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Abstract. Traditional data mining methods consider the problem of
mining a single relation that relates two different attributes. For example,
in a scientific bibliography database, authors are related to papers, and
we may be interested in discovering association rules between authors
based on the papers that they have co-authored. However, in real life it
is often the case that we have multiple attributes related through chains
of relations. For example, authors write papers, and papers belong to
one or more topics, defining a three-level chain of relations.
In this paper we consider the problem of mining such relational chains.
We formulate a generic problem of finding selector sets (subsets of objects
from one of the attributes) such that the projected dataset—the part of
the dataset determined by the selector set—satisfies a specific property.
The motivation for our approach is that a given property might not hold
on the whole dataset, but holds when projecting the data on a subset
of objects. We show that many existing and new data mining problems
can be formulated in the framework. We discuss various algorithms and
identify the conditions when apriori technique can be used. We experi-
mentally demonstrate the effectiveness and efficiency of our methods.

1 Introduction

Analysis of transactional datasets has been the focus of many data mining al-
gorithms. Even though the model of transactional data is simple, it is powerful
enough to express many datasets of interest: customers buying products, docu-
ments containing words, students registering for courses, authors writing papers,
genes expressed in tissues, and many more. A large amount of work has been

⋆ A preliminary version of the paper appeared in ICDM’05.
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done on trying to analyze such two-attribute datasets and to extract useful in-
formation such as similarities, dependencies, clusters, frequent sets, association
rules, etc [2, 5]. At the same time, there have been many attempts to general-
ize existing data mining problems on datasets with more complex schemas. For
instance, multi-relational data mining [15, 17–19, 21] has been considered an ex-
tension to the simple transactional data model. However, addressing the problem
in the full generality has been proved to be a daunting task.

In this paper, we focus on the specific problem of finding selector sets from
one of the attributes of a multi-relational dataset, such that the projections
they define on the dataset satisfy a specific property. As an example, consider a
dataset with attributes A (authors), P (papers), and T (topics), and relations
R1(A,P ) on authors writing papers, and R2(P, T ) on papers concerning topics.
An interesting pattern, e.g., “authors x and y frequently write papers together”
might not be true for the whole dataset, but it might hold for a specific topic t.
Therefore, it is meaningful to consider projections of the bibliographic data on
particular topics and search for interesting patterns (e.g., frequent author sets)
that occur on the papers of those topics. Additionally, the schema resulting from
combining the two relations R1(A,P ) and R2(P, T ) is rich enough so that one
can express patterns that go beyond frequent sets and associations. For example,
one of the problems we introduce in a later section asks for finding subsets of
topics and corresponding authors who have written more papers than anyone
else one those topics. Arguably such prolific authors are candidates of being
the most authoritative researchers on the corresponding topics. Searching for
combinations of {topics, authoritative authors} is a new and interesting data
mining problem.

In our approach we model datasets as graphs, and patterns to be mined as
graph properties. We formulate a generic problem, which in our graph terminol-
ogy is as follows: find subsets of nodes so that the subgraph resulting from pro-
jecting the data graph on those nodes satisfies a given property. Our motivation
is that the above formulation is a generalization of existing data mining prob-
lems, in the sense that commonly studied problems are instances of our generic
problem for certain graph properties. Furthermore, in this paper we introduce
a number of additional properties—instantiations to our generic problem—that
lead to new and challenging problems.

Our contributions can be summarized as follows:

– We introduce a novel approach to mining multi-relational data. Our formu-
lation is quite powerful and it can express many existing problems in data
mining and machine learning. For example, finding frequent itemsets, asso-
ciation rules, as well as classification problems can be cast as special cases
of our framework.

– In addition to expressing already existing problems, the proposed framework
allows us to define many new interesting problems. We express such mining
problems in terms of graph properties. We discuss many examples of specific
problems that can be used to obtain useful results in real applications and
datasets.
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– We give conditions under which monotonicity properties hold, and thus, a
level-wise method like apriori (see, e.g., [47]) can be used to speed-up the
computations. Many of the problems we consider are NP-hard — many of
them are hard instances of node removal problems [60]. For such problems
we propose an Integer Programming (IP) formulation that can be used to
solve medium-size instances by using existing IP solvers.

– To demonstrate the utility of our model we perform experiments on two
datasets: a bibliographic dataset, and the IMDB dataset. Our experiments
indicate that our algorithms can handle realistic datasets, and they produce
interesting results.

The general problem we consider can be defined for complex database schemas.
However, for concreteness we restrict our exposition in cases of three attributes
connected by a chain of two relations—as in the example of the bibliographic
dataset. Such an extension is one of the simplest that one can make to the tra-
ditional transactional model. However, even this restricted setting can be useful
in modeling many interesting datasets, and the resulting problems are computa-
tionally hard. Thus, we believe that exploring the simple model of two-relation
chains can provide valuable insights before proceeding to address the problem
for more complex multi-relational schemas. In this paper, we only discuss briefly
extensions to more complex schemas in Section 3.4.

The rest of the paper is organized as follows. We start our discussion by
presenting the related work in Section 2. In Section 3 we formally define our data
mining framework and we give examples of interesting problems. In Section 4.1
we demonstrate a characterization of monotonicity that allows us to identify
when a problem can be solved efficiently using a level-wise pruning algorithm.
In Section 4.2 we describe Integer Programming formulations that allows us to
solve small- and medium-size instances for many of our problems. Section 4.3
contains more details about the algorithms we implement and in Section 5 we
discuss the results of our experiments. Finally Section 6 is a short conclusion.

2 Related work

Mining of frequent itemsets and association rules on single binary tables such
as market basket databases has been a very popular area of study for over a
decade [2, 5]. There has also been some effort on investigating data mining prob-
lems at the other end of the spectrum, i.e., multi-relational mining [15, 17–19,
21, 11, 24, 32, 10, 34, 8]. The approach taken by researchers has been to generalize
apriori-like data mining algorithms to the multi-relational case using inductive
logic programming concepts. Our work also has connections with work in min-
ing from multidimensional data such as OLAP databases [53] and with the more
recent multi-structural databases [22]. In the latter, algorithms are presented for
very general analytical operations that attempt to select and segment the data
in interesting ways along certain dimensions. While such approaches have been
extremely interesting in concept, our goal is more focused—we proceed from
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a single table case to the special case of multiple tables defined by chains of
relations which often occur in real-world problems.

The work closest to our work is [35] where the authors introduce composi-
tional data mining where they cascade data mining primitive operations over
chains of relations. The primitive operations they consider is a bi-clustering
operation and a re-description operation. Informally they look for patterns (bi-
clusters) that emerge in one relation, after applying operations up in the chain
of relations. The re-description operator is similar to to the selection predicates
we consider, making their work closely related to ours. However, their work does
not aim to optimize the selection process as in our case, but rather enumerate
all possible mined patterns.

Our work on mining layered graphs also has connections with the widely
studied general area of graph mining. Various types of graph mining problems
have been investigated, such as mining frequent subgraphs [16, 29, 28, 30, 31, 33,
41, 56, 57, 59, 58, 61, 36, 63], link analysis of web graphs [50, 39, 62, 51, 6, 49, 20],
extraction of communities [25, 4, 55, 40, 44], identification of influencers [37, 38,
1, 42, 13, 46, 43, 12, 54, 26], and so on. The work in [45] tries to summarize k-
partite graphs, by defining clusters per level. As with multi-relational mining, our
approach is more focused than these general efforts—we specifically investigate
layered graphs, making the case that many interesting real-world problems can
be modeled using such graphs, and develop interesting algorithmic techniques
that can leverage the structure of such graphs. We also approach the problem
from a different perspective, since we focus on the problem of finding selectors
that make patterns emerge in the projected datasets, rather than looking for
patterns in the whole dataset.

