
Recommending Packages to Groups
Shuyao Qi

University of Hong Kong
qisy@connect.hku.hk

Nikos Mamoulis
University of Ioannina

nikos@cs.uoi.gr

Evaggelia Pitoura
University of Ioannina

pitoura@cs.uoi.gr

Panayiotis Tsaparas
University of Ioannina

tsap@cs.uoi.gr

Abstract—The success of recommender systems has made them
the focus of a massive research effort in both industry and
academia. Recent work has generalized recommendations to
suggest packages of items to single users, or single items to
groups of users. However, to the best of our knowledge, the
interesting problem of recommending a package to a group of
users (P2G) has not been studied to date. This is a problem with
several practical applications, such as recommending vacation
packages to tourist groups, entertainment packages to groups of
friends, or sets of courses to groups of students. In this paper,
we formulate the P2G problem, and we propose probabilistic
models that capture the preference of a group towards a package,
incorporating factors such as user impact and package viability.
We also investigate the issue of recommendation fairness. This
is a novel consideration that arises in our setting, where we
require that no user is consistently slighted by the item selection
in the package. We present aggregation algorithms for finding the
best packages and compare our suggested models with baseline
approaches stemming from previous work. The results show that
our models find packages of high quality which consider all
special requirements of P2G recommendation.

I. INTRODUCTION

Consider a group of people who would like to dine at
a restaurant and then have drinks at a nearby bar. Given
the potentially numerous options, the group would favor a
recommendation of a (restaurant, bar) pair, which is consistent
with the preferences of its members and does not make a
member unhappy with respect to the rest of the group.

Despite the vast amount of work on recommender systems,
to the best of our knowledge, this package-to-group (P2G) rec-
ommendation problem has not been studied before, although
there is work on recommending a package of items to a single
user (e.g., [3], [20], [7]) and recommending a single item to
a group of users (e.g., [2], [14]). In addition, there are studies
on helping a group of users to select a bundle of items (e.g.,
[17], [18]). However, they assume that the users are given a
set of items and together they decide the items to select, which
is a different problem from P2G recommendation.

Specifically, given a group of users U , the goal of P2G
recommendation is to suggest one or more packages of items
to U , which are suitable for U ’s members. This problem
has several applications beyond the night-out scenario. For
example: (i) A tour operator wants to create a package for a
group of tourists, consisting of hotels, restaurants, attractions
and activities; (ii) An academic institution that organizes a
summer school wants to create a curriculum that meets the
interests of a group of students; (iii) A movie channel wants

to package together a set of movies to offer to a group of
movie-goers, or a large family.

In line with previous work on package recommendation
[19], [12], we assume the existence of constraints limiting
possible item combinations that can be included in a package.
Constraints may be either hard or soft. Hard constraints should
definitely be satisfied by a set of items in order for it to
form a valid package. Soft constraints express desirable, but
not necessary properties for an item set. In terms of hard
constraints, without loss of generality, we focus on the special,
but practical case, where the items are divided into categories,
and a valid package is formed by selecting one item from each
category. For instance, in the night-out example, the group may
be interested in a package which includes a restaurant and a
bar (i.e., one item from category “restaurants” and one item
from category “bars”); the tourist group visit a city and they
are interested in visiting a museum, dining at a restaurant, and
finally resting at a good hotel; the summer school may consist
of courses covering different areas (e.g., Theory, Systems); the
movie-goers may want to watch a thriller and a comedy. The
soft constraints we consider in the paper are defined based on
the relationships between the items in a package. For example,
in a venue-package recommendation problem, a set of places
far from each other is less likely to be selected by a group,
compared to a package of nearby places. In this case, we say
that the package is less viable. The assumption of constraints
is not compulsory and is independent of our proposals, as we
show in Sections III-D and VI-E. For instance, the category
constraint can be easily replaced with selecting a number of
items regardless of their categories, by virtually assuming that
all items belong to a single large category.

Based on the above, we present two probabilistic models for
P2G recommendation: one that first computes the probabilities
that the group of users likes individual items, before deriving
the probability that the group would select a package of items,
and one which first forms item packages that are favored
by the individual group members before identifying those
that have high likelihood to be selected by the group. Our
experimental results show that the first model is superior
because it seamlessly takes into consideration all special
factors of P2G recommendation (e.g., user impact, package
viability). In addition, we design and implement algorithms
for the models on a database of individual user ratings on
items. The algorithms efficiently combine items into candidate
packages for recommendation, while avoiding the exploration
of the entire search space with the help of pruning bounds.

A unique and novel characteristic of P2G recommendation
is that it raises the issue of fairness. User groups may be
heterogeneous, consisting of people with potentially dissimilar
tastes. Thus, for a package I that is overall good for the group
(i.e., the average group member preferences on its items are
high), there could be one or more members that do not like
any of the items in I; these users would be frustrated if I is
selected by the group. In this case, we consider the package
to be unfair. On the other hand, if each group member finds
at least one item in the package that she likes, we consider
such a package to be fair. We formalize fairness for P2G
recommendation, inspired by the corresponding concept in fair
division of resources [16] and adapt our models accordingly.
Note that our fairness definition is very different from that in
group decision making [17], where it is assumed that the group
would do item selection for multiple times and to be fair, the
unsatisfied users will have higher priority in the next decision.
On the contrary, the fairness problem in P2G recommendation
is one time and defined on item basis.

Our contributions in this paper are the following: (i) This
is the first work that formulates and studies P2G recommen-
dation. (ii) We propose probabilistic models that incorporate
factors such as user impact, package viability, and fairness.
(iii) We design efficient P2G recommendation algorithms that
scale for large data. In the rest of the paper, we first formally
define P2G recommendation in Section II. Section III presents
our two probabilistic models and introduces package viability.
In Section IV, we define fairness and show how it can be
integrated into the models. Section V presents algorithms that
efficiently implement the models. Section VI presents our
experimental evaluation. Related work is reviewed in Section
VII and the paper concludes in Section VIII.

II. PROBLEM STATEMENT

We assume a collection I of items and a collection U of
users, who express their preferences to items from I through
ratings. A rating r(u, i) of user u for item i may be explicit,
i.e., u has used and evaluated item i, or implicit, i.e., predicted
by a classic recommender (e.g., collaborative filtering [15]).

