiguous, 1 coslthie
most popular intent, and 3 the second intent.

3.2 A Probabilistic Interpretation of the Click
Log

As we outlined above, Joachims et al's rules rely on the most
common behavior of the users to generate preferences. Howea
capture the aggregate behavior of users instead of the wmshon
user’s behavior? We give a probabilistic method of inteipgethe
click log that is also informed by eye-tracking studies. igufe 1,
we show a chart adapted from the work of Cutrell and Guan [7, 8,
17] describing the probability a user reads positigiven that they
click on position;j. In their study, hand-crafted search engine result
pages were created in an information-seeking exercisgngathe
position of the definitive document URL. They measured th&-po
tions viewed by the test subjects when a click occurred ateifip
position in the top 10 result set. We augment this study with t
rules Click > Skip Next and Click > Skip Above, so tHat(Read
| Click j) = 1for1 <4 < j 4+ 1. For example, consider the
Pr(Readi| Click 1) line denoted by a diamond. The chart shows
that with probability 1 position 2 is read, with probabili®y5 posi-
tion 3 is read, etc. Note that the drop-off is surprisingly si@ep
with about 10% of users actually reading position 10. The@sdc
line Pr(Readi| Click 2), denoted with a square, is similar to the
first, but “pulled over” one position. In fact, each subsequme
seems pulled from the previous. In all of these cases, the-dfifo
in reading lower positions is gradual. Note that the life§Read
1| Click 9) andPr(Readi| Click 10) are omitted as they are equal
to 1 for all 4.

Using this observed behavior of the users, we generaterprefe
ences between URLs for a given query with probability prepor
tional to what is observed in Figure 1. First, we decide orrties
that we apply. We want to capture both the positive and the neg
ative feedback of the clicks, thus we use the “Click > Skip tex
and “Click > Skip Above” rules. Our goal is to create a per gquer
preference graphfor each query, we construct a weighted directed
graph where the vertices correspond to URLs and a directgel ed
from vertexu to v indicates the number of users who readnd
v, clicked onu and skippedy. This graph forms the basis for the
labels we construct.

Our method of interpreting the click log proceeds as follows

1. Letp;; = Pr(Read: | Click) (from Figure 1). Suppose that
for a given query in a given session a user clicks on position
j. Then for all skipped URLs at positian# j, with proba-
bility p;; we increase the weight of edgeRL at position,
URL at position:) by 1 and with probabilityl — p;;, we do

nothing.

2. Aggregating this probabilistic information over all vsewe
obtain an initial preference graph. Edges/preferencek wit

is aforward edge in the labeling, if L(u) > L(v) and that the
edge(u, v) is abackwardedge if L(u) < L(v). We defineF to
be the set of forward edges aftito be the set of backward edges.
These are the edges that cross the classes in the partitétihéan

very low weight are then removed entirely. The reason is that forward or backward direction. Intuitively, the edgesAncapture
we do not want to create edge preferences based on spurioughe preferences that agree with the labellngvhile the edges i

or inadvertent clicks.

Note that the way we generate the preferences address@sthe |
itations of Joachims et al’s rules. We incorporate bothtp@sand
negative feedback, and we make use of the aggregate belwdvior
the users. Also, as a result of the probabilistic interpi@ta the
problem of incorrect inferences is alleviated. In the poegiexam-
ple, clicks on position 1 generate preferences to all postirom
2 to 10 (of varying weight).

Remark: The data in Figure 1 is limited in many regards. First, it
is based on an eye-tracking study that involved a limitedpemof
participants in a laboratory setting. Thus, the number natyrex
flect the true probability that a user reads a position. FEuntiore,
reading probability is often query dependent: navigatioperies
are unlikely to lead to reading many URLSs after the navigetioe-
sult, while informational or observational queries areljkto lead
to much more reading behavior among all ten positions. Qdery
pendent reading probabilities could be adapted from th& w6,
10] and we leave this as a direction for future work. Finaiad-
ing probabilities may be user dependent (targeted vs. lngys
and time dependent (weekday vs. weekend).

At this point, we could simply provide the edges of the graph a
training data to a machine learning algorithm. The problsihat
the edges do not tell a complete story of user preferencesieSo
edges that do exist should be removed as they form contoaglict
cycles. Also, some edges that do not exist should be addémsbwas t
can be transitively inferred. In the next section, we show twau-
tomatically generate labels from the graph with the goaliifliing
a more complete story.

4. COMPUTING LABELS USING PAIRWISE
PREFERENCES

Given the collection of user preferences for a query we now as
sign labels to the URLs such that the assignment is consisfén
the preferences of the users. Recall that we model the tioltec
of preferences for a query as a directed graph. The set atesrt
corresponds to URLs for which we generated a pairwise prefer
ence. The set of edges captures the pairwise preferencesdret
the URLs. The weight of an edge captures the strength of #fe pr
erence. Given this graph representation, we define theitabel
problem as a graph partition problem: assign the verticesrto
dered classes so as to maximize the weight of the edges tiest ag
with the classes minus the weight of the edges that disagitbe w
the classes. The classes correspond to the relevance, latipls
Perfect, Excellent, Good, Fair and Bad.