3 The general framework

In the most general case of a database schema we assume attributesA1, A2, . . . , An

and relations R1, R2, . . . , Rm on the attributes. Transactional data, the object of
study of most data mining algorithms, can be viewed as an elementary schema
having two attributes A (items) and B (transactions) and a single binary rela-
tion R(A,B) (transactions contain items). There are at least three different, but
equivalent, ways to view the relation R: (i) a usual database table T on A and
B, (ii) a binary co-occurrence matrix M , with rows on A and columns on B,
such that M [a, b] is 1 if (a, b) ∈ R and 0 otherwise, and (iii) a bipartite graph
G = (A,B;E) with edges (a, b) ∈ E if and only if (a, b) ∈ R. In this paper, we
find it convenient to work with the graph representation of schemas.7

As we noted in the introduction, we focus on a simple extension of the model
to three attributes A, B and C and a chain of two relations R1(A,B) and
R2(B,C). Thus, we assume a graph G = (A,B,C;E1, E2) with three sets of
nodes A, B and C corresponding to the three attributes and having one node
for each value in the domain of the attribute. The graph also has two sets of

7 Graph representation works well as long as all relations have two attributes. For
relations with more than two attributes, one would need to talk about hypergraphs.
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(a) The 3-level representation (b) The conjunctive case (c) The disjunctive case

Fig. 1. A graphical representation of the general framework: selecting a subset of nodes
in the third level induces a bipartite subgraph between the first two levels. In this
example, the conjunctive interpretation has been used to define the induced subgraph.

edges, E1 connecting nodes in A and B, and E2 connecting nodes in B and C.
We call such a graph a three-level graph.

Examples of datasets that can be modeled with a three-level graph struc-
ture include: authors writing papers about topics; Web users answering
online questions associated with tags; actors playing in movies belonging
to genres; transcription-factor-binding-sites occurring at the promoter
sequences of genes that are expressed in tissues; and documents containing
paragraphs containing words.

The general data mining framework we consider is graphically depicted in
Figure 1, and it is informally defined as follows. Consider the three-level graph
G = (A,B,C;E1, E2) shown in Figure 1(a). Given a subset C ′ ⊆ C of nodes
from level C, one can induce a subgraph G′ from G by taking B′ ⊆ B and
A′ ⊆ A, such that every node in A′ and B′ is reachable from a node in C ′.
There are (at least) two different ways to define the sets A′ and B′ depending
on whether we require that every node in A′ and B′ is reachable by every node
in C ′ (the conjunctive case – Figure 1(b)), or that every node in A′ and B′

is reachable by some node in C ′ (the disjunctive case – Figure 1(c)). In each
case, we obtain a different subgraph G′, with different semantics. Now we are
interested on whether the induced subgraph G′ satisfies a given property, for
example, “G′ contains a clique Ks,t”, or “all nodes in A′ have degree at least
k”. The intuition is that the induced subgraph corresponds to a projection of
the data, while the graph property corresponds to an interesting pattern. Thus,
the generic data mining problem is the following: given a specific property Ψ , to
find the selector set C ′ so that the induced subgraph G′ satisfies Ψ .
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3.1 Motivation

In this section we discuss the motivation behind our definition and we provide
evidence that common data mining and machine learning problems can be cast
in our framework.

First consider the traditional transactional data model, e.g., market-basket
data. In the graph representation, the data form a bipartite graph G = (I, T ;E)
with items in the set I, transactions in the set T , and an edge (i, t) ∈ E if
transaction t ∈ T contains the item i ∈ I. Consider now the problem of finding
a frequent itemset of s items with support threshold f . Such an itemset should
appear in at least f |T | transactions, giving rise to aKs,f |T | bipartite clique in the
graph G. Thus, the problem of finding frequent itemsets corresponds to finding
cliques in the bipartite data graph. Furthermore, answering the question whether
the dataset contains a frequent itemset of size s with support f , corresponds to
answering whether the input graph G contains a Ks,f |T | clique. In other words,
it corresponds to testing a property of the graph G.

Another well-studied problem in data mining is the problem of finding association-
rules. An association rule A ⇒ B with confidence c holds in the data if the item-
set B appears in at least a c-fraction of the transactions in which the itemset
A appears. Assume now that we want to find association rules with |A| = k
and |B| = s. We will show how this problem can be formulated as a selec-
tion problem in the three-level framework. Consider the graph representation
G = (I, T ;E) of the transaction data, as defined before. Now, consider a set of
items A ⊆ I. The set A induces a subgraph GA = (IA, TA;EA), with TA = {t :
(i, t) ∈ E for all i ∈ A}, IA = {j : j ̸∈ A, and (j, t) ∈ E for some t ∈ TA}, and
EA = {(i, t) ∈ E : i ∈ IA and t ∈ TA}. In other words, the subgraph GA induced
by A contains all transactions (TA) that contain all items in A and all other items
(IA) in those transaction except those in A. The task is to find itemsets A (of size
k) such that the induced subgraph GA contains a Ks,c|TA| clique. The itemset B
on the item side of the clique, together with the itemset A define an association
rule A ⇒ B, with confidence c. So, the problem of finding association rules can
be formulated as selecting a set of nodes so that the induced subgraph satisfies
a given property.

In our next example, we show how a canonical machine-learning problem
can also be formulated in our framework, and this time as a three-level graph
problem. Consider a dataset of n “examples” E = {⟨di : ci⟩, i = 1, . . . , n}, where
each example is defined by a datapoint di over a set of attributes and ci is a
class label from a small set C of labels. Think of di as a person’s entries to a
credit card application questionnaire and the label ci recording if the credit card
was granted or not. The learning problem is to find a set of rules that correctly
predict the credit card granting decision for a new applicant x. For instance,
such a rule combination could be “if x.income > 50K and x.age ≥ 18 then
yes”.

We now map the above learning problem to a three-level graph mining prob-
lem. The graph G = (C,D,R;E1, E2) is constructed as follows. The examples in
E induce the subgraph (C,D;E1). The set C consists of all possible class labels.
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Alternatively the class labels can be considered as the possible properties of the
data points. D is the set of datapoints, i.e., D has one vertex for each datapoint
di. There is an edge (c, d) ∈ E1 iff the datapoint d ∈ D has property c ∈ C.

The vertex set R captures the set of potential rules (or features). A rule
r is a mapping r : D → {0, 1}. For example if r is the rule ”x.age ≥ 18”,
then r(d) = 1 for all datapoints that correspond to applicants older than 18,
and r(d) = 0 for all applicants under 18. If the rules are restricted to be in a
specific class, say, conjunctions of conditionals on single attributes of size at most
three, then one can enumerate all potential rules. There is an edge (d, r) ∈ E2

iff r(d) = 1. Hence, in the disjunctive interpretation, a subset of R induces
a disjunction of rules, while in the conjunctive interpretation a conjunction of
rules.

There are many classifier learning tasks that can be formulated for such three-
level graph by posing additional constraints on the vertex and edge sets. Let us
consider the credit card example mentioned above. For simplicity, we assume that
there are only two classes, C = {yes, no} corresponding on whether the credit
card was granted. A person d ∈ D is connected to the class yes if the person’s
credit card was approved and no if the card was declined. Hence, a person can be
connected to one, two or none of the classes. There are a few natural formulations
of the learning task. For example, the goal in the learning can be to find the
set of rules that captures all persons connected to the class yes and no persons
connected the class no, i.e., to find the consistent classifier characterizing the
people who have been granted the credit card. Note that necessary condition of
such set to exist is that each person is connected exactly to one of the classes.
In practice there are often misclassifications and multiple class labels for the
same data point. Hence, a more practical variant of the learning task would be
to construct a rule set that captures people who should (should not) be granted
the credit card, i.e., the people who are connected only to the class yes (no).

The classification problem example is only meant to convey intuition and
motivation by casting a well known problem in our general framework. Many
important issues such as selecting the collection of rules, avoiding overfitting the
data, etc., are not discussed here. However a further discussion of this problem
and precise definitions can be found in subsequent sections (Section 3.3 and
Section 4.3).

3.2 Problem definition

Before proceeding to formally define our problem, we make a comment on the
notation: as a working example in the rest of the paper we use the bibliography
dataset (authors – papers – topics). Therefore, we appropriately denote the
three attributes appearing in the formulation by A, P , and T . The names of the
problems and the graph properties are also inspired by the bibliography dataset,
but this is only for improving the readability—most of problems are meaningful
to many other datasets.

