Covers iText 5

Text

SECOND EDITION

Bruno Lowagie

SAMPLE CHAPTER

IText in Action, Second Edition

by Bruno Lowagie

Chapter 6

Copyright 2010 Manning Publications

brief contents

PART 1 CREATING PDF DOCUMENTS FROM SCRATCH ..coeeeeenccesces 1

» Introducing PDF and iText 3
» Using iText’s basic building blocks 20

1
2
3 = Adding content at absolute positions 57
4 = Organizing content in tables 93

5

= Table, cell, and page events 122

PART 2 MANIPULATING EXISTING PDF DOCUMENTS ..ceceeesencens 157
6 = Working with existing PDFs 159

7 = Making documents interactive 194

8 = Filling out interactive forms 236

PART 3 ESSENTIAL ITEXT SKILLS .eeueeeecceccescescesscsscescescosscescesces 281

9 = Integrating iText in your web applications 283
10 = Brightening your document with color and images 317
11 = Choosing the right font 349
12 = Protecting your PDF 380

viii BRIEF CONTENTS

PART 4 UNDER THE HOOD....cuceceetececacrcrecesscsecesssssessssssesesssses

13 = PDFsinside-out 413

14 = The imaging model 452

15 = Page content and structure 493
16 = PDF streams 526

Part 2

Manpulating
existing PDF documents

Et 2 deals with existing PDF files, be they documents created with iText as
discussed in part 1, or PDFs created with Adobe Acrobat, Open Office, or any

other PDF producer. You’ll learn different ways to copy, stamp, split, and merge
documents. You’ll add actions and JavaScript, and you’ll learn all about filling

out interactive forms.

Working
with existing PDFs

This chapter covers

®m |mporting pages from existing PDF documents

®m Adding content to existing PDF documents and
filling forms

m Copying pages from existing PDF documents

When I wrote the first book about iText, the publisher didn’t like the subtitle “Cre-
ating and Manipulating PDF.” He didn’t like the word manipulating because of some
of its pejorative meanings. If you consult the dictionary on Yahoo! education, you’ll
find the following definitions:

= To influence or manage shrewdly or deviously

= To tamper with or falsify for personal gain

Obviously, that’s not what the book is about. The publisher suggested “Creating
and Editing PDF” as a better subtitle. I explained that PDF isn’t a document format
well suited for editing. PDF is an end product. It’s a display format. It’s not a word pro-
cessing format.

159

160

6.1

6.1.1

CHAPTER 6 Working with existing PDFs

In a word processing format, the content is distributed over different pages when
you open the document in an application, not earlier. This has some disadvantages: if
you open the same document in different applications, you can end up with a differ-
ent page count. The same text snippet can be on page X when looked at in Microsoft
Word, and on page Y when viewed in Open Office. That’s exactly the kind of problem
you want to avoid by choosing PDF.

In a PDF document, every character or glyph on a PDF page has its fixed position,
regardless of the application that’s used to view the document. This is an advantage,
but it also comes with a disadvantage. Suppose you want to replace the word “edit”
with the word “manipulate” in a sentence, you’d have to reflow the text. You’d have to
reposition all the characters that follow that word. Maybe you’d even have to move a
portion of the text to the next page. That’s not trivial, if not impossible.

If you want to “edit” a PDF, it’s advised that you change the original source of the
document and remake the PDF. If the original document was written using Microsoft
Word, change the Word document, and make the PDF from the new version of the
Word document. Don’t expect any tool to be able to edit a PDF file the same way you’d
edit a Word document.

This being said, the verb “to manipulate” also means

= To move, arrange, operate, or control by the hands or by mechanical means,
especially in a skillful manner

That’s exactly what you’re going to do in this chapter. Using iText, you're going to
manipulate the pages of a PDF file in a skillful manner. You’re going to treat a PDF
document as if it were made of digital paper.

But before you can take copies of pages or add new content, you’ll need an object
that can “read” an existing PDF document.

Accessing an existing PDF with PdfReader

First, we’ll look at how you can retrieve information about the document you're going
to manipulate. For instance, how many pages does the original document have?
Which page size is used? All of this is done with a PdfReader object.