Given a group (set) U of users in U , we consider recom-
mending to U a package (set) I of items in I. Recommended
packages must be valid, i.e., have specific properties. In this
paper, we study the case where items belong to categories
taken from a set C (e.g., C = {restaurant, bar, theater, mu-
seum}). Without loss of generality, we assume that each i 2 I
belongs to a single category c

i

2 C. The group U inputs
a query specifying the set of categories C ✓ C where the
items of the package should be drawn from (e.g., C = {bar,
restaurant}). For the ease of discussion, we assume that each
item belongs to only one category and a feasible package must
contain one item per category (e.g., the users want to visit one
bar and one restaurant). More general problem instances will
be elaborated in Section III-D.

Formally, a P2G recommendation task takes as input a
group of users U ✓ U , a set of ratings, and a set of user-
specified item categories C ✓ C, and recommends to U the k

most preferable among all feasible packages. We now present
generic probabilistic models which define the preference of a
group U over a package I .

III. PROBABILISTIC MODELS

Given a target group U and a query input by U specifying
category set C, the objective is to derive the probability
distribution Pr(I|U,C) of the group U to select the package I

over C. The probability Pr(I|U,C) obviously depends on the
preference of each user u 2 U for the individual items i 2 I .
Given a u 2 U and an item i from a specific category c

i

2 C,
the probability of u independently selecting i over other items
in c

i

can be defined as

Pr(i|u, c
i

) =
r(u, i)P

i

02ci
r(u, i0)

(1)

Here r(u, i) is u’s (explicit or implicit) rating on i. Note that
a Pr(i|u, c

i

) is defined for every category c

i

. Intuitively, u is
more likely to accept a recommendation i 2 c

i

with higher
r(u, i) compared to r(u, i0) for other items i

0 2 c

i

. Next,
we present two models for computing Pr(I|U,C) based on
Pr(i|u, c

i

) and other factors, such as the influence between
users in the group, and the likelihood that a set of items are
appealing together as a package.

A. Group Rating (GR) Model

In the group rating (GR) model, we first define the proba-
bility that the group U will select an item i. Then we combine
the probabilities of individual items, to derive the likelihood
of a package.

Item to Group (I2G) Probability. Given group U and a
category c

i

, the probability of U selecting i 2 c

i

is Pr(i|U, c
i

).
Here Pr(i|U,C) = Pr(i|U, c

i

), that is, the probability of item
i being selected depends only on its own category and not
in the full set of categories C. The above probability can be
computed based solely on the probabilities of the users in U

selecting the item (e.g., see [5]). In our model we adopt the
approach in [10], [21], where it is assumed that different group
members may have different impact on the group’s decision.
In simple words, one or more members of the group, who
could be considered as experts on a category, may influence
the group in selecting an item in this category. For example,
the preference of a group member who is a “foodie” will count
more in selecting a specific restaurant.

Following this intuition, we model the group selection
as a stochastic process where a user u is first selected as
the representative of the group with probability Pr(u|U, c

i

),
and then the group selects an item according to u’s item
distribution. Therefore, we have:

Pr(i|U, c
i

) =
X

u2U

Pr(u|U, c
i

) Pr(i|u, c
i

) (2)

In this work, we assume that the probability Pr(u|U, c
i

) of
a user u 2 U is proportional to the activity of the user in
category c

i

, relative to the other members in the group. This
captures the relative expertise of the user in the group for

this category, which determines her influence in the group.
Specifically, let ⌘

u,ci denote the number of explicit ratings
user u has given for items in category c

i

. We have that

Pr(u|U, c
i

) =
⌘

u,ciP
u

02U

⌘

u

0
,ci

Note that Equation (2) is general enough to model differ-
ent scenarios, depending on the definition of the probability
Pr(u|U, c

i

). For example, we can set Pr(u|U, c
i

) to the
uniform distribution, where all users influence equally the final
selection. Or, we may assume that user influence is indepen-
dent of the category as Pr(u|U). In fact, we also considered
an approach similar to that in [21], where we used topic-
modeling to extract the user-topic and item-topic distributions,
and then defined the user influence probability based on the
user-item distribution. Experimentally, this approach gave us
similar recommendation results on our test data, because the
categorization of items is correlated to their underlying topics.

Package to Group (P2G) Probability. To derive the
probability Pr(I|U,C) of the package I to be selected by the
group U , for the moment we assume that items are selected
independently. Therefore, given Pr(i|U, c

i

), we have:

Pr(I|U,C) =
Y

i2I

Pr(i|U, c
i

) (3)

B. User Package (UP) Model

The GR model assumes that items are selected indepen-
dently, according to the preferences of a representative user,
who is chosen according to her expertise and influence in
the item category. The user package (UP) model reverses the
above generative process. In UP, the group first chooses a
representative user u with probability Pr(u|U,C). The repre-
sentative user will decide for the whole package. We assume
that the representative user selects each item independently for
now, according to her own preferences. Formally:

Pr(I|U,C) =
X

u2U

Pr(u|U,C) Pr(I|u,C)

=
X

u2U

(
Pr(u|U,C)

Y

i2I

Pr(i|u, c
i

)

)
(4)

Accordingly, once the group has selected a representative u,
the selection probability for the package depends only on u,
i.e. Pr(I|u, U) = Pr(I|u). Also, Pr(i|u,C) = Pr(i|u, c

i

)
similar to GR. We can again adjust the probability Pr(u|U,C)
to model different scenarios. Different from GR, however,
UP considers the user impact on packages instead of items.
Therefore, Pr(u|U,C) is defined based on the influence of u
on all target categories C collectively.

Pr(u|U,C) =

P
c2C

⌘

u,cP
u

02U

P
c2C

⌘

u

0
,c

where as before ⌘

u,c

is the user u’s overall influence on
category c.

Essentially, the selection is a two-step process: The package
to user (P2U) phase computes the probability Pr(I|u,C) that

user u selects package I , for all users in U ; the package to
group (P2G) phase computes the overall preference probability
Pr(I|U,C) of the group by taking the combination of the user
preferences weighted by the user impact probabilities.