4.1 Problem Statement and Complexity

We now formally define the problem. Lét = (V, E') denote
the preference graph, and l&t= {\1,..., Ak} denote a set of
K orderedlabels, where\; > \;,if i < j. LetL : V — A de-
note a labeling of the nodes @, with the labels i\, andL(v) be
the label of node. The labeling function defines an ordered parti-
tion of the nodes in the graph infg disjoint classe§ L, ..., Lx }
whereL; = {v : L(v) = A;}. We useL interchangeably to de-
note both the labeling and the partition. We say that the ¢dge)

capture the preferences that disagree with the labelingerGhe

graphG, our objective is to find a labeling that maximizes the
weight of edges irF” and minimizes the weight of edgesih We

thus define our problem as follows.

PROBLEM 1. (MAXIMUM -ORDERED-PARTITION) Given a di-
rected graphG = (V, E), and an ordered set of K labels find a
labeling L such that thenet agreement weight

Ag(D)= > wuw— Y wWa

(u,v)EF (u,v)EB
is maximized.

We now study the complexity of the MkiIMUM -ORDERED-
PARTITION problem. We first consider the case that= 2, that
is, we want to partition the data points into two classes, stoa
maximize the net agreement weight. The problem is remintsafe
MAX DI-CUT, the problem of finding a maximum directed cut in
a graph, which is known to be NP-hard. However, surprisingly
problem is not NP-hard. In the next theorem we show that there
is a simple linear-time algorithm to compute the optimatitian:
Vertices with net weighted outdegree greater than net viedbim-
degree are placed on one side of the partition and all othiéices
are placed on the other side of the partition.

THEOREM 1. TheMAXIMUM -ORDERED-PARTITION problem
can be solved in tim@(| E|) when the label set containskK = 2
classes.

PROOF LetA = {\1, A2} be the ordered classes, and let=
{L1, L2} denote a labelind.. For every node. € V, we also
compute the difference between the outgoing and incomimgg ed

weight for nodeu,
> >

veV:(u,v)EE veV:(v,u)EE

A, = Wy — Won - 1)

The key observation is that the net agreement weight of itadpél
can be expressed a: (L) = > A.. We have that

5 A, S
veV:(v,u)EE

uely

Dol > ww-
u€Lly \veV:(u,v)EE

u€ Ly

_ S e Y ww
w€Ly,wELy:(u,v)EE uw€Lj,veLy:(v,u)EE
+ E Wyv — g Woy

uw€Ly,vELy:(u,v)EE

- Y e Y e

(u,v)EF (v,u)eB
= Acg(L)

Note that the valueg\, for nodesu € V depend only on the
graph@, and can be computed independent of the actual labeling
L. Given a set of positive and negative numbers, the subset tha
maximizes the sum is the set of all positive numbers. Thesefo

it follows that in order to maximizedg (L), the optimal labeling

L* should place all nodes with A,, > 0 in classL1, and all the
nodes withA,, < 0in classL2 (nodes withA,, = 0 can be placed

u€Ly,vELy:(v,u)EE

in either class). Computing., for all nodes can be done in time
O(|lE|). O

nodew uniformly at random, we choose an outgoing lifik, v)
proportional to its weighti,,..
The result of the PageRank algorithm on the gr&ghis a score

In the general case, when the number of classes is unlimited, for each node in the graph given by the stationary distritoutf

the problem is NP-hard. The proof, given in the Appendixciobk
even in the case th# = n—O(1). We leave open the complexity
of the problem forK” > 2, andK < n — O(1).

THEOREM 2. TheMAXIMUM -ORDERED-PARTITION problem
is NP-hard when the set of labelscontainsK = n labels.

4.2 Algorithms

We discuss heuristics for MKIMUM -ORDERED-PARTITION next.
Our algorithms proceed in two steps. First, we describerilgos
for computing a linear ordering (possibly with ties) of thedes in
the graph that tend to rank higher the nodes that attract prefe
erences. Then, we apply a dynamic programming algorithnmtb fi
the optimal partitionZ™ of this linear order into at mosk classes
such thatd(L) is maximized.

4.2.1 Obtaining a Linear Ordering

We consider three different techniques for obtaining adlirae-
dering (possibly with ties) which we outline below.

A-ORDER: We compute the valud,, as defined in Equation 1 for
each node in the graph. We then order the nodes in decreasieig o
of these values. This technique is inspired by the fact thaanhic
programming applied to this ordering gives an optimal sotutn
the case of a 2-partition (Theorem 1).

PivoT: We adapt the Bucket Pivot Algorithm (YoT) proposed
by Gionis et al. [16] which is a method for finding good bucket
orders. A bucket order is a total order with ties, that is, \&e p
tition the set of nodes into ordered buckets such that nades i
earlier bucket precede nodes in a later bucket but nodesnwath
bucket are incomparable. First we compute the transitiveuce

of the graph so as to capture transitive preference rekttipe be-
tween pairs of nodes. The algorithm proceeds recursivefplas
lows: select a random vertexas the pivot and divide the remain-
ing nodes into three classes (“left”, “same”, “right”) byropar-
ing with v. The “left” class contains all nodes that are incoming
neighbors ofv but not outgoing neighbors af (formally, the set
{u|(u,v) € Eand(v,u) ¢ E}) and the “right” class contains all
nodes that are outgoing neighborsudfut not incoming neighbors
of v. The “same” class contains and also the remaining nodes
(nodes that are not neighborswéand nodes that have both incom-
ing edge and outgoing edge with The algorithm then recurses on
the “left” class, outputs the “same” class as a bucket andrses
on the “right” class.