We start with attributes A, P and T , relations E1(A,P ) ⊆ A × P and
E2(P, T ) ⊆ P×T , and the corresponding three-level graphG = (A,P, T ;E1, E2).
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Let S ⊆ T be a subset of T . The set S acts as a selector over the sets P and
A. First, for a single node t ∈ T , we define

Pt = {p ∈ P : (p, t) ∈ E2}, and

At =
∪
p∈Pt

Ap =
∪
p∈Pt

{a ∈ A : (a, p) ∈ E1}.

That is, the sets Pt and At are the subsets of nodes in P and A, respectively, that
are reachable from the node t ∈ T . (The set Ap is the subset of nodes in A that
are reachable from the node p ∈ P .) We can extend the definition to the subsets
PS and AS that is reachable from the set S ⊆ T . Extending the definition to sets
requires to define the interpretation of the selector S. We consider the following
two simple cases.

Disjunctive Interpretation In the disjunctive interpretation (D), the subsets PS

and AS are the set of nodes that are reachable from at least one node in S.
Therefore, we have

PD
S =

∪
t∈S

Pt and AD
S =

∪
p∈PD

S

Ap.

Conjunctive Interpretation In the conjunctive interpretation (C), the subsets PS

and AS are the set of nodes that are reachable from every node in S. Therefore,
we have

P C
S =

∩
t∈S

Pt and AC
S =

∪
p∈PC

S

Ap.

Now, let I denote the interpretation, which can be either conjunctive (C), or
disjunctive (D), or any other possible interpretation. Given the selector set S ⊆
T and the subsets AI

S and P I
S , we can define the induced three-level graph

GI
S = (AI

S , P
I
S , S;E

I
1,S , E

I
2,S), where

EI
1,S = {(a, p) ∈ E1 : a ∈ AI

S and p ∈ P I
S }, and

EI
2,S = {(p, t) ∈ E2 : p ∈ P I

S and t ∈ S}.

We also define the induced bipartite subgraph BI
S = (AI

S , P
I
S ;E

I
1,S), which con-

sists of the first two levels of GS .
Hence, the selector set S selects a subset P I

S of P and the set P I
S induces the

bipartite graph BI
S by selecting all edges in E1 and nodes in A that are adjacent

to some node in P I
S , regardless of the interpretation. (There is no need for any

additional interpretations for AI
S or BI

S as any further restrictions for BI
S can be

implemented as additional requirements to the property Ψ that BI
S is required

to satisfy.)
We are interested in finding selector sets S for which the induced subgraph

GI
S satisfies certain properties. Let LI

G = {GI
S : S ⊆ T} denote the set of all

possible induced three-level graphs under interpretation I. We define a property
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Ψ as any subset of the set LI
G. We say that the graph GS satisfies Ψ if GS ∈ Ψ .

For the following, to ease the notation, we will often omit the superscript I,
when it is immaterial to the discussion.

For some specific property Ψ we can define the following data mining problem.

Definition 1 (Ψ Problem). Given a three-level graph G = (A,P, T ;E1, E2),
and the interpretation I find a selector set S ⊆ T such that the induced subgraph
GI

S satisfies the property Ψ .

The definition of the Ψ problem, requires finding any feasible solution S ⊆ T ,
such that the graph GI

S satisfies the property Ψ . It is often the case that there are
multiple feasible solutions to the Ψ problem, and we are interested in finding a
feasible solution that satisfies an additional requirement, e.g., find the minimal,
or maximal selector set S ⊆ T that is a feasible solution to the Ψ problem.
Formally, let g : LG → R, be a real-valued function on the set of graphs LG. We
are then interested in finding a feasible solution S, such that the function g(GS)
is optimized. Therefore, we define the following problem.

Definition 2 (g-Ψ Problem). Given a three-level graph G = (A,P, T ;E1, E2),
and the interpretation I find a selector set S such that the induced subgraph GI

S

satisfies the property Ψ , and the function g is optimized.

This problem definition is general enough to capture different optimization prob-
lems. For example finding the maximum (or minimum) selector set such that GS

satisfies the property Ψ , corresponds to the case where g(GS) = |S|, and we want
to maximize (or minimize g(GS)).

3.3 Examples of properties

In this section we provide examples of interesting properties, some of which
we will consider in the remainder of the paper. For the following definitions, we
assume that the graph G = (A,P, T ;E1, E2) is considered as input. Additionally
most of the properties require additional input parameters, i.e., they are defined
with respect to threshold parameters, prespecified nodes of the graph, etc. Such
parameters are mentioned explicitly in the definition of each property.

Given a selector set S ⊆ T we have already defined the three-level induced
subgraph GS = (AS , PS , S;E1,S , E2,S), and the induced bipartite counterpart
BS = (AS , PS ;E1,S) (for some interpretation, whose index we omit here). Several
of the properties we define, are actually properties of the bipartite graph BS .

– Authority(c): Given a node c ∈ A, the graphGS = (AS , PS , S;E1,S , E2,S) ∈
LG satisfies Authority(c) if c ∈ AS , and c has the maximum degree among
all nodes in AS . That is, given a specific author c ∈ A we want to find a set
of topics S for which the author c has written more papers than any other
author, and thus, author c qualifies to be an authority for the combination
of topics S. In a Questions’n Answers (QnA) system, where users answer
questions online, we are interested in finding the set of tags for which a
certain user c has answered the most questions.
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– BestRank(c): Given a node c ∈ A, the graphGS = (AS , PS , S;E1,S , E2,S) ∈
LG satisfies BestRank(c) if c ∈ AS , and for every other graph GR ∈ LG, c
is ranked at least as highly in GS as in GR. The rank of a node c in a graph
GS is the number of nodes in AS with degree strictly higher than the degree
of c, plus 1. This property is meant to be a relaxation of the Authority(c)
property: since for a specific author c there might be no combination of top-
ics on which c is an authority, we are interested in finding the combination
Tc of topics for which author c is the “most authoritative”. There might be
other authors more authoritative than c on Tc but this is the best that c can
do.

– Clique: The graph GS ∈ LG satisfies Clique if the corresponding bipartite
graph BS is a bipartite clique. Here we are interested in topics in which all
papers have been written by the same set of authors. This property is more
intuitive for the case of a biological dataset consisting of attributes tissues-
genes-TFBSs, where we look for TBFS’s which regulate genes that are
all expressed over the same tissues. It also makes sense in the QnA setting,
where we are looking for a set of tags that define communities of users that
answer the same questions.

– Frequency(f, s): Given threshold value f ∈ [0, 1], and an integer value s the
graphGS = (AS , PS , S;E1,S , E2,S) ∈ LG satisfies the property Frequency(f, s)
if the corresponding bipartite graph BS contains a bipartite clique Ks,f |PS |.
The intuition here is that a bipartite clique Ks,f |PS | implies a frequent item-
set of size s with frequency threshold f on the induced subgraph. For this
property, it is also interesting to consider the g-Ψ problem, where we define
the objective function g to be the number of Ks,f |PS | cliques, and then look
for the selector set that maximizes the value of the function g, that is, it
maximizes the number of frequent itemsets.

– Majority: The graph GS = (AS , PS , S;E1,S , E2,S) ∈ LG satisfies Major-
ity if for every a ∈ AS we have |Ea

1,S | ≥ |Ea
1 \ Ea

1,S |, that is, for every node
a in AS , the majority of edges in G incident on a are included in the graph
GS . In the author-paper-topic context this means that in the induced sub-
graph for each selected author, the majority of its papers are selected by the
selector topic set.

– Popularity(b): Given a positive integer b, the graphGS = (AS , PS , S;E1,S ,
E2,S) ∈ LG satisfies Popularity(b) if |AS | ≥ b. That is, we want to find
topics for which more than b authors have written papers about.

– Impact(b): Given a positive integer b, the graphGS = (AS , PS , S;E1,S , E2,S) ∈
LG satisfies Impact(b) if for all nodes a ∈ AS , the degree of a in the induced
subgraph GS is at least b. Here, the intention is to search for topics on which
all authors have written at least b papers—and thus, hopefully, also have
impact.