Note that the UP model gives more power to the user se-
lected as representative, since the package selection disregards
other group members. As a result, GR and UP may produce
very different package selection probabilities, even in the case
of uniform user impact probabilities. Consider the example
in Table I(a), where a group of two users U = {u

1

, u

2

}
wants to select a package over two categories C = {X,Y },
each having two items, (x

1

, x

2

) and (y
1

, y

2

) respectively, with
the preference probabilities shown in the table. Assume that
Pr(u

1

|U) = Pr(u
2

|U) = 1/2, in all categories. Table I(b)
shows the probabilities of GR and UP for each possible
package.

u1 u2

X

x1 1 0
x2 0 1

Y

y1 1 0
y2 0 1

Packages GR UP
I1(x1, y1) 1/4 1/2

I2(x1, y2) 1/4 0
I3(x2, y1) 1/4 0
I4(x2, y2) 1/4 1/2

(a) Pr(i|u, ci) (b) Pr(I|U,C)

TABLE I
COMPARISON OF GR AND UP

The example shows that, for the UP model, a package that
no user likes as a whole (I

2

and I

3

) will have very low
(zero) probability, while the packages with high probability
are actually favored by a single user (I

1

by u

1

and I

4

by
u

2

). On the other hand, in the GR model, a package becomes
acceptable as long as there is at least one user that likes
some item in the package (e.g., u

1

likes x

1

and u

2

likes y

2

),
balancing the preferences of the users better.

Overall, the UP model has the following drawbacks: (1)
It assumes each user selects the package as a whole, so that
the users’ impact on different categories cannot be evaluated;
(2) For the same reason, a user will never select a low rated
item by her, that is, a user will never compromise for the sake
of the group; (3) The top packages for different users may
not overlap, especially for dissimilar users, leaving the group
dissatisfied as a whole. We therefore expect UP to produce
worse packages than GR in practice.

C. Package Viability
So far, we have considered only the preferences of the

users over individual items (Equation (3) and section III-B),
assuming independence between items. However, in real-life,
some items are more likely to be selected together than others.
For example, a restaurant and a movie theater have higher
chances to form a preferable package if they are spatially close.
Motivated by this fact, we define the probability Pr(V |I) that
a package I is viable as a whole. One possible evaluation of
Pr(V |I) is to consider the pairwise relevance between items
in I .1 Here, V denotes a random variable, which is 1 if the

1In general, for a set of n items, the viability can be defined by aggregating
their pairwise relevance or by defining an n-ary function. In this paper,
for simplicity and due to the application domain of our case studies in the
experiments, we follow the first approach.

package is viable and 0 otherwise. The relevance between two
items can be derived by a function on their features (e.g.,
their spatial distance), or by recorded statistics (e.g., joint
probability). Take the case of recommending a package of
places as an example. If we regard the relevance between any
pair of items to be inversely proportional to their distance
(measured by a function dist(.)), we can define Pr(V |I) as:

Pr(V |I) / e

�maxi,i02I{dist(i,i0)} (5)

Intuitively, if the maximum distance between any pair of places
in a package is large, the package has low probability to be
appealing. There can be other measurements of Pr(V |I) as
well. For example, we can consider the visting order of the
items in I , or relate the viability to traveling time cost instead
of distance between items; we can also define Pr(V |I) based
on the historical probability where items in I are selected
together [22]. Our models are independent of the specific
definition of Pr(V |I) and for ease of discussion, we use
Equation (5) as an exemplary viability definition in this paper.

Let us now formalize the probability that a group U will
select a package I and the package is viable. Assuming that
viability depends only on the package, we have:

Pr(I, V |U,C) = Pr(V |I, U, C) Pr(I|U,C)

= Pr(V |I) Pr(I|U,C) (6)

In the rest of the paper, both the GR and UP models are
augmented with package viability according to Section III-C.

D. Generality

So far we have assumed that (1) each item i belongs to a
single category and (2) only one item is recommended from
each category. In a real-life scenario, these assumptions may
be too restrictive. Our models can be easily adapted to apply
to more general cases.

Firstly, suppose that an item may belong to multiple cate-
gories, e.g., a place is regarded both a restaurant and a bar.
If the group U accepts a duplicate item serving different
purposes, then the models do not require any adaptation;
an item may appear in the recommended package multiple
times, from different categories. If, on the contrary, U would
not accept any duplicate item in a package, the models can
still work with a minor adaptation that filters out packages
containing duplicate items. For example, given a package I ,
its viability probability Pr(V |I) is set to 0 if an item appears
more than once in I .

Next, suppose that the group U is looking for multiple
items in one category, or simply looking for items without
any category constraint. Without loss of generality, we assume
that U wants to find n items in category c

i

(or C if U sets
no category constraints). In this case, we virtually replicate
c

i

n times and apply the same models on categories set
C

0 = {c0
i1

, ..., c

0
in

}. As a result, n items will be selected
from category c

i

. However, since it becomes possible to
select an item from c

i

multiple times, the aforementioned
filtering method should be applied to avoid selecting duplicate

items. The above strategy also extends to the generic case
of recommending arbitrary number (0 to |c

i

|) of items from
multiple categories. In Section VI-E, we show experimentally
the performance of our models without category constraint.

IV. FAIRNESS IN RECOMMENDATIONS

Both GR and UP find the top packages without considering
which users are the most or least happy with the items in the
packages. For a selected package I , it is possible that a given
user u 2 U does not like any of the items in I , or that u

is the least satisfied user in U for all items in the package.
Therefore, although U as a whole may like package I , the
package selection is not fair to user u. In a real-life scenario,
where the users in the group care for each other’s preferences,
we should recommend a package which is both attractive and
fair to the majority of the group members.

For a user u and a package I , we say that I is fair to u, if
there exists at least one item i 2 I , such that u’s rating on i is
ranked in the top-�% of u’s ratings on all items. The rationale
is that the existence of at least one item in the package for
which u has high rating would make the user tolerant to the
existence of other items that she may not prefer, considering
that there are other members in the group who may like these
items. Given the group U and a package I , we denote by
U

f

✓ U the users to whom I is fair. A fairness measure
fair(U, I) is accordingly defined:

fair(U, I) =
|U

f

|
|U | , (7)

meaning that the more users I is fair to, the better I is for U .
Lastly, we define the fairness-aware score of a package as

score

fair

(U, I) = Pr(I, V |U,C) · fair(U, I), (8)

i.e., we look for packages that are both highly preferable and
fair. Note that the above equation is applicable to both GR and
UP models. It scores a package I based on both its relevance
to the group members U (according to GR or UP), and its
fairness to U . In the rest of the paper, we denote the GR
and UP package selection models augmented with fairness as
GR-Fair and UP-Fair, respectively.

Fairness is inspired by the classic fair division problem in
Economics [16]. Fair division splits one or more heteroge-
neous resources to a number of people who have different
preferences to different parts of the resources, such that every-
body believes that they have a fair share. Our P2G selection
problem is reminiscent to fair division, because every user
in the group has different preferences in the items. However,
in P2G, the group members share the items in the suggested
package, instead of the items being divided.