PAGERANK: PageRank is a popular algorithm for ranking web

the random walk. We order the nodes of the graph in decreasing
order of these scores.

4.2.2 Finding the Optimal Partition

Given the linear ordering of the nodes we now want to segnient i
into K classes, such that we maximize net agreement. We can find
the optimal segmentation using dynamic programming. Assum
that the linear ordering produced by the algorithmuisvs, . . . , v,
Generating d<-segmentation is equivalent to placiAg— 1 break-
points in the intervall, ..., n — 1]. A breakpoint at position par-
titions the nodes into set&s,...,v;} and{vit1,...,vn}. Let
OPT denote a two-dimensional matrix, whet®”T'[k, i] is the
optimal net agreement when havikdoreakpoints, where the last
breakpoint is at positioi Given the values of this matrix, we can
find the optimal net agreement for a segmentation \&itlslasses
by computing the maximum of thg< — 1)-th row. That is, for the
optimal partitionL™ we have that

Ag(L*)= max OPTI[K —1,1i].

K—1<i<n—1
We will fill the entries of theO PT matrix using dynamic pro-
gramming. We define another two-dimensional mafixwhere
BJj, 1] is the added benefit to the net agreement if we insert a new
breakpoint at position to a segmentation that has the last break-
point at positiony. Fork > 1, itis easy to see that
OPTIk,i)= max {OPT[k—1,5]+ Blj,}.

k—1<j<i

@)

Fork = 1 we have thaDPT[1,i] = BJ0,]. We can now fill the
matrix OPT in a bottom up fashion using Equation 2. The cost of
the algorithm isO(Kn?), since in order to fill the celD PT'[k, 1]

for row &, and columni we need to check— 1 previous cells. We
haveK — 1 rows andn columns, henc® (K n?).

Computing the values of matriB can be done by streaming
through the edges of the graph, and incrementing or dectémen
the entries of the table that a specific edge affects. Giveedae
e = (Vz,vy), letf = min{z,y} andr = max{z,y}. We only
need to update the celB[j,], where0 < j < ¢ — 1, and/ <
i < r. In this case, the edgefalls after the last endpoint of
the existing segmentation, ardalls between the two endpoints
of e. That is, the new breakpoint atwill be the first to cut the
edge(vz, vy). If z < y then the edge is a forward edge and we
incrementB(j, i] by w.. If x > y then edge: is a backwards edge
and we decremenB|j,] by w.. This computation is described in
Algorithm 1. The cost of the algorithm @(n?|E|), since for each
edge we need to upda@(n?) cells.

Finding the optimaK -segmentation comes as a byproduct of the

pages based on the web graph. The algorithm performs a randomcomputation of the matri®) PT', by keeping track of the decisions

walk on the graph, where at each step, when at ngdeith prob-
ability 1 — « the random walk follows one of the outgoing links of
nodeu chosen uniformly at random, or with probabilityit jumps

to a page chosen uniformly at random from the set of all pages i

the graph.

made by the algorithm, and tracing back from the optimaltsmiu

4.2.3 Label Assignment

We run the above algorithms with = 5 as we want to assign
URLSs for a given query into five ordered classes. If the dymami

The algorithm is easy to adapt to our setting. Given the graph programming returns five non-empty classes, this assighisen

G, we create theransposegraphG™, where the direction of all
edges is inverted. Intuitively, in grapf, an edge(u,v) means
thatu is preferred ovew. In graphG”, the corresponding edge
(v,u) means that node gives a recommendation for nodeto
be ranked high. A very similar intuition governs the appiica

unique. Otherwise if there ar®/ < 5 non-empty classes, we
provide a heuristic to steer us towards a desirable lahelirgr
space reasons, we omit the details as the pairwise compagiso
periments in Section 5 are unaffected by this choice of label
The main idea is as follows. Since we are interested in a small

of PageRank on the Web. Instead of choosing outgoing links of number of labels, we enumerate over all possible assigrsmnt

Algorithm 1 The algorithm for computing matri®
Input: The edge sek of the graphG.
Output: The added benefit matriis.

1: forall e = (v, vy) € Edo

2: ¢ =min{z,y}; r = max{z,y}.

3. forall j=0,...,/—1do

4. forall i =4¢,...,7do

5: if z < ythen

6: B[j,i] = Blj, i] + w(vs,v,)
7: else

8: B[.]vl]:B[]ﬂ‘]_w(vwvvy)
9: end if

10: end for

11: endfor

12: end for

five labels to theM classes. Each assignment is scored using the
inter-cluster and the intra-cluster edges. For intertelusdges, if
users express a strong preference for one class over artbihé-
beling is rewarded for a class assignment that separatetattses
as much as possible. For a cluster with many intra-clustgegd
the labeling is penalized for assigning the extreme claBsefect
and Bad. The justification is that we would not expect useséo
fer one URL over another within a cluster of Perfect URLs (adB
URLSs). These inter and intra-cluster scores can then beopppr
ately combined to produce a single score. The labeling wi¢h t
highest score is selected as the best labeling.

5. EXPERIMENTS

The goal of our experiments is to understand whether claet
labels align with the opinion of a panel of judges. We compare
different techniques for generating the preference graghthen
evaluate different labeling algorithms. Before delvingpithese
components, we describe our experimental setup.