– AbsoluteImpact(b): Given a positive integer b, a graphGS = (AS , PS , S;E1,S ,
E2,S) ∈ LG satisfies AbsoluteImpact(b) if for all nodes a ∈ AS , the degree
of a in G is at least b. Note that the difference with the previous definition
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is that we now consider the degree of node a in the graph G, rather than the
induced subgraph GS .

– CollaborationClique: A graph GS = (AS , PS , S;E1,S , E2,S) ∈ LG sat-
isfies the property CollaborationClique if for every pair of nodes a, b ∈
AS , there exists at least one node p ∈ PS , such that (a, p) ∈ E1,S and
(b, p) ∈ E1,S . In other words, each pair of authors have co-authored at least
one paper on the topics of S.

– Classification(c): In this setting we assume that the first level A is the set
of class labels, the second level P is the set of examples, and the third level T
is the set of features. Given a node c ∈ A, a graphGS = (AS , PS , S;E1,S , E2,S) ∈
LG satisfies Classification(c) if PS = {p ∈ P : (c, p) ∈ E1} and AS = {c}.
That is, the selector set, must be such that an example p ∈ P is selected
if and only if it belongs to class c. Note that this implicitly assumes that
each example is associated with a single class label, otherwise there is no
feasible solution. Weaker properties can also be defined, if we allow some of
the examples of other classes to be selected, or if we do not require all of
the examples of class c to be selected. Those weaker versions can be defined
using constraints on the number of false positives and false negatives. Also,
one can look for feature sets characterizing multiple classes or combinations
of classes, hence being related to multi-task learning [9].

– ProgramCommittee(Z, l,m): For this property, we break the convention
that the selector operates on the set of topics, and we will assume that
we select from the set of authors. This does not change anything in our
definitions, since we can just swap the roles of the sets A and T . We are
given a set Z ⊆ T (topics of a conference), and values l and m. We say
that the induced subgraph GS = (S, PS , TS ;E1,S , E2,S) ∈ LD

G satisfies the
property ProgramCommittee(Z, l,m) if TS = Z (exactly the given topic
set is selected), |S| = m, (m members in the program committee), and every
node t ∈ Z is connected to at least l nodes in S (for each topic there are
at least l experts in the committee). Notice that this is the only example
where we make use of the selector set S to define the property. Also, this is
the only example in which we need to specify the interpretation I, since the
problem makes little sense in the case of the conjunctive interpretation.

3.4 Extensions of the model

There are several ways in which our model can be extended to include more
complex cases. Here we outline some of the possible extensions.

Boolean interpretations in between of disjunctive and conjunctive in-
terpretations Disjunctive and conjunctive interpretations are two extreme
ways of selecting the nodes in P . Let S be the selector set. A node p ∈ P
belongs in PD

S if and only if there is at least one edge from p to a node in S,
and p ∈ P belongs in PD

S if and only if (p, t) ∈ E for each t ∈ S. Hence, PD
S
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contains all nodes in P covered by S and P C
S contains all nodes in P that form

a bi-clique with S.
There is a natural interpretation in between of these two extreme interpre-

tations that unifies both the disjunctive and conjunctive interpretations. In the
unifying interpretation the set P δ

S ⊆ P of elements selected by S consists of all
elements in P that are connected to at least δ-fraction of the nodes in S, i.e.,

P δ
S = {p ∈ P : |{t ∈ S : (p, t) ∈ E}| ≥ δ|S|}.

The conjunctive interpretation is obtained by setting δ to be 1, and the disjunc-
tive interpretation by setting δ = 1/|S|.

Weighted graphs In our definitions so far we have assumed that the graphs
(or relations) are not weighted. A natural extension is to consider the case that
the edges between the nodes of the various levels have weights, that is, the tuples
in the corresponding relations E1 and E2 are associated with a weight. These
weights carry some semantics, and we should modify our definitions to take them
into account.

If there is a weight w(p, t) ∈ (0, 1] for each edge (p, t) ∈ E2, the selection of
node p ∈ P can be done similarly as in Section 3.4: p is selected iff∑

(p,t)∈E2,t∈S

w(p, t) ≥ δ|S|.

Consider the case that each edge (p, t) ∈ E2 is associated with a probability
Pr(p, t), and an element t ∈ T selects a node p with probability Pr(p, t). In
that case we can express probabilistic versions of the interpretations. In the
conjunctive interpretation, given a selector set S, we have that p ∈ PS with
probability ∏

t:(p,t)∈E2

Pr(p, t),

while in the disjunctive interpretation we have that p ∈ PS with probability

1−
∏

t:(p,t)∈E2

(1− Pr(p, t)).

We can also assume that relation E1 is weighted. For example, in a dataset
of tissues-genes-TBFS’s, we may also have information about the expression
levels of each gene on each tissue. There are several problems that generalize
nicely in this setting, such as, Authority, BestRank, Majority, Impact,
AbsoluteImpact. These problems involve looking at the degree of a node a ∈
A, which can naturally be replaced by the weighted degree, and the rest of the
definition carries through. Furthermore, we can associate weights to the nodes
of the graph, to model, e.g., the costs or the importance of the nodes.

It is also interesting to consider the Classification problem in the weighted
case, where we assume that weight of an edge (c, d) ∈ E1 is the probability that
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the example d belongs to class c. We can redefine the selection problem, to look
for a set S of features such that the probability of the examples to belong to the
chosen class c in the subgraph induced by S is maximized.

More complex schemas The focus of this paper has been on mining three-level
chains of relations. However, our definitions can be naturally extended into more
complex schemas, involving more attributes and relations. In this general setting
we have m attributes A1, . . . , Am, and k binary relations E1, . . . , Ek. Thus we
obtain a graph G = (A1, . . . , Am;E1, . . . , Ek). We assume that the relations are
such that the resulting graph is connected. If As is the selector attribute, a node
s ∈ As selects a node in another attribute Ai, if there is a path between them
in the graph G. Given a selector set S ⊆ As, and an interpretation, we can
naturally extend the definitions in Section 3.2 to define the induced subgraph
GS , and then look for properties of this graph.

Schemas that would be interesting to explore in future work include the
following.

– Longer chains of relations.

– Schemas in the form of k-partite graphs.

– Star schemas, where the selector attribute is one of the spikes of the star.

– Wheel graphs, where the selector attribute is the center of the wheel.

Implicit topics Sometimes the set of topics can be very large but still it can
be decided efficiently whether a given paper p is connected to a given topic t,
e.g., in polynomial time in the size of the graph (A,P ;E1).

This is the case, for example, in learning boolean formulas in disjunctive (or
conjunctive) normal form. Namely, for each topic i ∈ T there is a monomial
mi over ℓ variables and there is a binary vector bj ∈ {0, 1}ℓ associated to each
paper j ∈ P . A topic i ∈ T is connected to a paper j ∈ P if and only if bj
satisfies the mi. Hence, the problem corresponds the Classification problem
(see Section 4.3) where the topics and their links to the papers are not given
explicitly but by a polynomial-time algorithm determining for any topic t ∈ T
and paper p ∈ P whether or not (p, t) ∈ E2.

4 Algorithmic tools

In this section we study characteristics of the various properties, and we show
how they can help us in performing data mining tasks efficiently. We identify
cases where level-wise methods (like the apriori algorithm) can be used and we
propose an integer programming formulation that can be used in many problems.
Finally we focus in four specific problems and discuss methods for their solution
in more detail.
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4.1 A characterization of monotonicity

The objective in this subsection is to identify cases where one can use standard
level-wise methods, like the apriori algorithm and its variants. Given a three-level
graph G = (A,P, T ;E1, E2), and an interpretation I ∈ {C,D}, recall that LI

is the set of all possible induced graphs under interpretation I, for all possible
selector sets S ⊆ T . We first give the following definitions for monotonicity and
anti-monotonicity.

Definition 3. A property Ψ is monotone on the set LI
G if the following is true:

if for some selector set S ⊆ T we have GI
S ∈ Ψ , then for all R ⊆ S we have

GI
R ∈ Ψ .
A property Ψ is anti-monotone on the set LI

G if the following is true: if for
some selector set S ⊆ T we have GI

S ∈ Ψ , then for all R ⊇ S we have GI
R ∈ Ψ .