V. ALGORITHMS

Given a group U of users in U , a set of categories C, a
database of items I and the user ratings over the items, our
goal is to find the top-k packages that maximize score(U, I)
according to Equation (8), following either model GR or UP.
An efficient implementation is critical because the number of

candidate packages is exponential to the number of categories.
We now present efficient branch-and-bound algorithms for
ranking packages based on GR and UP.

A. Algorithms for GR

Recall that GR includes two phases: the I2G phase which
finds in each category the probability Pr(i|U, c

i

) of each item
being selected, and the P2G phase which combines items into
packages. The final scoring function (Equation (8)) considers
three factors in the P2G phase, (1) the group preference
Pr(i|U, c

i

) (Equation (2)), (2) the package viability Pr(V |I)
(Section III-C), and (3) fairness (Equation (8)). As a result,
combining the best items found in the I2G phase into packages
does not necessarily lead to the best packages.

A baseline algorithm (GR-BA) would first calculate the I2G
probability for each item relevant to U , then consider each
possible package by calculating score(U, I) and finally select
the top-k packages accordingly. Once there are at least k pack-
age candidates, a lower bound ✓ of the current kth maximum
probability can be used to prune any package I for which
score(U, I) ✓. In addition, we can prune partial packages,
which contain items only from some categories, before they
are expanded to complete packages, if even by including into
them the best possible items for each remaining category, their
scores cannot exceed ✓. Even with these optimizations, GR-
BA does not give priority to the most preferred items by the
users and thus considers most of the possible packages.

As an alternative to GR-BA, we propose a 2-level incremen-
tal algorithm GR-INC, which prioritizes items and packages
with respect to their potential probability of being selected and
computes the I2G and P2G phases concurrently. In particular,
the I2G phase is implemented as an (incremental) top-k
selection query [4], which generates for each category a list of
its items in decreasing probability order of being selected by
the group U , according to Equation (2). The I2G phase takes
as input |U | sorted lists of item ratings, one per user in U ; each
list includes only the items in one of the input categories c

i

.
The P2G phase is implemented as an (incremental) top-k join
query [6] where viability is considered in the aggregation score
of the joined item combinations. P2G takes as input the items
output by the I2G phase on each category and combines them.
Algorithm 1 is a pseudo code of GR-INC, using Procedure 2
as a module, which implements the I2G phase. Figure 1
illustrates an example where there is a group U with three
users u

1

-u
3

looking for recommendations from categories
bar c

b

(b
1

, ..., b

5

) and restaurant c

r

(r
1

, ..., r

5

), assuming that
a package I(b

i

, r

j

) is always viable (i.e., Pr(V |I) = 1).
For simplicity, in Algorithm 1, we assume that the packages
are ranked and selected in decreasing order of Pr(I, V |U,C)
(not score(U, I)). Its adaptation to a GR-Fair algorithm (i.e.,
find the top packages considering fairness) is straightforward.
GR-Fair ranks the packages by score

fair

(U, I) based on
Equation (8) (Line 13) and sets ✓

I

as the kth maximum score
in R (Line 16). Based on Equation (8), we can use a tigher
bound T

I,fair

= ⇧
c2C

ub

c

· ub
fair

(replacing Line 17) where
ub

fair

is the maximum fairness degree of unseen packages.

(b2, 0.3)
(b4, 0.2)
(b3, 0.2)
(b1, 0.2)
(b5, 0.1)
u1, cb

(b4, 0.4)
(b1, 0.3)
(b3, 0.1)
(b5, 0.1)
(b2, 0.1)
u2, cb

(b3, 0.3)
(b2, 0.3)
(b4, 0.2)
(b1, 0.1)
(b5, 0.1)
u3, cb

(r1, 0.3)
(r2, 0.3)
(r3, 0.2)
(r4, 0.1)
(r5, 0.1)
u1, cr

(r3, 0.3)
(r2, 0.2)
(r5, 0.2)
(r4, 0.2)
(r1, 0.1)
u2, cr

(r2, 0.4)
(r3, 0.3)
(r1, 0.1)
(r4, 0.1)
(r5, 0.1)
u3, cr

(b4, 0.27)
(b2, 0.23)
(b3, 0.20)
(b1, 0.20)
(b5, 0.10)
U, cb

1/3 1/3 1/3

(r2, 0.30)
(r3, 0.27)
(r1, 0.17)
(r5, 0.13)
(r4, 0.13)
U, cr

1/3 1/3 1/3

I2G:
Top-k query

(Incremental)

(b4, r2, 0.081)
(b4, r3, 0.073)
(b2, r2, 0.069)

...

P2G:
Top-k join

(Incremental)

Fig. 1. GR-INC

ALGORITHM 1: Incremental Algorithm for GR (GR-
INC)

Input : U , C, k
Output: R

1 min-heap R ;
2 for each c 2 C do
3 initialize a max-heap Hc ;
4 initialize a buffer Bc ;
5 ubc =1
6 ✓I = �1, TI =1
7 while TI > ✓I do
8 c = select the next category
9 Lc = GR-INC-I2G(U, c, k,Hc)

10 for each item i 2 Lc do
11 insert i into Bc

12 for each package I with i and items from Bc0 , c
0 6= c

do
13 calculate Pr(I, V |U,C) // Section III-C

14 insert I into R and pop from R if |R| > k

15 ubc = mini2Lc Pr(i|U, ci)
16 ✓I = kth largest probability in R
17 TI = ⇧c2Cubc

18 return R

ub

fair

is initially 1, and is decreased by 1/|U | if a user u

exhausts all her top-�% items, as in this case none of the
unseen items could be fair to u.