5.1 Experimental Setup

We obtained a collection of 2000 queries with an average of 19
URLSs per query, where each (query, URL) pair was manually la-
beled by eleven judges for relevance. The ordinal judgmeets
converted into numeric values by assigning the scores litetla-
bels Bad-Perfect, respectively. For this collection of @@@eries,
we also obtained click activity for one month of click logs.

Performance is based on the extent to which click labelsalig
with the Consensus Opinion as well as with the Contrasting-Op
ion of the panel of judges.

Consensus Opinion:For a given query, consider two URLs that
are evaluated by the same eleven judges. Intuitively, weldvou
like to show that the more the judges reach a consensus dimut t
two URLs, the more click preferences agree. This is exabity t
intuition for our Consensus charts. Pairs of URLs are grdup®
those where six, seven,..., eleven out of eleven judgeseon two
URLSs, whereagreemeans the two URLSs are either given the same
label by the group or all agree that one is better than the.diféhe
graph construction experiments, we compare the extent tohwh
our edgesalign with increasing consensus opinion. In the labeling
experiments, we compare the extent to whichdiak-labelsalign
with increasing consensus.

Contrasting Opinion: A different question is whether click labels
are more likely to agree the sharper the contrast in the apiofithe
judges. We quantify the panel’s opinion of a URL by the averag

score assigned to the URL. The contrast between two URLis th
difference between the average scores. Intuitively, tlaepsr the
contrast in opinion between two URLs, the more click prefess
ought to agree. Note the difference between Consensus amd Co
trasting opinions: Judges can reach a consensus by agréeing
two URLSs are an equal match to a query, but equally good matche
are not a contrast of opinion.

5.2 Evaluating the Preference Graph

In Section 3 we outlined several methods that have been-previ
ously explored in the literature, as well as a probabilistterpre-
tation that generates a preference between two URLs accptali
the expected number of times that a URL was clicked and anothe
URL below it was read but not clicked. In this section, we con-
sider six rules for interpreting click data and the qualifyeach
rule for generating the preference graph. Table 1 conthiesix
rules, and the associated rule identifier used in subsetpiglat to
refer to the rule. Rules R1 to R5 are taken from [21], and RBés t
probabilistic click log interpretation developed in Seati3.

Table 1: Rules for using click data to generate a preference
graph

RuleID | Rule
R1 Click > Skip Above
R2 Last Click > Skip Above
R3 Click > Click Above
R4 Click > Skip Previous
R5 Click > Skip Next
R6 Probabilistic Click Log Rule

To evaluate the rules, we generate a graph for each of the rule
R1 to R6. Edges are added to the graph when the number of user
clicks generating the rule exceed a predefined threshol8.dblie
to ranking instability over time and the bidirectional matof some
of the rules, the graph is a directed graph and edges carirekisth
directions between two URLs. Once the graph is complete hue e
merate the edges of the graph and compare the relative gnefs
to those of the judges.

We present the results of the comparison in Table 2. For the
column labeled “Judges Agree”, we have valGdbroughl1 that
represent the number of judges agreeing on a relative prefer
for a pair of URLs. Their agreement may be that one URL is
more relevant to the query than the other, or that the two URLs
have the same relevance. We use the edges of the graph to find
the click-based preference according to the rule that geeethe
edge. When both directional edges between the two URL wsrtic
in the graph exist, the preference is generated accorditgtedge
with the highest click count. Therefore, the click ruleshalmost
always express a preference of one URL or the other. When the
judges have a consensus of the two URLSs being equally relevan
this will almost always show up as the click rule disagreeiith
the consensus of the judges. The columns labeled “A” and "D”
in the table refer to the rule Agreement or Disagreement ti¢h
judge consensus, respectively.

The results show that R6 is the best performing rule on owsght
The total agreement with our judges for R64i&l out of 809 to-
tal URL pairs, 0r49.6%. The next best performing rule is R5 at
44.2%, but has only224 total pairs in common with our judges.
Note that each rule generates a different count of preferpags.

For example, rule R3 (Click > Click Above) has a very low count
of pairs 6 + 97 = 103) due to the requirement of two clicks in the
same query impression. The strength of R6 as a preferereésrul

Table 2: For each rule (R1-R6), the table shows the number ofdges that agree (A), disagree (D) together with the percentf@dges
that agree (A %) as the consensus of the judges grows strongérhe last row shows the net agreement
Judges R1 R2 R3 R4 R5 R6
Agree (A;D) A% (A\D)A% | (AD)A% (A;D) A% (A;D) A% (A;D) A%
6 | (16;72) 18.2%| (15;69)17.9%| (2;20) 9.1%| (5;22) 18.5%| (10;32) 23.8%| (47;121) 28.0%
71 (11;69) 13.8%| (10;64) 13.5%| (1;19) 5.0%| (5;18) 21.7%| (13;30) 30.2%| (55;95) 36.7%
8 | (12;60) 16.7%| (10;55) 15.4%| (1,26) 3.7%| (4;19) 17.4%| (18;18) 50.0%| (66;70) 48.5%
9 (9;31) 22.5%| (9;27) 25.0%| (1;13) 7.1%| (4;14) 22.2%| (10;14) 41.7%| (47;43) 52.2%
10 (8;45) 15.1%| (7;42) 14.3%| (1;19) 5.0%| (3;22) 12.0%| (28;21)57.7%| (74;46) 61.7%
11 (5;40) 11.1%| (5;36) 12.2%| (0;0) 0.0% (3;8) 27.3%| (20;10) 66.7%| (112;33) 77.2%
Total | (61;317) 16.1%| (56;293) 16.0%| (6;97) 5.8%| (24;103) 18.9%| (99;125) 44.2%| (401;408) 49.6%,

that it does not have to trade accuracy for less number ofrgtte
preference pairs. Rather, it has both higher accuracy anghath
number of preference pairs than any other rule.