The concept of monotonicity can be used to gain considerable efficiency in
the computations by enumerating all possible sets of selectors in an incremental
fashion (generate a set after having generated all of its subsets). Once it is found
that the property Ψ is not satisfied for some selector set S, then the search space
can be pruned by discarding from consideration all supersets of S. Many different
implementations of this idea can be found in the literature [5]. Here we relate
monotonicity and anti-monotonicity with the concept of hereditary properties
on graphs.

Definition 4. A property Ψ is hereditary on a class G of graphs with respect to
node deletions, if the following is true: if G = (V,E) is a graph that satisfies Ψ ,
then any subgraph G′ = (V ′, E′) of G, induced by a subset V ′ ∈ V also satisfies
the property.

A property Ψ is anti-hereditary on a class G of graphs with respect to node
deletions, if the following is true: if G = (V,E) is a graph that does not satisfy
Ψ , then any subgraph G′ = (V ′, E′) of G, induced by a subset V ′ ∈ V also does
not satisfy the property.

We can show that if a graph property Ψ is hereditary, it implies that the
property is also monotone with respect to the disjunctive interpretation and
anti-monotone with respect to the conjunctive interpretation.

Theorem 1. Any hereditary property is monotone on the set LD
G, and anti-

monotone on the set LC
G.

Any anti-hereditary property is anti-monotone on the set LD
G, and monotone

on the set LC
G.

Proof. Consider a hereditary property Ψ , and also consider any selector sets S
and R such that S ⊆ R ⊆ T . We have GD

S ⊆ GD
R and GC

R ⊆ GC
S . Since Ψ is

hereditary it follows that if GD
R ∈ Ψ then GD

S ∈ Ψ . Similarly, if GC
S ∈ Ψ then

GC
R ∈ Ψ . Thus, Ψ is monotone on LD

G, and anti-monotone on LC
G.

The rest of the theorem follows from the fact that an anti-hereditary property
is a complement of a hereditary property.
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The implication of the theorem is that, usually, given a property Ψ , one can
check easily if Ψ is (anti-)hereditary or not. If it is (anti-)hereditary, then we
know that a level-wise algorithm can be devised for solving the graph mining
problem for this property [47]. For example,Clique is hereditary, since removing
any nodes from a clique graph we are still left with a clique. Additionally, the
following results are immediate.

Proposition 1. The properties Clique and AbsoluteImpact are monotone
on LD

G and anti-monotone on LC
G. The property Popularity is anti-monotone

on LD
G and monotone on LC

G.

On the other hand, by constructing simple counterexamples, one can show
that the propertiesAuthority, BestRank, Frequency,Majority, Impact,
Classification and CollaborationClique are neither monotone nor anti-
monotone on LD

G or LC
G. Thus, level-wise methods do not suffice to solve the

corresponding problems.

4.2 Integer Programming formulations

Computing the maximal, minimal, or any selector set is an NP-hard problem
for most of the examples given in Section 3.3. In Section 4.1 we showed that
if the property under consideration is hereditary, then the task of enumerating
all solution sets (therefore also the maximal and the minimal sets) can be done
efficiently by a level-wise approach.

In this section we give IP formulations for some of the examples given in
Section 3.3. Solvers for IP and LP have been in the core of extensive research
in operations research and applied algorithms, and highly optimized methods
are available [48]. We found that small- and medium-size instances of the prob-
lems we consider can be solved quite efficiently using an off-the-shelf IP solver.8

Notice also that in the IP formulation we typically ask for one solution (often
by imposing an objective function to optimize), as opposed to enumerating all
solutions like in the previous section.

Let G = (A,P, T ;E1, E2) denote the three-level graph that represents the
relational chain. For each element i ∈ T , we define a variable ti ∈ {0, 1}, where
ti = 1 if the element i is selected and zero otherwise. Furthermore for each
element j ∈ P we define a variable pj ∈ {0, 1}. We need also to add constraints
on these variables.

First, we implement the selection of elements in P . In the disjunctive inter-
pretation we require that if an element i ∈ T is chosen, then the set PT

i = {j ∈
P : (j, i) ∈ E2}, consisting of all the papers in P that belong to topic i, is also
chosen. This condition is enforced by requiring that

pj ≥ ti for all j ∈ PT
i .

8 In practice, we solve IPs using the Mixed Integer Programming (MIP)
solver lp solve obtained from http://groups.yahoo.com/group/lp_solve/.
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Furthermore, we require that for each j ∈ P that is chosen, at least one i ∈ T is
chosen, such that (j, i) ∈ E2. Let T

P
j = {i ∈ T : (j, i) ∈ E2} be the set of topics

to which paper j belongs. Hence, we have that∑
i∈TP

j

ti ≥ pj for all j ∈ P.

The constraints guarantee that if the variables ti ∈ [0, 1] take values in {0, 1}
then the variables pj ∈ [0, 1] will also take values in {0, 1}. Thus, in the disjunc-
tive interpretation we can relax the constraints pj ∈ {0, 1} to pj ∈ [0, 1] for all
j ∈ P .

In conjunctive interpretation we require that a paper in P can be selected if
and only if it is connected to all nodes in the selector set S. This can be expressed
by the inequalities∑

i∈TP
j

ti ≥ |TP
j |pj and |TP

j | −
∑
i∈TP

j

ti ≥ 1− pj .

The constraints guarantee that if the variables pj ∈ [0, 1] take values in
{0, 1} then the variables ti ∈ [0, 1] will also take values in {0, 1}. Thus, in the
conjunctive interpretation we can relax the constraints ti ∈ {0, 1} to ti ∈ [0, 1]
for all i ∈ T .

Finally, for each element k ∈ A, we similarly define a variable ak ∈ {0, 1}
and impose the same constraints as for the pj variables in the disjunctive in-
terpretation. Let AP

j = {k : (k, j) ∈ E1} be the set of authors of paper j, and

PA
k = {j : (k, j) ∈ E1} be the set of papers authored by author k. Then we have

ak ≥ pj and
∑
j∈PA

k

pj ≥ ak

for all k ∈ AP
j , and again the constraints ak ∈ {0, 1} can be relaxed to ak ∈ [0, 1]

for all k ∈ A.9 We also define variable xk, that captures the degree of the node
k ∈ A in the subgraph induced by the selected nodes in T , i.e., xk =

∑
j∈PA

k
pj .

We now show how to express some of the properties we discussed in Sec-
tion 3.3 by imposing restrictions on the different variables.

– Authority(c): We impose the constraints xc ≥ xk for all k ∈ A − {c}.
Note that the potential topics are the topics that author c has at least one
paper. That is, we can restrict the search for a good topic set to the subgraph
induced by the topics of author c.

– Clique: We impose the constraint that ak =
∑

j∈P pj for all k ∈ A.
– Frequency(f, s): We define variables zk for selecting a subset of selected

authors and yj for selecting a subset of selected papers. These variables are
used to define the clique. First, we express that only selected authors and

9 In fact, by allowing some of the variables to be real-valued, we can used Mixed Integer
Programming (MIP) instead of IP and improve the performance considerably.
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papers can be selected. That is, zk ∈ {0, ak} for all k ∈ A, and yj ∈ {0, pj} for
all j ∈ P . Second, we add constraints requiring that the number of authored
in the clique is s and that the number of papers in the clique is at least
f |PS |, i.e.,

∑
k∈A zk = s and

∑
j∈P yj ≥ f

∑
j∈P pj . Finally, we require that

the variables zk and yj define a clique:
∑

k∈A,(k,j)∈E1
zk = syj for all j ∈ P .

– Majority: We impose the constraint that (1 − ak)|PA
k | + xk ≥ |PA

k |/2 for
all k ∈ A.

– Popularity(b): We impose the constraint that
∑

k∈A ak ≥ b.
– Impact(b): We impose the constraint that xk ≥ b for all k ∈ A.
– AbsoluteImpact(b): We impose the constraint that |PA

k | ≥ bak for all
k ∈ A.