B. Algorithms for UP

We can design algorithms for the UP (and UP-Fair) model
in a similar manner as for the GR model. The baseline UP-
BA algorithm, in the first step, finds for each user u 2 U the
relevant packages I

u

and their probabilities of being selected
by u, i.e., Pr(I|u,C). Then, UP-BA ranks the packages
in [

u2U

I
u

. UP-BA can be improved by ordering each I
u

by Pr(I|u,C), so that the best packages can be found in
a top-k query fashion. Similar to GR-INC, we propose an
efficient UP-INC algorithm, which follows a 2-level procedure
prioritizing items and packages of high probability to be
selected by each user. The P2U phase of UP is implemented
as an (incremental) viability top-k join query that computes
for each user, packages in decreasing degree of being liked

PROCEDURE 2: GR-INC-I2G
Input : U , c, k, Hc

Output: Lc, Hc

1 ✓i = �1, Ti =1
2 ubu =1 for each u 2 U
3 while Ti > ✓i do
4 for each u 2 U do
5 access the next item i 2 c rated by u
6 calculate Pr(i|U, c) // Equation (2)

7 insert i into Hc

8 ubu = Pr(i|u, c)
9 ✓i = kth largest I2G probability in Hc

10 Ti =
P

u2U{Pr(u|U, c) · ubu} // Equation (2)

11 move the top-k items in Hc to Lc

12 return Lc

by her. On top of that, the P2G phase is implemented as
an (incremental) top-k selection query where the packages
being liked by the group as a whole are progressively selected.
Figure 2 presents an example for UP with the same data and
setup as in Figure 1.

(b2, 0.3)
(b4, 0.2)
(b3, 0.2)
(b1, 0.2)
(b5, 0.1)
u1, cb

(b4, 0.4)
(b1, 0.3)
(b3, 0.1)
(b5, 0.1)
(b2, 0.1)
u2, cb

(b3, 0.3)
(b2, 0.3)
(b4, 0.2)
(b1, 0.1)
(b5, 0.1)
u3, cb

(r1, 0.3)
(r2, 0.3)
(r3, 0.2)
(r4, 0.1)
(r5, 0.1)
u1, cr

(r3, 0.3)
(r2, 0.2)
(r5, 0.2)
(r4, 0.2)
(r1, 0.1)
u2, cr

(r2, 0.4)
(r3, 0.3)
(r1, 0.1)
(r4, 0.1)
(r5, 0.1)
u3, cr

I2G:
Top-k query

(Incremental)

(b2, r2, 0.077)
(b4, r3, 0.073)
(b4, r2, 0.073)

...

P2U:
Top-k join

(Incremental)

(b2, r1, 0.09)
(b2, r2, 0.09)
(b4, r1, 0.09)

u1 (cb, cr)

(b4, r3, 0.12)
(b1, r3, 0.09)
(b4, r2, 0.08)

u2 (cb, cr)

(b3, r2, 0.12)
(b2, r2, 0.12)
(b3, r3, 0.09)

u3 (cb, cr)

1/3 1/3 1/3

Fig. 2. UP-INC

VI. EXPERIMENTAL EVALUATION

This section evaluates our P2G models and algorithms.
Section VI-A details the setup of our analysis. Section VI-B
studies the effectiveness of the proposed models. Section VI-C
evaluates the effect of considering fairness in the models and
presents a user study. Finally, Section VI-D tests the efficiency
of our algorithms.

A. Setup

We use two real datasets: Yelp2 and MovieLens3 in our
evaluation. For Yelp, we use as items venues from the city of
Phoenix and consider five categories (restaurants, shopping,
beauty & spa, health & medicine, nightlife) with the most
venues. Yelp originally contains about 100K users, 17K places
and 476K reviews with a numerical rating. Because the num-
ber of reviews is small, we employ collaborative filtering (CF)
[15] to get additional review ratings for each user. In particular,

2http://www.yelp.com/dataset challenge
3http://grouplens.org/datasets/movielens/

we use Mahout4 to build an item-based CF recommender and
retrieve for each user u all item ratings that are not present
in the dataset. For the items that are neither explicitly rated
by u in the dataset nor recommended by CF, we set zero as
u’s rating. Finally, we end up having 53M non-zero ratings
in total. For MovieLens, we use movies as items from the
five most popular genres (drama, comedy, thriller, romance,
action), which contain about 138K users, 33K movies and
31M reviews. The same CF recommendation process results
in 51M ratings in total. To prevent bias toward any user, in
both datasets, we normalize the ratings of every user to [0, 1].
All algorithms were implemented in C++ and the tests ran on
a machine with Intel Core i7-3770 3.40GHz and 16GB main
memory, running Ubuntu Linux.

TABLE II
PARAMETERS IN EXPERIMENTS (DEFAULT VALUES IN BOLD)

description parameter values
Group size |U | 1, 2, 3, 4, 5
Number of categories |C| 1, 2, 3, 4, 5
Fairness threshold (%) � 1, 5, 10, 50, 100

Table II summarizes all parameters involved in our study.
On each test, we vary one parameter, while keeping the
others to their default values. Each test computes the top-
10 recommended packages to a random group U of users.
We consider two classes of user groups. Groups in the SIM
class consist of users that have similar preferences to items.
Each SIM group is generated by randomly selecting a user and
then iteratively picking the next user as the one for which the
item preference vector has the maximum cosine similarity to
the selected users so far. DSIM user groups are generated in
the same way, however, using minimum instead of maximum
similarity when selecting the next user to add to the group.

B. Model Evaluation

We study the effectiveness of our proposed GR and UP
models, by first focusing on the basic models where fairness
is not considered. In the evaluation, we include a baseline
approach (BASE) which is based on the state-of-the-art group
recommendation technique (COM [21]). For each category
c 2 C, COM is used to select the best item for U . These
items are then combined to form the top package. The 2nd-
best item of each category is then combined with the best
items from the other ones to form additional packages and so
on until k packages are computed. BASE aims at maximizing
the preferences of the group to the individual items in the
suggested packages. Note that the original COM model is
designed for the scenario where the topics (categories in
our case) are not specified by the group of users and thus
need to be inferred from group or user-topic distributions.
BASE adapts the COM model for our problem by limiting to
one topic for recommendation in each category. Still, BASE
ignores the possible relationships between items (see Section
III-C); thus, the top items per category selected by BASE do
not necessarily form good packages.

4http://mahout.apache.org

We compare BASE, GR, and UP in terms of package quality
using two metrics: the average group-item rating R(U, I) and
the average item distance dist(I). R(U, I), indicating how
much the members of U like the individual items in I , is the
average of group rating ⇢(U, i) to each item i 2 I , weighted
by the user impacts:

R(U, I) = avg

X

i2I

⇢(U, i) = avg

X

i2I

X

u2U

Pr(u|U, c
i

)r(u, i)

The average distance dist(I) = avg

P
i,i

02I

dist(i, i0) be-
tween the items in the package I indicates how viable it is
for them to be chosen together (i.e., items far from each other
could be a bad choice). For Yelp, dist(i, i0) is the Euclidean
distance between the items (venues). For MovieLens, we
define dist(i, i0) = 1� sim(i, i0), where sim is the similarity
between movies i and i

0, calculated via the Movie-Topic
matrix extracted using Latent Dirichlet Allocation (LDA). In
this LDA model, we use movie items as documents and users
who have rated a movie as its words. Note that R(U, I) and
dist(I) are two indicators of package quality, in terms of group
rating on items and package viability, respectively. BASE is
expected to generate packages with the best R(U, I), because
it is designed to combine items most liked by the groups
regardless of the relationship among them. A desirable model
should have similar R(U, I) to BASE and at the same time
find packages with small dist(I) (i.e., high viability).