Drilling into the breakdown of the number of judges in con-
sensus, we note that the performance of R6 improves when more

Table 3: Click Label Consensus: The chart shows the agree-
ment of each labeling method as the consensus of the panel
grows stronger. Click labels are more likely to agree the
stronger the consensus

judges are in consensus. For example, whejudges are in con- Judges | RANDOM ~ PIVOT = A-ORDER PAGERANK
sensus, rule R6 agreég2 times and disagree®3 times on the Agree
relative order of URLs. We also note that R6 has neafl§ or 6 31.0% 42.6% 34.1% 38.9%
better agreement when eight or more judges are in conseftsus. 7 29.4% 43.3% 42.8% 50.2%
is impressive considering that a disagreement ensues \ubemis 8 31.7% 43.0% 42.9% 49.5%
consensus among judges that two URLs are equal. 9 37.8% 57.8% 47.9% 56.9%
We observe that the rules that contradict the existing offdér 10 32.9% 53.1% 60.0% 59.6%
R2, R3, R4) perform worse compared to the rules that fullyasr p 11 33.9% 65.7% 73.3% 79.0%
tially reinforce the existing order (R5 and R6). This suggekat, Total 32.4% 49.4% 48.4% 54.0%

for the queries in our dataset, the order of search resuhsigree-
ment with the judgments. Thus, the conclusions may not be com

pletely indicative of the performance of different rules. We begin by showing that the stronger the consensus opinion,
the more likely click labels are to agree. The results arevsho
5.3 Evaluating Click Labels in Table 3. Observe that the baselineNdom does not improve

whether the consensus consists of six or eleven out of ejedges.
On the other hand, the agreement with all three labelingrittgos
progressively increases the stronger the consensus. AGERR
ANK ordering has the most affinity with the consensus.

Next, we compare Click Label Consensus (Table 3) with Graph
Consensus (Table 2). The first observation is that the tetaER-
ANK percent agreemen54%) is higher than the graph generation
consensus percent agreemebt¥/ for R6)). In addition, there are
more actual agreement pairs. For thesSBRANK method, there is
agreement on 570 pairs and disagreement on 486 pairs campare
with R6 which agrees on 401 pairs and disagrees on 408 pairs.

We now compare the different algorithms for generating labe
For all the experiments we use the preference graph geddrsgite
Rule R6. We consider the three algorithms described in Qedti
for generating a linear ordering of the URLs and then find {ht& o
mal partition using dynamic programming. The algorithm8 ke
compared in terms of Consensus and Contrasting Opinion.

The baseline algorithm assigns labels at random, denoted by
RANDOM. In order to make a fair comparisonARDOM selects
labels according to the same distribution as the manuatiggd
labels over the URLs labeled by our algorithm. This disttiidu
is (10%, 16%, 30%, 30%, 14%) for the labels (Perfect, Excellent,
Good, Fair, Bad) respectively. Given a query and two URLss,
anduz, if we guess according to this distribution then the proba-
bility that u; has the same label as is 0.1% + 0.16% + 0.3% +
0.3% 4+ 0.142 = 0.24. The probability that:; is better thanu, is
equal to the probability that; is worse thani; and consequently
is (1 —0.24)/2 = 0.38. RANDOM is used to show that our results
are not due to chance.

Prior to showing the charts, we remark on a few experimental
details. First, clicks with low dwell time were removed. étrivork
suggests that low-dwell time clicks may be spurious and aoes-
sarily an indication of relevance [14]. We do not report fssan
dwell time values, but only mention that after trying sevéneesh-
olds, removed clicks with dwell time of less than fifteen et A
second practical issue is duplicate URLSs that surface indhéen
results. In such a situation, users prefer to click on theendefini-
tive URL. In our experiments, among the duplicate URLSs, wegke
only the URL with the highest label.

When Click Labels Disagree with the ConsensusWe find that
the stronger the judge consensus, the more click labels aljiev-
ever, the results raise a legitimate concern: when ten veeleut

of eleven judges agree on a pair of URLS, how could click lsbel
possibly disagree? We studied these (query, URL) pairstancet
sults were quite interesting: the largest difference stizom am-
biguous query intent.

Most of the (query, URL) pairs38%) where the consensus pref-
erence deviated from the click preference were short, dree, or
two key words. This gave us an early indication that the @seri
could be ambiguous. Second, more than hailf4) of the (query,
URL) pairs were judged to be equally good by the entire pdnel.
other words, these were pairs of URLs where the judges hdtl-a di
cult time distinguishing between their relevance, whiielclabels
had a preference.