– CollaborationClique: Let us denote the set of co-authors of author k ∈ A
by Ck = {k′ ∈ A : ∃j ∈ PA

k s.t. (k, j), (k′, j) ∈ E1}. Then we impose the
constraints ak|A| + c −

∑
k′∈Ck

ak′ ≤ |A| for all k ∈ A, and c =
∑

k∈A ak
where c is a real-valued variable.

– ProgramCommittee(Z, l,m): Let AT
i = {k ∈ A : ∃j ∈ PA

k s.t. (j, i) ∈
E2}. We add the constraints

∑
k∈A ak ≤ m, and

∑
k∈AT

i
ak ≥ l for all i ∈ Z.

For this problem, we need also the constraints ak ∈ {0, 1} for all k ∈ A since
there are no topic set selection involved in the program. Note also that we
can neglect the authors outside the set

∪
i∈Z AT

i .

4.3 Case studies

In this subsection, we focus on four specific problems among those listed in
Section 3.3 and we look into detailed aspects of their solution. Two of them are
selected to perform experiments with on real datasets. These experiments are
reported in the next section.

The Frequency problem Recall that the Frequency problem is as follows.
Given the graph G = (A,P, T,E1, E2) a value s, and a threshold value f , we
want to find a subset of nodes S ⊆ T so that in the induced subgraph GS =
(AS , PS , S;E1,S , E2,S) there exist frequently occurring “itemsets” V ⊆ AS of
size s. In other words, for itemset V to be frequent according our definition, it
needs to be the case that V is frequent on the restriction of the graph imposed
by a selector set S. Thus, finding frequent itemsets V with frequency threshold
f in the three-level graphs is equivalent to fining association rules S ⇒ V with
confidence threshold f .

One only needs to add the restriction that the premise set S is selected from
node set T and the conclusion set V is selected from node set A, but this only
prunes the possible search space. There are many algorithms for association-rule
mining in the literature [5] and any of them would be applicable in our setting
with the above-mentioned modification.

The Authority problem For a single author c, we solve the authority problem
using MIP. As the optimization objective function g, we consider maximizing the
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number of authors related to the topic set S ⊆ T , that is, g(GS) = |AS |, for
GS = (AS , PS , S;E1,S , E2,S).

The requirement that the author has the largest number of papers in the
induced subgraph can sometimes be too restrictive. One could also, for example,
minimize the absolute distance between the highest degree maxk∈AS

xk of the
authors and the degree xc of the author c, or minimize

∑
k∈AS

(xk − xc).

The rank alone, however, does not tell everything about the authority of an
author. For example, the number of authors and papers in the induced subgraph
matter. Thus, it makes sense to search for ranks for all different topic sets.

A set of papers fully determines the set of authors and a set of topics fully
determines the set of papers. It is often the case that different sets of topics
induce the same set of papers. Thus, we do not have to compute the rankings
of the authors for all sets of topics to obtain all different rankings; it suffices to
compute the rankings only once for each distinct set of papers that results by
a combination of topics. The actual details of how to do this depend on which
interpretation we use.

Conjunctive interpretation In the conjunctive interpretation, the subgraph in-
duced by a topic set S contains a paper j ∈ P if and only if S ⊆ TP

j , that is, S is
a subset of the set of topics to which paper j belongs. Thus, we can consider each
paper j ∈ P as a topic set TP

j . Finding all topic sets that induce a non-empty
paper set in the conjunctive interpretation can be easily done using a bottom-up
apriori approach. The problem can be cast as a frequent-set mining task in a
database consisting the topic sets TP

j of the papers j ∈ P with frequency thresh-
old f = 1/|P | (so that a chosen topic set is related to at least one paper). Any
frequent set mining algorithms can be used, e.g., see [5]. Furthermore, we can
easily impose a minimum frequency constraint for the topic sets, i.e., we can
require that a topic set should be contained in at least f |P | sets TP

j , j ∈ P for
a given frequency threshold f ∈ [0, 1]. In addition to being a natural constraint
for the problem, this often decreases considerably the number of topic sets to be
ranked.

However, it is sufficient to compute the rankings only once for each distinct
set of papers. It can be shown that the smallest such collection of topic sets
consists of the topic sets S ⊆ T such that S =

∩
i∈S,j∈PT

i
TP
j . Intuitively, this

means that the set S is closed under the following operation: take the set of
papers that are connected to all topics in S. Then for each paper j compute TP

j ,

the set of topics to which paper j belongs, and then take the intersection of TP
j ’s.

This operation essentially computes the nodes in T that are reachable from S
when you follow an edge from S to P , and then back to T . The intersection of
TP
j ’s should give the set S. In frequent set mining such sets are known as the

closed sets, and there are many efficient algorithms discovering (frequent) closed
sets [5]. The number of closed frequent itemsets can be exponentially smaller
than the number of all frequent itemsets, and actually in practice the closed
frequent itemsets are often only a fraction of all frequent itemsets.



Mining chains of relations 19

Disjunctive interpretation In the disjunctive interpretation, the subgraph in-
duced by the topic set S contains a paper j ∈ P if and only if S hits the paper,
i.e., S ∩ TP

j ̸= ∅. Hence, it is sufficient to compute the rankings only for those
topic sets S that hit strictly more papers than any of their subsets. By defini-
tion, such sets of topics correspond to minimal hypergraph transversals and their

subsets in the hypergraph
(
T,

{
TP
j

}
j∈P

)
, i.e., the partial minimal hypergraph

transversals.

Definition 5. A hypergraph is a pair H = (X,F) where X is a finite set and
F is a collection of subsets of X. A set Y ⊆ X is a hypergraph transversal in H
if and only if Y ∩ Z ̸= ∅ for all Z ∈ F . A hypergraph transversal Y is minimal
if and only if no proper subset of it is a hypergraph transversal.

All partial minimal hypergraph transversals can be generated by a level-
wise search because each subset of a partial minimal hypergraph transversal is
a partial minimal hypergraph transversal. Furthermore, each partial minimal

transversal in the hypergraph
(
T,

{
TP
j

}
j∈P

)
selects a different set of papers

than any of its sub- or superset.

Theorem 2. Let Z ′ ( Z ( Y where Y is a minimal hypergraph transversal.
Then PD

Z ̸= PD
Z′ .

Proof. Let Y be a minimal hypergraph transversal and assume that Z ′ ∩Z hits
all same sets in the hypergraph as Z for some Z ′ ( Z ( Y . Then Y \ (Z \ Z ′)
hits the same set in the hypergraph as Y , which is in contradiction with the
assumption that Y is a minimal hypergraph transversal.

The all minimal hypergraph transversals could be enumerate also by discov-
ering all free itemsets in the transaction database representing the complement
of the bipartite graph (P, T ;E2) where topics are items and papers transactions.
(Free itemsets are itemsets that have strictly higher frequency in the data than
any of their strict subsets. Free frequent itemsets can be discovered using the
level-wise search [7].) More specifically, the complements of the free itemsets in
such data correspond to the minimal transversals in a hypergraph H = (X,F):∪

{Z ∈ F : Z ∩ Y ̸= ∅} = X \
∩

{X \ Z ∈ F : Z ∩ Y ̸= ∅},

i.e., that the union of sets Z ∈ F intersecting with the set Y is the complement
of the intersection of the sets X \ Z ∈ F such that Z intersects with Y .

In the disjunctive interpretation of the Authority problem we impose an
additional constraint for the topic sets to make the obtained topic sets more
meaningful. Namely, we require that for a topic set to be relevant, there must be
at least one author that has written papers about all of the topics. This further
prunes the search space and eases the candidate generation in the level-wise
solution.
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The ProgramCommittee problem For the exact solution to the Program-
Committee problem we use the MIP formulation sketched in Section 4.2. That
is, we look for a set of m authors such that for each topic in a given set of topics
Z there are at least l selected authors with a paper on this topic. Among such
sets of authors, we aim to maximize the number of papers of the authors on the
topics in Z. To simplify considerations, we assume, without loss of generality,
that the topic set T of the given three-level graph G = (A,P, T ;E1, E2) is equal
to Z and that all authors and papers are connected to the topics.