Retrieving information about the document and its pages

In this first example, we’ll inspect some of the PDF documents you created in part 1.
You can query a PdfReader instance to get the number of pages in the document, the
rectangle defining the media box, the rotation of the page, and so on.

Listing 6.1 Pagelnformation.java

public static void inspect (PrintWriter writer, String filename)
throws IOException {
PdfReader reader = new PdfReader (filename) ;
writer.println(filename) ;
writer.print ("Number of pages: ");
writer.println (reader.getNumberOfPages()) ;

Accessing an existing PDF with PdfReader

Rectangle mediabox = reader.getPageSize (1) ;
writer.print ("Size of page 1: [");
writer.print (mediabox.getLeft ()) ;
writer.print(',"');

writer.print (mediabox.getBottom()) ;
writer.print(',"');

writer.print (mediabox.getRight ()) ;
writer.print (',"');

writer.print (mediabox.getTop()) ;
writer.println("]");

writer.print ("Rotation of page 1: ");
writer.println (reader.getPageRotation (1)) ;

161

writer.print ("Page size with rotation of page 1: ");

writer.println (reader.getPageSizeWithRotation (1)) ;
writer.print ("File length: ");
writer.println(reader.getFileLength()) ;
writer.print ("Is rebuilt? ");
writer.println(reader.isRebuilt()) ;
writer.print ("Is encrypted? ");
writer.println(reader.isEncrypted()) ;
writer.println() ;

writer.flush() ;

}

The following output was obtained while inspecting some of the PDFs from chap-

ters 1 @ and @, 3 @, and 5 O.

results/partl/chapter0l/hello landscapel.pdf

Number of pages: 1

Size of page 1: [0.0,0.0,612.0,792.0]

Rotation of page 1: 90

Page size with rotation of page 1:
Rectangle: 792.0x612.0 (rot: 90 degrees)

Is rebuilt? false

Is encrypted? false

results/partl/chapter0l/hello landscape2.pdf

Number of pages: 1

Size of page 1: [0.0,0.0,792.0,612.0]

Rotation of page 1: 0

Page size with rotation of page 1:
Rectangle: 792.0x612.0 (rot: 0 degrees)

Is rebuilt? false

Is encrypted? false

results/partl/chapter03/movie templates.pdf

Number of pages: 8

Size of page 1: [0.0,0.0,595.0,842.0]

Rotation of page 1: 90

Page size with rotation of page 1:
Rectangle: 842.0x595.0 (rot: 90 degrees)

Is rebuilt? false

Is encrypted? false

Number of pages: 1 in chapter 5

Output from PDF
in chapter |

Output from PDF
in chapter |

Output from PDF
in chapter 3

results/partl/chapter05/herol.pdf J]Outputﬁon\PDF

162

CHAPTER 6 Working with existing PDFs

Size of page 1: [-1192.0,-1685.0,1192.0,1685.0]

Rotation of page 1: 0

Page size with rotation of page 1: Output from PDF
Rectangle: 2384.0x3370.0 (rot: 0 degrees) in chapter 5

Is rebuilt? false

Is encrypted? false

The most important PdfReader methods you’ll use in this chapter are getNumberOf -
Pages () and getPageSizeWithRotation (). The former method will be used to loop
over all the pages of the existing document; the latter is a combination of the methods
getPageSize () and getPageRotation().

PAGE SIZE
The first two examples show the difference between creating a document with land-
scape orientation using

Document document = new Document (PageSize.LETTER.rotate()) ;
and a document created using
Document document = new Document (new Rectangle (792, 612)) ;

This difference will matter when you import a page or when you stamp extra content
on the page. Observe that in example @ of the earlier output, the coordinates of the
lower-left corner are different from (0,0) because that’s how I defined the media box
in section 5.3.1.

BROKEN PDFS

When you open a corrupt PDF file in Adobe Reader, you can expect the message,
“There was an error opening this document. The file is damaged and could not be
repaired.” PdfReader will also throw an exception when you try to read such a file. You
can get an InvalidPdfException with the following message: “Rebuild failed: trailer
not found; original message: PDF startxref not found.” If that happens, iText can’t do
anything about it: the file is damaged, and it can’t be repaired. You’ll have to contact
the person who created the document, and ask him or her to create a version of the
document that’s a valid PDF file.