We manually grouped the queries and pairs of URLs where click
labels disagree with the consensus into five categoriesllist Ta-

. ble 4. The largest category is ‘Depends on Intent’ conétig45%
5.3.1 Consensus Opinion of the queries. One example of such a query is “vogue” wheze th

Table 4: Breakdown of where Judge Consensus Deviates from
Click Labels

Category % Queries
Depends on Intent 44.7%
Click Labels Incorrect 21.1%
Duplicate URLs 15.8%
Click Labels Correct 1.3%
Other 17.1%

two choices are the UK Vogue home page and the Australian&/ogu
home page. To a judge, the pages seem equally good, but the US

clickers express a preference for the UK site. Another exarsp
“dutch oven cooking” where one URL gives recipes for cooking
in a dutch oven and another gives information on how to pwseha
dutch oven cookware. The judges claim the sites are equadigl,g
but clickers strongly prefer the recipes. It is difficult fog to know
which is correct: we did not pose the query with a specificrinte
and it is not likely that the panel of judges did either. Theple
who do know the intent are the clickers who themselves pdsed t
query with a specific interest in mind. Arguably, we belielatt
the aggregate click signal is thus better able to resolvedpelar

Table 5: Guide to the definition

(dis)agreements

of strong and weak

Clicks Clicks Clicks

ur > u2 | ur =u2 | ur < u2
Avg(u1) > Avg(uz) + | Strong A| Weak D | Strong D
|Avg(u1)— Avg(uz)| <y | Weak D | Weak A | Weak D

Table 6: Agreement metric for different label generation abo-
rithms

Agree RANDOM PivOoT A-ORDER PAGERANK
Weak A 8.40% 15.3% 10.5% 10.3%
Strong A 25.30% 32.1% 38.5% 44.1%
Total A 33.70% 47.4% 49.0% 54.4%
Disagree

Weak D 42.40% 42.9% 37.0% 36.6%
Strong D 23.80% 9.7% 13.9% 9.0%
Total D 66.30% 52.6% 51.0% 45.6%

To facilitate the discussion, we introduce the terminolegak
and strong (dis)agreements based on the confusion matviebe

preference between these URLSs than a judge who never asked th click-label preferences and panel preferences, Table&ngagree-

query.

The second largest category of queries is where we find tlae jud
ment of the panel of judges corre@ti(s). Further manual analysis
revealed that one source of the proble2i% of the cases where
the panel of judges is correct) was due to presentation iesrch
results. In other words, some URLs were assigned a highek cli
label simply because they were positioned higher on the page
thus received more clicks. Thus, although our techniquesbase
implicit correction for position bias inbuilt, it may bengfiom fur-
ther work in removing the bias.

A third category of queries is ‘duplicate URLsI§%). While
we did remove the duplicates we found, our duplicate detecti
method is not perfect. The remaining duplicates actualgedhour
awareness of another difference between clicks and judige®x-
ample, for the query “donald trump”, the two pagasunp. com
andt r unp. coni nai n. ht mare duplicates of each other. The
labels assigned by the panel of human judges are, as exptdwted
same for these two URLs. However, the click signal is stronge
for the first, shorter URL. We observed this common trend agnon
duplicate URLs: given two identical pages, a snippet coimgi
a shorter URL is more likely to attract clicks than a longerlUR
Thus, it may actually be desirable to train a machine legraigo-
rithm to prefer URLSs that are shorter in length.

The last two categories are where click labels are defindety
rect (1%) and Other {7%). The other category includes foreign
language queries, together with English queries that wédawot
understand.

To summarize, while click labels are not perfect in that prés-
tion bias is an issue, the largest difference is queries artbigu-
ous intent. Our belief is that clickers are better able tgeeaut the
relative relevance of URLs when queries are ambiguous.

5.3.2 Contrasting Opinion

In the next set of experiments, we show that the sharper tie co
trast of opinion between two URLSs, the more likely that cliakels
agree. The opinion of a panel for a (query, URL) pair is justd-
erage score of the eleven judges. The contrast of opiniondest
two URLs is the difference in the average score. We denote thi
difference bys. If the difference is small<{ +) then we say there
is no contrast. The valugis set t00.4 in our experiments.

ments are important in that they preserve the pairs of URed &
training. Weak agreements are good but less importantdoring
algorithms that do not train on pairs with the same label orgjr
disagreements are training pairs that are flipped in the sifgpdi-
rection. All other disagreements are weak.

Then we consider sharp contrasts of opinion. It is important
that pronounced judge preferences be accurately reflentelick
labels. Judges are typically very good at discriminatintyvieen
Perfect and Bad results. It is less important to accurataptze
slight judge preferences since judges often randomly eéebit
tween nearby labels such as Good and Fair — equally likelygyoi
one way or the other. Consequently, we bucket the triplesr{qu
URL1, URL2) into those where the contrast of opinidis low to
high and study the extent to which click labels agree.

Net Agreements:Table 6 shows the agreement metrics for the dif-
ferent algorithms. TheAGERANK algorithm produces the highest
agreement and lowest disagreement. TheoP algorithm pro-
duces a small fraction of strong disagreements, but manye mor
weak agreements and weak disagreements. This is due tocthe fa
that it over zealously groups many URLs into the same bucket,
probably due to poor pivot choices. The-ORDER algorithm is
better than the ROT algorithm, but not as good as tha®ER-
ANK algorithm. This is mostly due to the fact that the ordering by
theA,, values is performed via only “local” information for a node,
and not incorporating information about the graph as a whiihés
information is incorporated to some extent by thesPRANK al-
gorithm, which captures the transitivity of preferencesd ¢hus
yields an ordering with a more “global” view.

Sharper Contrasts: Next, we show that click-labels are more likely
to agree with the panel of judges the sharper the contrasttlie
larger the value of. A good labeling algorithm should have higher
agreement for larger values éfsince it guarantees that pairs of
URLSs with a marked contrast in panel preference are singifze-
ferred by click labels.