Although the ProgramCommittee problem can be solved exactly using
mixed integer programming techniques, one can also obtain approximate solu-
tions in polynomial time in the size of G. The ProgramCommittee problem
can be decomposed into the following subproblems.

First, for any solution to the ProgramCommittee problem we require that
for each topic in Z there are at least l selected authors with papers about the
topic. This problem is known as the minimum set multicover problem [52]:

Problem 1 (Minimum set multicover). Given a collection C of subsets of S and
a positive integer l, find the collection C′ ⊆ C of the smallest cardinality such
that every element in S is contained in at least l sets in C′.

The problem is NP-hard and polynomial-time inapproximable within a factor
(1 − ϵ) log |S| for all ϵ > 0, unless NP ⊆ Dtime(nlog log n) [23]. However, it
can be approximated in polynomial time within a factor H|S| where H|S| =
1 + 1/2 + . . . + 1/|S| ≤ 1 + ln |S| [52]. Hence, if there is a program committee
of size at most m covering each topic in Z at least l times, we can find such a
program committee of size at most mH|Z|.

Second, we want to maximize the number of papers (on the given set Z
of topics) by the selected committee. This problem is known as the maximum
coverage problem [23]:

Problem 2 (Maximum coverage). Given a collection C of subsets of a finite set
S and a positive integer k, find the collection C′ ⊆ C covering as many elements
in S as possible.

The problem NP-hard and polynomial-time inapproximable within the factor
(1 − 1/e) − ϵ for any ϵ > 0, unless NP = P. However, the fraction of covered
elements in S by at most k sets in C can be approximated in polynomial time
within a factor 1−1/e by a greedy algorithm [23]. Hence, we can find a program
committee that has at least 1− 1/e times the number of papers as the program
committee of the same size with the largest number of papers.

Neither of these solutions is sufficient for our purposes. The minimum set
multicover solution ensures that each topic has sufficient number of experts in
the program committee, but does not provide any guarantees on the number of
papers of the program committee. The maximum coverage solution maximizes
the number of papers of the program committee, but does not ensure that each
topic has any program committee members.

By combining the approximation algorithms for the minimum set multi-
cover and maximum coverage problems, we can obtain an (1 + H|Z|, 1 − 1/e)-
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approximation algorithm for the ProgramCommittee problem, i.e., we can
derive an algorithm such that the size of the program committee is at most
(1 +H|Z|m) and the number of the papers of the program committee is within
a factor 1− 1/e of the program committee of size m with the largest number of
papers. The algorithm is as follows:

1. Select a set A′ ⊆ A of at most mH|Z| authors in such a way that each topic
in Z is covered by at least l authors (using the approximation algorithm for
the minimum set multicover problem). Stop if such a set does not exist.

2. Select a set A′′ ⊆ A of m authors that maximizes the coverage of the papers
(using the approximation algorithm for the maximum coverage).

3. Output A′ ∪A′′.

In other words, first we select at most mH|Z| member to the program committee
in such a way that each topic of the conference is covered by sufficiently many
program committee members and then we select authors that cover large fraction
of papers on some of the topics of the conference, regardless of which particular
topic they have been publishing of.

Clearly, |A′ ∪ A′′| ≤ (1 +H|Z|)m and the number of papers covered by the
sets in A′ ∪ A′′ is within a factor 1 − 1/e from the largest number of papers
covered by any subset of A of cardinality m.

The algorithm can be improved in practice in several ways. For example,
we might not need all sets in A to achieve the factor 1 − 1/e approximation
of the covering the papers with m authors. We can compute the number h of
papers needed to be covered to achieve the approximation factor 1− 1/e by the
approximation algorithm for the maximum coverage problem. Let the number of
paper covered by A′ be h′. Then we need to cover only h′′ = h−h′ papers more.
This can be done by applying the greedy set cover algorithm to the instance that
does not contain the papers covered by the authors in A′. The set of authors
obtained by this approach is at most as large as A′ ∪ A′′. The solution can be
improved also by observing that for each covered paper only one author is needed
and each topic has to be covered by only l authors. Hence, we can remove one
by one the authors from A′ ∪A′′ as far as these constraints are not violated.

The Classification problem The classification problem is equal to learning
monomials and clauses of explicit features. These tasks correspond to conjunctive
and disjunctive interpretations of the Classification problem, respectively.

Conjunctive interpretation Finding the largest (or any) set Fmax ⊆ T corre-
sponding to examples E ⊆ P of a certain class c ∈ A can be easily obtained by
taking all nodes in T that contain all examples of class c, if such a subset exists.
(Essentially the same algorithm is well-known also in PAC-learning [3].)

The problem becomes more interesting if we set g(GS) = |S| and we require
the solution S that minimizes g. The problem of obtaining the smallest set
Fmin ⊆ T capturing all examples of class c and no other examples is known to
be NP-hard [3]. The problem can be recast as a minimum set cover problem as
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follows. Let Ēc ⊆ P denote the set of examples of all classes other than c. Also
let Fc ⊆ T denote the set of features linking to the examples of the class c. Now
consider the bipartite graph B = (Ēc, Fc;E), where (p, t) ∈ E if (p, t) ̸∈ E2.
For any feasible solution S for the classification problem, the features in S must
cover the elements in Ēc in the bipartite graph B. That is, for each e ∈ Ēc there
exists f ∈ S, such that (e, f) ∈ E, that is, (e, f) ̸∈ E2. Otherwise, there exists
an example e ∈ Ēc such that for all for all f ∈ S, (e, f) ∈ E2, and therefore,
e is included in the induced subgraph GS , thus violating the Classification
property. Finding the minimum cover for the elements in Ēc in the bipartite
graph B is an NP-complete problem. However, it can be approximated within
a factor 1 + ln |Fc| by the standard greedy procedure that selects each time the
feature that covers the most elements [14]. (This algorithm is also well-known in
the computational learning theory [27].)

Disjunctive interpretation First note that it is straightforward to find the largest
set of features, which induces a subgraph that contains only examples of the
target class c. This task can be performed by simply taking all features that
disagree with all examples of other classes. Once we have this largest set, then
one can find the smallest set, by selecting the minimum subset of sets that covers
all examples of the class c. This is again an instance of the set cover problem,
and the greedy algorithm [14] can be used to obtain the best approximation
factor (logarithmic).

5 Experiments

We now describe our experiments with real data. We used information available
on the Web to construct two real datasets with three-level structure. For the
datasets we used we found it more interesting to perform experiments with
the Authority problem and the ProgramCommittee problem. Many other
possibilities of real datasets with three-level graph structure exist, and depending
on the dataset different problems might be of interest.

5.1 Datasets

Bibliography datasets We crawled the ACM digital library website10 and we
extracted information about two publication forums: Journal of ACM (JACM)
and ACM Symposium on Theory of Computing (STOC). For each published
paper we obtained the list of authors (attribute A), the title (attribute P ), and
the list of topics (attribute T ). For topics we arbitrarily selected to use the second
level of the “Index Terms” hierarchy of the ACM classification. Examples of
topics include “analysis of algorithms and problem complexity”, “programming
languages”, “discrete mathematics”, and “numerical analysis”. In total, in the
JACM dataset we have 2 112 authors, 2 321 papers, and 56 topics. In the STOC
dataset we have 1 404 authors, 1 790 papers, and 48 topics.

10 http://portal.acm.org/dl
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IMDB dataset We extract the IMDB11 actors-movies-genres dataset as fol-
lows. First we prune movies made for TV and video, TV serials, non-English-
speaking movies and movies for which there is no genre. This defines a set of
“valid” movies. For each actor we find all the valid movies in which he appears,
and we enter an entry in the actor-movie relation if the actor appears in one of
the top 5 positions of the credits, thus pruning away secondary roles and extras.
This defines the actor-movie relation. For each movie in this relation we find the
set of genres it is associated with, obtaining the movies-genres relation. In total,
there are 45 342 actors, 71 912 movies and 21 genres.