In other cases, for example if a rogue application added unwanted carriage return
characters, Adobe Reader will open the document and either ignore the fact that the
PDF isn’t syntactically correct, or will show the warning “The file is damaged but is
being repaired” very briefly. PdfReader can also overcome small damages like this. No
alert box is shown, because iText isn’t necessarily used in an environment with a GUIL
You can use the method isRebuilt () to check whether or not a PDF needed repairing.

You may also have difficulties trying to read encrypted PDF files.

ENCRYPTED PDFS

PDF files can be protected by two passwords: a user password and an owner password.
If a PDF is protected with a user password, you’ll have to enter this password before
you can open the document in Adobe Reader. If a document has an owner password,
you must provide the password along with the constructor when creating a PdfReader

6.1.2

Accessing an existing PDF with PdfReader 163

instance, or a BadPasswordException will be thrown. More details about the different
ways you can encrypt a PDF document, and about the different permissions you can
set, will follow in chapter 12.

Reducing the memory use of PdfReader

In most of this book’s examples, you’ll create an instance of PdfReader using a String
representing the path to the existing PDF file. Using this constructor will cause
PdfReader to load plenty of PDF objects (from the file) into Java objects (in memory).
This can be overkill for large documents, especially if you're only interested in part of
the document. If that’s the case, you can choose to read the PDF only partially.

PARTIAL READS

Suppose you have a document with 1000 pages. PdfReader will do a full read of these
pages, even if you’re only interested in page 1. You can avoid this by using another
constructor. You can compare the memory used by different PdfReader instances cre-
ated to read the timetable PDF from chapter 3:

Listing 6.2 Memorylnfo.java

public static void main(String[] args) throws IOException {
MovieTemplates.main (args) ;
PrintWriter writer = new PrintWriter (new FileOutputStream (RESULT)) ;
fullRead (writer, MovieTemplates.RESULT) ;
partialRead(writer, MovieTemplates.RESULT) ;
writer.close() ;
}
public static void fullRead (PrintWriter writer, String filename)
throws IOException {
long before = getMemoryUse () ;
PdfReader reader = new PdfReader (filename) ;
reader.getNumberOfPages () ;
writer.println(String.format ("Memory used by full read: %d4d",
getMemoryUse () - before)) ;
writer.flush() ;
}
public static void partialRead (PrintWriter writer, String filename)
throws IOException {
long before = getMemoryUse() ;
PdfReader reader = new PdfReader (
new RandomAccessFileOrArray (filename), null);
reader.getNumberOfPages () ;
writer.println(String.format ("Memory used by partial read: %d",
getMemoryUse () - before)) ;
writer.flush() ;

}

The file size of the timetable document from chapter 3 is 15 KB. The memory used by
a full read is about 35 KB, but a partial read needs only 4 KB. This is a significant differ-
ence. When reading a file partially, more memory will be used as soon as you start
working with the reader object, but PdfReader won’t cache unnecessary objects. That

164

6.2

CHAPTER 6 Working with existing PDFs

also makes a huge difference, so if you're dealing with large documents, consider
using PdfReader with a RandomAccessFileOrArray parameter constructed with a path
to a file.

NOTE In part 4, you'll see how to manipulate a PDF at the lowest level.
You’ll change PDF objects in PdfReader and then save the altered PDF. For
this to work, the modified objects need to be cached. Depending on the
changes you want to apply, using a PdfReader instance created with a Ran-
domAccessFileOrArray may not be an option.

Another way to reduce the memory usage of PdfReader up frontis to reduce the num-
ber of pages before you start working with it.

SELECTING PAGES
Next, you'll read the timetable from example 3 once again, but you’ll immediately tell
PdfReader that you’re only interested in pages 4 to 8.