The results are shown in Figure 2. ForRbOM, click label
agreements do not increase with sharper contrast. TheTtPal-
gorithm is dominated by weak disagreements, even for stcong
trasts. On the other hand, for both-ORDER and RGERANK,

Random
100% 100%
90% 90%
80% 80%
70% 70%
Eg:f - — mStrong D 60% m Strong D
b — —1 — — 50%
40% Weak D 40% Weak D
30% 30‘7:
20% m Strong A 20% m Strong A
10% 10%
0% 0%
y<6<1 1<6<2 2<6<3 3<6<4 y<6<1 1<6<2 2<6<3 3<6<4
A-order PageRank
100% 100%
90% 90%
80% 80%
70% 70%
gg:f m Strong D gg:f H Strong D
b b
40% Weak D 40% Weak D
30% 30%
20% M Strong A 20% | Strong A
10% 10%
0% 0%
y<é<1 1<6<2 2<6<3 3<6<4 y<b6<1 1<6<2 2<6<3 3<6<4

Figure 2: Contrasting Opinions: The figure shows that the shegper the contrast between the opinion of the judges, measuceby

larger values of §, the more likely click labels agree.

the sharper the contrast the greater the agreemestERANK ac-
tually agrees completely when the contrast is at least thapéd
nearly completely when the contrast is at least two. Thetshar
demonstrate the success of click labels: the further dpagdnel’'s
average scores are, the more likely that click labels agree.

6. SUMMARY AND FUTURE WORK

We described a method for inferring a per query click-skagpdr
based on eye-tracking studies. Relevance labeling wasletbds
an ordered graph partitioning problem, and an optimum titieae
solution was given in the two labeling case. While the optimu
labeling is NP-hard, heuristics were proposed to addresstiiti-
ple label generation problem.

Experiments demonstrate that our method of inferring prefe
ences align more with the consensus opinion of a panel okgidg
than prior methods. Further, our click labeling procedusto
align with the consensus opinion of a panel of judges. In tleae
that click labels do not agree with the panel, it is often duarn-
biguous queries where our belief is that clickers are beté to
resolve popular intent. Finally, as the panel’s view of oreLU
sharply contrasts with their view another URL for a query,find
that click labels are more likely to agree.

For future work, we would like to train ranking functions tvit
click labels. Some practical problems will have to be tagki@licks
can generate labels for many queries — potentially moreiegpier
than any ranking algorithm can use. Thus, it may be usefuhtb fi
ways to score click labels by the confidence of the label. Such
scoring could be used to determine which click labels to usiew
training. Another question is one of evaluation: it will bapor-
tant to determine when a ranking function trained on clicks p
forms better than a ranking function trained on human judgee
A ranking function trained on click labels will likely penfim better
on a click-label test set than a ranking function trained oman

judgments. On the other hand, a ranking function traineduonamn
judgments will likely perform better on a human judgment te.
We leave questions related to training ranking functiorth wiick
labels as an interesting avenue for future work.

7. ACKNOWLEDGMENTS

We are grateful to Sreenivas Gollapudi, Nazan Khan, Rina Pan
igrahy and John Shafer for valuable insights. We also thamk E
Brill, Chris Burges, Ken Church, Ed Cutrell, Dennis Deco&eish
Kumar, Greg Linden, Rangan Majumder, Alex Ntoulas, RyawSte
art, Krysta Svore, Rohit Wad and Yi-Min Wang for thoughtfeéfi-
back. Finally, we thank Gu Xu for help with URL deduplication

8. REFERENCES

[1] Rakesh Agrawal, Ralf Rantzau, and Evimaria Terzi.
Context-sensitive ranking. IBIGMOD, pages 383—-394,
2006.

[2] Nir Ailon, Moses Charikar, and Alantha Newman.
Aggregating inconsistent information: ranking and
clustering. INSTOC pages 684—693, 2005.

[3] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le.
Learning to rank with nonsmooth cost functionsNHPS
pages 193-200, 2006.

[4] Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari
Lazier, Matt Deeds, Nicole Hamilton, and Gregory N.
Hullender. Learning to rank using gradient descentCIIL,
volume 119, pages 89-96, 2005.

[5] Charles L. A. Clarke, Eugene Agichtein, Susan T. Dumais,
and Ryen W. White. The influence of caption features on
clickthrough patterns in web search.$#GIR pages
135-142, 2007.

[6] Nick Craswell and Martin Szummer. Random walks on the
click graph. InSIGIR pages 239-246, 2007.

[7] Edward Cutrell. Private communication. 2008.

[8] Edward Cutrell and Zhiwei Guan. What are you looking
for?: an eye-tracking study of information usage in web
search. ICHI, pages 407—416, 2007.

[9] Zhicheng Dou, Ruihua Song, Xiaojie Yuan, and Ji-Rong

Wen. Are click-through data adequate for learning web

search rankings? I6IKM, pages 73-82, 2008.

Georges Dupret and Benjamin Piwowarski. A user brog/sin

model to predict search engine click data from past

observations. IBIGIR pages 331-338, 2008.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar.

Rank aggregation methods for the webWiWW pages

613-622, 2001.

Ronald Fagin, Ravi Kumar, Mohammad Mahdian,

D. Sivakumar, and Erik Vee. Comparing and aggregating

rankings with ties. IlPODS pages 47-58, 2004.