5.2 Problems

The Authority problem For the Authority problem, we run the level-wise
algorithms described in Section 4.3 on the two bibliography datasets and the
IMDB dataset. For compactness, whatever we say about authors, papers, and
topics, applies also to actors, movies, and genres, respectively. For each author a
and for each combination of topics S that a has written a paper about (under the
disjunctive or the conjunctive interpretation), we compute the rank of author a
for S. If an author a has written at least one paper on each topic of S, and a
is ranked first in S, we say that a is an authority on S. Given an author a, we
define the collection of topic sets A(a) = {S : a is authority for S}, and A0(a)
the collection of minimal sets of A(a), that is, A0(a) = {S : S ∈ A}, and there
is no S′ ∈ A such that S′ ( S}. Notice that for authors who are not authorities,
the collections A(a) and A0(a) are empty.

A few statistics computed for the STOC dataset are shown in Figure 2. In the
first two plots we show the distribution of the number of papers, and the number
of topics, per author. One sees that the distribution of the number of papers is
very skewed, while the number of topics has a mode at 3. We also look at the
collections A(a) and A0(a). If the size of the collection A0(a) is large it means
that author a has many interests, while if the size of A0(a) is small it means
that author a is very focused on few topics. Similarly, the average size of sets
inside A0(a) indicates to what degree an author prefers to work on combination
of topics, or on single-topic core areas. In the last two plots of Figure 2 we show
the distribution of the size of the collection A(a) and the scatter plot of the
average set size in A(a) vs. the average set size in A0(a).

The author with the most papers in STOC is Wigderson with 36 papers.
The values of the size of A0 and the average set size in A0 for Wigderson is 37
and 2.8, respectively, indicating that he tends to work in many different combi-
nations of topics. On the other hand, Tarjan who is 4th in the overall ranking
with 25 papers, has corresponding values 2 and 1.5. That is, he is very focused
on two combinations of topics: “data structures” and (“discrete mathematics”,
“artificial intelligence”). These indicative results match our intuitions about the
authors.

11 http://www.imdb.com/



24 Afrati et al.

We observed similar trends when we searched for authorities in the JACM
and IMDB datasets, and we omit the results to avoid repetition. As a small
example, in the IMDB dataset, we observed that Schwarzenegger is an authority
of the combinations (“action”, “fantasy”) and (“action”, “sci-fi”) but he is not
an authority in any of those single genres.
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Fig. 2. A few statistics collected on the results from the Authority problem on the
STOC dataset.

The ProgramCommittee problem The task in this experiment is to select
program committee members for a subset of topics (potential conference). In our
experiment, the only information used is our three-level bibliography dataset; in
real life many more considerations are taken into account. Here we give two ex-
amples of selecting program committee members for two fictional conferences.
For the first conference, which we called Logic-AI, we used as seed the topics
“mathematical logic and formal languages”, “artificial intelligence”, “models and
principles”, and “logics and meanings of programs”. For the second conference,
which we called Algorithms-complexity, we used as seed the topics “discrete
mathematics”, “analysis of algorithms and problem complexity”, “computation
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by abstract devices”, and “data structures”. In both cases we requested a com-
mittee of 12 members requiring topics to be covered by at least 4 of the PC
members. The objective was to maximize the total number of papers written by
the PC members. The committee members for the Logic-AI conference, ordered
by their number of papers, were

Vardi, Raz, Vazirani, Blum, Kearns, Kilian,
Beame, Goldreich, Kushilevitz, Bellare,
Warmuth, and Smith.

The committee for the Algorithms-Complexity conference was

Wigderson, Naor, Tarjan, Leighton, Nisan,
Raghavan, Yannakakis, Feige, Awerbuch, Galil,
Yao, and Kosaraju.

In both cases, all constraints are satisfied and we observe that the commit-
tees are composed by well-known authorities in the fields. The running time for
solving the IP in both cases is less than 1 second on a 3GHz Pentium 4 with
1GB memory, making the method very attractive to even larger datasets – for
example, the corresponding IP for the IMDB dataset (containing hundreds of
thousands variables in the constraints) is solved in 4min.

6 Conclusions

In this paper we introduce an approach to multi-relational data mining. The
main idea is to find selectors that define projections on the data such that in-
teresting patterns occur. We focus on datasets that consist of two relations that
are connected into a chain. Patterns in this setting are expressed as graph prop-
erties. We show that many of the existing data mining problems can be cast as
special cases of our framework, and we define a number of interesting novel data
mining problems. We provide a characterization of properties for which one can
apply level-wise methods. Additionally, we give an integer programming formu-
lation of many interesting properties that allow us to solve the corresponding
problems efficiently for medium-size instances of datasets in practice. In Table 1,
the data mining problems we define in our framework are listed together with
the property that defines them and the algorithmic tools we propose for their
solution. Finally, we report experiments on two real datasets that demonstrate
the benefits of our approach.

The current results are promising, but there are still many interesting ques-
tions on mining chains of relations. For example, the algorithmics of answering
data mining queries on three-level graphs has many open problems. Level-wise
search and other pattern discovery techniques provide efficient means to enumer-
ate all feasible solutions for monotone and anti-monotone properties. However,
the pattern discovery techniques are not limited to monotone and anti-monotone
properties: it is sufficient that there is a relaxation of the property that is mono-
tone or anti-monotone. Hence, finding monotone and anti-monotone relaxations
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Problem Property of GS Algorithmic tools

Authority(c) * c has max degree in GS non-monotone, IP

BestRank(c) DS
c ≥ DR

c non-monotone

Clique BS bipartite clique level-wise, IP

Frequency(f, s) BS contains bipartite non-monotone, IP
clique Ks,f |PS | association-rule mining

Majority every a ∈ AS has non-monotone, IP
|Ea

1,S | ≥ |Ea
1 \ Ea

1,S |
Popularity(b) |AS | ≥ b level-wise, IP

Impact(b) for all a ∈ AS , D
S
a ≥ b non-monotone, IP

AbsoluteImpact(b) for all a ∈ AS , Dc ≥ b level-wise, IP

CollaborationClique for every a, b ∈ AS , non-monotone, IP
at least one p ∈ PS ,
s.t. (a, p) ∈ E1,S

and (b, p) ∈ E1,S

Classification(c) PS = {p ∈ P : (c, p) ∈ E1} non-monotone
and AS = {c}

ProgramCommittee(Z, l,m) * AS = Z , |S| = m, IP
and every t ∈ Z
is connected to at
least l nodes in S

Table 1. Summary of problems and proposed algorithmic tools. Input is
G = (A,P, T ;E1, E2). Given a selector set S ⊆ T we have defined GS =
(AS , PS , S;E1,S , E2,S), and BS = (AS , PS ;E1,S). By S we denote the selector set
which is a solution and by R any selector set. DS

c (DR
c resp.) is the degree of c in GS

(GR resp.) and Dc is the degree of c in G. The asterisk means that experiments are
run on variants of these problems and also that these problems are discussed in more
detail in this paper.



Mining chains of relations 27

of the properties that are not monotone nor anti-monotone themselves is a poten-
tial direction of further research. Although many data mining queries on three-
level graphs can be answered quite efficiently using off-the-shelf MILP solvers
in practice for instances of moderate size, more sophisticated optimization tech-
niques for particular mining queries, both in theory and in practice. Answering
to multiple data mining queries on three-level graphs and updating the query
answers when the graphs are interesting questions with practical relevance in
data mining systems for chains of relations.

We have demonstrated the use of the framework using two datasets, but
further experimental studies with the framework solving large-scale real-world
data mining tasks would be of interest. We have done some preliminary studies
on some biological datasets using the basic three-level framework. In real-world
applications it would often be useful to extend the basic three-level graph frame-
work in order to the actual data better into account. Extending the basic model
to weighted edges, various interpretations, and more complex schemas seem a
promising and relevant future direction in practice. There is a trade-off between
the expressivity of the framework and the computational feasibility of the data
mining queries. To cope with complex data, it would be very useful to have semi-
automatic techniques to discover simple views to complex database schemas that
capture relevant mining queries in our framework, in addition to generalizing our
query answering techniques to more complex database schemas.
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