Figure 3 shows the average R(U, I) over the packages
recommended by BASE, GR and UP, respectively, on Yelp
and MovieLens. Since each model recommends a set of top-
10 packages, we average R(U, I) (and dist(I)) over all these
packages. BASE performs the best because of its design goal,
however GR finds packages of nearly the same group-item
rating. UP, on the other hand, always performs the worst
because it only considers user impact at the package level,
failing to address cases where different users have different
impact on the various categories in C. As expected, for SIM
groups, the models perform similarly, as it is easy to find
packages where all items satisfy all group members.

Figure 4 compares the models based on the average distance
dist between items. Since BASE ignores relationships between
the items, the packages it selects may contain items that
are far from each other and have high dist(I) values. UP
fails to find packages with items close to each other, which
are liked by the group as a whole, but not that much by
individual group members (i.e., representatives); hence, its
performance w.r.t. dist(I) is worse than that of GR. On
MovieLens, dist(I) tends to be larger than on Yelp, because
it is harder for two movies to be very similar to each other,
compared to finding venues in Yelp that are spatially close.
In addition, we observe that the relative performance among
the models is the same regardless of the similarity between
group members (SIM/DSIM). Overall, GR performs the best
considering dist(I), while being only marginally inferior to
BASE w.r.t. R(U, I). In the rest of the experiments, we only
show results for the more interesting case of DSIM groups.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|U|

BASE (SIM)
UP (SIM)
GR (SIM)

BASE (DSIM)
UP (DSIM)
GR (DSIM)

(a) Yelp, Varying |U |

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|C|

BASE (SIM)
UP (SIM)
GR (SIM)

BASE (DSIM)
UP (DSIM)
GR (DSIM)

(b) Yelp, Varying |C|

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|U|

BASE (SIM)
UP (SIM)
GR (SIM)

BASE (DSIM)
UP (DSIM)
GR (DSIM)

(c) MovieLens, Varying |U |

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|C|

BASE (SIM)
UP (SIM)
GR (SIM)

BASE (DSIM)
UP (DSIM)
GR (DSIM)

(d) MovieLens, Varying |C|
Fig. 3. Group Rating

BASE (SIM)
BASE (DSIM)

UP (SIM)
UP (DSIM)

GR (SIM)
GR (DSIM)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5

Ite
m

 d
is

ta
nc

e

|U|

(a) Yelp, Varying |U |

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 3 4 5

Ite
m

 d
is

ta
nc

e

|C|

(b) Yelp, Varying |C|

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

Ite
m

 d
is

ta
nc

e

|U|

(c) MovieLens, Varying |U |

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

Ite
m

 d
is

ta
nc

e

|C|

(d) MovieLens, Varying |C|
Fig. 4. Item Distance

C. Fairness Evaluation

In this section, we compare the basic GR and UP models
presented in Section III with the variations GR-Fair and UP-
Fair that consider fairness (see Equation (8)). Our goal is to
understand the tradeoff between quality of recommendation
and fairness. Figure 5 shows the package quality in terms of
R, for all three versions of GR and UP. Figure 6 shows the
average fairness degree of the packages; fair(U, I), defined
in Equation (7), with � = 10. In order to consider a metric of
fairness independent of the ones optimized in our algorithms,
we also compute the mean highest rank of an item i 2 I for
a user u. Formally, hrank(U, I) = avg

u2U

min
i2I

rank(u, i)
where rank(u, i) is defined as the rank of i among all items

rated by u in category c

i

(normalized to (0, 1], the lower the
better). Intuitively, if a user u is happy in at least one category,
at least one item will have high rank. Figure 7 shows hrank

for our algorithms.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|U|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(a) Yelp/DSIM, Varying |U |

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|C|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(b) Yelp/DSIM, Varying |C|
Fig. 5. Fair Models: Group Rating

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Fa
irn

es
s

|U|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(a) Yelp/DSIM, Varying |U |

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Fa
irn

es
s

|C|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(b) Yelp/DSIM, Varying |C|
Fig. 6. Fair Models: Fairness Degree

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

H
ig

he
st

 ra
nk

|U|

GR (DSIM)
UP (DSIM)

GR-Fair (DSIM)
UP-Fair (DSIM)

(a) Yelp/DSIM, Varying |U |

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

H
ig

he
st

 ra
nk

|C|

GR (DSIM)
UP (DSIM)

GR-Fair (DSIM)
UP-Fair (DSIM)

(b) Yelp/DSIM, Varying |C|
Fig. 7. Fair Models: Highest Rank

The first observation from these plots is that introducing
fairness to GR reduces the quality, as it prevents the model
from selecting packages of higher quality which are not fair
to some users. Nevertheless, the loss in quality is relatively
small. On the other hand, the gains in fairness are significant:
GR-Fair improves both hrank (the lower the better) and fair.
Surprisingly, we observe that the addition of fairness improves
the quality of UP (i.e., UP-Fair performs better than UP). Note
that UP is inherently unfair (it has the worst performance in all
fairness metrics – Figures 6 and 7), since it bases the selection
on the preferences of a single user. The introduction of fairness
counter-balances the drawbacks of UP, and forces the selection
process to consider better packages.

Figure 8 evaluates the effect of the fairness threshold �,
which controls the tradeoff between package quality and
fairness. The figure shows the hrank and quality values (based

on Section III-C) against �. For small �, an item must be
ranked very high by u to make u happy; on the other hand,
if � is large, fairness becomes looser. As expected, with �
increasing, quality improves and fairness deteriorates. � = 10
gives a good tradeoff between the two.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

1 5 10 50 100

H
ig

he
st

 ra
nk

Δ

GR-Fair (DSIM)
UP-Fair (DSIM)

(a) Yelp/DSIM, Highest Rank

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 5 10 50 100

Q
ua

lit
y

Δ

GR-Fair (DSIM)
UP-Fair (DSIM)

(b) Yelp/DSIM, Quality
Fig. 8. GR-Fair Varying �

We repeated the above tests on MovieLens; the results are
consistent with those on Yelp. In sum, GR-Fair finds packages
such that users are more likely to be happy by at least one item,
while not compromising quality compared to GR.