[13] Jianlin Feng, Qiong Fang, and Wilfred Ng. Discovering

bucket orders from full rankings. IBIGMOD, pages 5566,

2008.

Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan

Dumais, and Thomas White. Evaluating implicit measures to

improve web searctACM Trans. Inf. Syst23(2):147-168,

2005.

[15] Yoav Freund, Raj lyer, Robert E. Schapire, and Yoram
Singer. An efficient boosting algorithm for combining
preferencesIMLR, 4:933-969, 2003.

[16] Aristides Gionis, Heikki Mannila, Kai Puolamaki, anchti
Ukkonen. Algorithms for discovering bucket orders from
data. InKDD, pages 561-566, 2006.

[17] Zhiwei Guan and Edward Cutrell. An eye tracking study of
the effect of target rank on web search@Hll, pages
417-420, 2007.

[18] Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and
Kunal Talwar. Click fraud resistant methods for learning
click-through rates. IWINE, pages 34-45, 2005.

[19] Bernard J. Jansen. Click fradéEEE Computer
40(7):85-86, 2008.

[20] Thorsten Joachims. Optimizing search engines using
clickthrough data. IiKDD, pages 133-142, 2002.

[21] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene
Hembrooke, and Geri Gay. Accurately interpreting
clickthrough data as implicit feedback. BIGIR pages
154-161, 2005.

[22] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene

Hembrooke, Filip Radlinski, and Geri Gay. Evaluating the

accuracy of implicit feedback from clicks and query

reformulations in web searcACM Trans. Inf. SysP5(2),

2007.

Michael J. Kearns and Umesh V. VaziraAn Introduction to

Computational Learning TheorIT press, Cambridge,

Massachusetts, 1994.

Nathan N. Liu and Qiang Yang. Eigenrank: a

ranking-oriented approach to collaborative filtering. In

SIGIR pages 83-90, 2008.

[25] Filip Radlinski and Thorsten Joachims. Query chains:
learning to rank from implicit feedback. KDD, pages
239-248, 2005.

[26] Filip Radlinski and Thorsten Joachims. Minimally irsiee
randomization for collecting unbiased preferences from
clickthrough logs. IPAAAI, 2006.

[27] Filip Radlinski and Thorsten Joachims. Active exptara

[10]

[11]

[12]

[14]

(23]

[24]

for learning rankings from clickthrough data. DD, pages
570-579, 2007.

[28] Michael J. Taylor, John Guiver, Stephen Robertson, &ord
Minka. Softrank: optimizing non-smooth rank metrics. In
WSDM pages 77-86, 2008.

[29] Ramakrishna Varadarajan and Vagelis Hristidis. Aaysfor
query-specific document summarization AlKM, pages
622-631, 2006.

[30] Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu.
Learning to rank with ties. II8IGIR pages 275-282, 2008.

APPENDIX
A. PROOF OF THEOREM 2

We will first show that whenK = n there exists an optimal
labeling such that each node is assigned a different lalbad,is,
all classes defined by the labeling are singleton sets. Asshat
this is not true, that is, for any optimal solutidnn the number of
non-empty classes generated byis at mostM for someM <
n. Consider such an optimal labeling with exacll§ non-empty
classes. Then there must exist a labgthat is assigned to at least
two nodes, and a label; that is assigned to no node. Without loss
of generality assume thgt= i 4+ 1. Letu be one of the nodes in

the clasd.;. Also let
> >

Ay (Lz) = Wyv —
vEL;:(u,v)EE vEL;:(v,u)EE

Wy

denote the total weight of the outgoing edges, minus the hteig
of the incoming edges, for when restricted to nodes ih;. If
Ay (L;) > 0, then we assign all the nodés \ {u} to label\;;1,
resulting in a new labeling.’. The net agreement weight &f dif-
fers from that ofL, only with respect to the backward and forward
edges introduced between cldss= {u} andL;,, = L; \ {u}.
Therefore, we have that¢ (L) = Ag(L) + Au(L:) > Ac(L).
Similarly, if A,(L;) < 0, we create a labelind.” with classes
L; = L; \ {u} and L;; = {u}, with net weightAg(L') =
Ac(L) — Au(L;) > Ac(L). In both cased.’ has net weight at
least as high as that df; thereforeL’ is an optimal solution with
M + 1 classes, reaching a contradiction.

In the case thaK = n, the problem becomes that of finding a
linear orderingL of the nodes ir¥/ that maximizesAg(L). Note
that in this case every edge of the graph will contribute bt
weight A (L) either positively or negatively. That is, we have that
E = F'U B, and therefore,

AG(L) = Z Wyv — Z Wuv
(u,v)EF (u,v)€EB
= Z Wyv — Z Wyv — Z Wuv
(u,v)EF (u,v)eE (u,v)eF
= 2 Z Weyp — Z Wy -
(u,v)EF (u,v)EE

The term}_ , ,)cp Wuv IS constant, thus maximizinga (L) is
equivalent to maximizing_ ., .\ » wuv. This problem is equiva-
lentto the MaxiMUM -AcYcCLIC-SUBGRAPHproblem, where, given
a directed graptG = (V, E), the goal is to compute a subset
E’' C E of the edges inG such that the grapt’ = (V,E’) is
an acyclic graph and the sum of edge weight&iris maximized.
As the MaxIMUM -AcYycCLIC-SUBGRAPHproblem is NP-hard and
the edges irF" are a solution to it, our problem is also NP-hard.