User Study. We also conducted a user study with 30 partic-
ipants (students) to test the effectiveness of our models and
the importance of fairness. First, we asked each participant to
rate 70 popular movies belonging to 5 different genres (action,
animation, comedy, romance, thriller). The participants were
divided into 10 groups of 2-4 users each. For each group,
movie packages with 3-4 genres were generated using BASE,
GR-Fair, and UP-Fair. We also used a RAND model which
selects movies randomly and a least-misery (LM) model that
minimizes the maximum compromise a member makes for the
group. We asked each group to assess the created packages by
providing (1) an overall rating (PR) of the package and (2)
a characterization of its fairness (PF). We did not provide
any information on how the packages were generated and
presented them to the groups in random order. Figure 9 depicts
the average of the PR and PF values (0–1) given by the
users. We also report the R(U, I) and dist(I) values of the
packages as defined in Section VI-B. In terms of PR, the GR-
Fair model outperforms all other models, i.e., it generated the
packages that the groups liked the most. This is consistent with
the fairness (PF), where GR-Fair also gives the best result,
indicating that group satisfaction is correlated with fairness.
Lastly, the relative values of R(U, I) and dist(I) are consistent
with our experiments on Yelp and MovieLens.
D. Efficiency Evaluation

Finally, we evaluate the efficiency of algorithms GR-BA,
GR-INC, UP-BA and UP-INC that implement GR and UP
models (Section V). In terms of CPU cost, as Figures 10(a)
and 10(b) show, GR-INC outperforms GR-BA by up to an
order of magnitude, especially for large values of |U | or
|C|. As opposed to GR-BA, GR-INC accesses and calculates
items/packages in an incremental fashion only when necessary,
and stops once the bounding condition is satisfied. Similarly,
UP-INC outperforms UP-BA. Note that the UP model is
more expensive than GR to compute, because UP prioritizes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

RAND BASE LM GR-Fair UP-Fair

PR PF R(U, I) dist(I)

Fig. 9. User Study

packages favored by a single user, however, most of these
items/packages are not favored by the other users and do
not participate in the results. Package recommendations are
more costly on MovieLens (Figure 10(c)) compared to Yelp.
This is again due to the different item distance distribution
between Yelp and MovieLens; on MovieLens, it is more likely
that packages have larger distance and thus lower viability,
rendering the termination condition during package formation
harder to hold. Finally, GR-INC and UP-INC outperform GR-
BA and UP-BA, respectively, in terms of accesses to item
ratings (Figure 10(d)). Summing up, (1) GR-INC and UP-
INC greatly outperform baseline implementations of GR and
UP and (2) GR is not only better than UP in terms of quality
of suggested packages, but also it is much faster to compute.

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5

C
PU

 c
os

t (
se

co
nd

s)

|U|

GR-BA
GR-INC

UP-BA
UP-INC

(a) Yelp/DSIM, Varying |U |

 0.0001

 0.001

 0.01

 0.1

 1

 10

1 2 3 4 5

C
PU

 c
os

t (
se

co
nd

s)

|C|

GR-BA
GR-INC

UP-BA
UP-INC

(b) Yelp/DSIM, Varying |C|

 0.01

 0.1

 1

 10

 100

1 2 3 4 5

C
PU

 c
os

t (
se

co
nd

s)

|U|

GR-BA
GR-INC

UP-BA
UP-INC

(c) Movie/DSIM, Varying |U |

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5

N
um

be
r o

f A
cc

es
se

s

|U|

GR-BA
GR-INC

UP-BA
UP-INC

(d) Yelp/DSIM, Varying |U |
Fig. 10. Cost of Algorithms

E. The Case of No Category Constraints

Lastly, as discussed in Section III-D, our definitions and
models are also applicable in the more general case, where
there are no category constraints. Figures 11–13 show the
performance of our models on the Yelp dataset, for the case
where the users specify the desired number of items |I| to
be drawn from the general pool of items regardless of their

categories. Observe that the relative performance of the models
is similar to that of the category-constrained case. Specifically,
GR-Fair is best at finding packages that are more likely to
satisfy each user by at least one item (i.e., being fair) without
compromising quality compared to GR.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|U|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(a) Yelp/DSIM, Varying |U |

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1 2 3 4 5

A
ve

ra
ge

 g
ro

up
-it

em
 ra

tin
g

|I|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(b) Yelp/DSIM, Varying |I|
Fig. 11. Fair Models Without Category Constraints: Group Rating

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Fa
irn

es
s

|U|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(a) Yelp/DSIM, Varying |U |

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5

Fa
irn

es
s

|I|

GR (DSIM)
GR-Fair (DSIM)

UP (DSIM)
UP-Fair (DSIM)

(b) Yelp/DSIM, Varying |I|
Fig. 12. Fair Models Without Category Constraints: Fairness Degree

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

1 2 3 4 5

H
ig

he
st

 ra
nk

|U|

GR (DSIM)
UP (DSIM)

GR-Fair (DSIM)
UP-Fair (DSIM)

(a) Yelp/DSIM, Varying |U |

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

H
ig

he
st

 ra
nk

|I|

GR (DSIM)
UP (DSIM)

GR-Fair (DSIM)
UP-Fair (DSIM)

(b) Yelp/DSIM, Varying |I|
Fig. 13. Fair Models Without Category Constraints: Highest Rank

VII. RELATED WORK

Package to User Recommendation One category of pre-
vious work deals with recommending a package of items
to a single user. The recommender by [19] finds packages
of items that collectively maximize the user’s interest, but
whose total cost does not exceed a given budget. Budget-based
package selection, considering diversity and complementarity
is studied in [1]. In [3], it is shown that selecting a package
of items is a hard problem because of the larger search space;
strict user-defined constraints can reduce this complexity (e.g.,
see the work of [12]). To avoid searching the whole space,
Xie et al. [20] propose a learning process for predicting the
interestingness of packages to users. Interdonato et al. [7] form
packages for different models under item type compatibility

and given contextual constraints, and then rank them based on
the user’s ratings and model/item property preferences. Zhu
et al. [22] study the problem of recommending packages to a
user by maximizing the expected reward of the packages. The
reward expectation of a package depends on the probability
of the user buying all its items together, which can be derived
from the transactions history. Package viability (discussed in
Section III-C) is a generalization of the reward defined in [22].

Item to Group Recommendation Another line of work
deals with the recommendation of single items to a group of
users. Some approaches [8] combine the ratings of all group
members, in order to derive the ratings of a single artificial
representative user for the group; then, a base recommender
is used. Other methods compute recommendations for each
group member separately and then aggregate them [11]. For
the computation of the combined rating, [2] also considers
the agreement between group members. Some recent works
(e.g., [9]) use the social relationships between members to
derive group recommendations. Using feedback from users to
improve group recommendation has been studied in [13], [14].
Gorla et al. [5] define the probability of a group liking an item,
based on the item’s relevance to each user as an individual.
The I2G component of our GR model (see Section III-A) is
an extension of [5] where we also consider the impact of
each user on the different categories. Liu et al. [10] propose
a personal impact weighted topic model, where each user has
different impact on the group’s selection of topics and thus
items; i.e., the group selection may be more biased to the
preferences of the more influential user.

Yuan et al. [21] propose an improved consensus model
(COM) which differentiates the preference of a user to a topic
as an individual or a group member and defines topic-specific
user impacts. Our P2G recommendation problem differs from
those studied in [10] and [21]; in our case, the group requests
recommendations of items from particular categories. There-
fore, we use a probabilistic model with users’ item preference
in each category, instead of a topic model with users’ topic and
item distribution, to derive the group preferences. Finally, [21]
considers content information (e.g. venue distance) to improve
group recommendation. However, such information is derived
from the user selection history and is used to infer the user’s
historical preference. This is different from our definition of
package viability, which models the potential of a set of items
being selected as a package.

VIII. CONCLUSION

In this paper, we studied the problem of recommending one
or more packages of items to a group of users. We proposed
two probabilistic models (GR and UP), both of which incor-
porate individual ratings by users to items, user impacts, and
package viability. In addition, we introduced fairness which is
a unique but important feature of the P2G problem. Algorithms
were proposed to efficiently implement the two models. Our
experiments show that the GR-Fair model finds packages of
superior quality in terms of user satisfaction, package viability,
and fairness, compared to baseline approaches and UP models.

In addition, our algorithms GR-INC and UP-INC clearly out-
perform baseline implementations. We plan to study additional
classes of P2G problems, e.g., when items are selected based
on soft/hard budget constraints. We also plan to investigate
more issues related to fair P2G recommendation, for example
algorithms that find packages of maximum fairness.

ACKNOWLEDGEMENTS

This work was supported by grant 17205015 from Hong
Kong RGC and by Marie Curie Reintegration Grant projects
titled JMUGCS and LBSKQ which have received research
funding from the European Union.

REFERENCES

[1] S. Amer-Yahia, F. Bonchi, C. Castillo, E. Feuerstein, I. Méndez-Dı́az,
and P. Zabala. Composite retrieval of diverse and complementary
bundles. IEEE TKDE, 26(11):2662–2675, 2014.

[2] S. Amer-Yahia, S. B. Roy, A. Chawla, G. Das, and C. Yu. Group
recommendation: Semantics and efficiency. PVLDB, 2(1):754–765,
2009.

[3] T. Deng, W. Fan, and F. Geerts. On the complexity of package
recommendation problems. SIAM J. Comput., 42(5):1940–1986, 2013.

[4] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci., 66(4):614–656, 2003.

[5] J. Gorla, N. Lathia, S. Robertson, and J. Wang. Probabilistic group
recommendation via information matching. In WWW, pages 495–504,
2013.

[6] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting top-k join
queries in relational databases. In VLDB, pages 754–765, 2003.

[7] R. Interdonato, S. Romeo, A. Tagarelli, and G. Karypis. A versatile
graph-based approach to package recommendation. In ICTAI, pages
857–864, 2013.

[8] A. Jameson and B. Smyth. Recommendation to groups. In The Adaptive
Web, Methods and Strategies of Web Personalization, pages 596–627,
2007.

[9] K. Li, W. Lu, S. Bhagat, L. V. S. Lakshmanan, and C. Yu. On social
event organization. In KDD, pages 1206–1215, 2014.

[10] X. Liu, Y. Tian, M. Ye, and W.-C. Lee. Exploring personal impact for
group recommendation. In CIKM, pages 674–683, 2012.

[11] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl. Polylens: A
recommender system for groups of user. In ECSCW, pages 199–218,
2001.

[12] A. G. Parameswaran, P. Venetis, and H. Garcia-Molina. Recommen-
dation systems with complex constraints: A course recommendation
perspective. ACM TOIS, 29(4):20, 2011.

[13] J. A. Recio-Garcı́a, G. Jiménez-Dı́az, A. A. Sánchez-Ruiz-Granados,
and B. Dı́az-Agudo. Personality aware recommendations to groups. In
RecSys, pages 325–328, 2009.

[14] S. B. Roy, S. Thirumuruganathan, S. Amer-Yahia, G. Das, and C. Yu.
Exploiting group recommendation functions for flexible preferences. In
ICDE, pages 412–423, 2014.

[15] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based
collaborative filtering recommendation algorithms. In WWW, pages 285–
295, 2001.

[16] H. Steinhaus. The problem of fair division. Econometrica, 16(1):101–
104, 1948.

[17] M. Stettinger. Choicla: Towards domain-independent decision support
for groups of users. In RecSys, pages 425–428, 2014.

[18] M. Stettinger, A. Felfernig, G. Leitner, and S. Reiterer. Counteracting
anchoring effects in group decision making. In UMAP, pages 118–130,
2015.

[19] M. Xie, L. V. S. Lakshmanan, and P. T. Wood. Breaking out of the
box of recommendations: from items to packages. In RecSys, pages
151–158, 2010.

[20] M. Xie, L. V. S. Lakshmanan, and P. T. Wood. Generating top-k
packages via preference elicitation. PVLDB, 7(14):1941–1952, 2014.

[21] Q. Yuan, G. Cong, and C.-Y. Lin. Com: A generative model for group
recommendation. In KDD, pages 163–172, 2014.

[22] T. Zhu, P. Harrington, J. Li, and L. Tang. Bundle recommendation in
ecommerce. In SIGIR, pages 657–666, 2014.