Listing 6.3 SelectPages.java

PdfReader reader = new PdfReader (MovieTemplates.RESULT) ;
reader.selectPages ("4-8") ;

The general syntax for the range that’s used in the selectPages () method looks like
this:

[1] [o] [odd] [e] [even] start [-end]

You can have multiple ranges separated by commas, and the ! modifier removes pages
from what is already selected. The range changes are incremental; numbers are added
or deleted as the range appears. The start or the end can be omitted; if you omit
both, you need at least o (odd; selects all odd pages) or e (even; selects all even pages).
If you ask the reader object for the number of pages before selectPages () in list-
ing 6.3, it will tell you that the document has 8 pages. If you do the same afier making
the page selection, it will tell you that there are only 5 pages: pages 4, 5, 6, 7, and 8.
The old page 4 will be the new page 1. Be careful not to try getting information about
pages that are outside the new range. Don’t add the following line to listing 6.3:

reader.getPageSize (6) ;

This line will throw a NullPointerException because there are no longer 6 pages in
the reader object.

Now that you’ve had a short introduction to PdfReader, you're ready to start
manipulating existing PDF documents.

Copying pages from existing PDF documents

You probably remember the Superman PDF from chapter 5. The Hero example
imported a plain text file containing PDF syntax into the direct content. I explained
that this wasn’t standard practice. If you want to reuse existing content, it’s dangerous

6.2.1

Copying pages from existing PDF documents 165

to copy and paste PDF syntax like I did in listing 5.14. There are safer ways to import
existing content, as you’ll find out in the next example.

In thissection, you’ll use an object named Pdf ImportedPage to copy the content from
an existing PDF opened with PdfReader into a new Document written by PdfWriter.

Importing pages

Let’s continue working with the timetable from chapter 3. Suppose you want to reuse
the pages of this document and treat them as if every page were an image. Figure 6.1
shows how you could organize these imported pages into a PdfPTable. The document
in the front of figure 6.1 is created with the code in listing 6.4.

Listing 6.4 ImportingPagesl.java

Document document = new Document () ; <+— Step |

PdfWriter writer = PdfWriter.getInstance (’StepZ
document, new FileOutputStream(RESULT)) ;

document .open () ; <+— Step 3

PdfPTable table = new PdfPTable(2) ;
PdfReader reader = new PdfReader (MovieTemplates.RESULT) ;
int n = reader.getNumberOfPages () ;
PdfImportedPage page;
for (int i = 1; i <= n; i++) {
page = writer.getImportedPage (reader, 1i);
table.addCell (Image.getInstance (page)) ;
}
document .add (table) ; <+— Step 4
document .close () ; <— Step 5

! time_table importedl.petf - Adobe Resder

ans sz = s JENS— L
e il |2l Bl | =l =]
HE = = El: — =
] | [il :: ==
A == —
E = =
HE "_ﬂbﬁm«mw rr— i —h
LL T v imansy S B e v e —C 1 L ‘_
ey POCRAA PV PEITR - - -
.......... Lo T T
§ - i ER i1 S
ol Ell= [e
it mamEm
! L
e - 5 (1
o I % ;:;_:;E = _}
I = JEaE IS
i H i o 3
8 S

126:1180in

Figure 6.1 Importing pages from an existing PDF document

166

CHAPTER 6 Working with existing PDFs

You’ll recognize the five steps in the PDF creation process discussed in part 1. Now
you're also creating a PdfReader object and looping over all the pages, getting PAf Im-
portedPage instances with the getImportedPage () method (as highlighted in bold).
What does this method do?

PAGE CONTENT AND RESOURCES
If you browse the API of the PdfReader class, you’ll discover the getPageContent ()
method, which returns the content stream of a page. This content stream is very simi-
lar to what’s inside the hero.txt file. In general, such a content stream contains refer-
ences to external objects, images, and fonts.

In section 3.4.1, for instance, we examined the PDF syntax needed to draw a raster
image:

g 232 0 0 362 25.5 27 cm /img0 Do Q

In this snippet, /img0 referred to a key in the /Resources dictionary of the page. The
corresponding value was a reference to a stream object containing the bits and bytes of
the image. Without the bits and bytes of the image, the PDF syntax referring to /img0
is meaningless.

WARNING It doesn’t make sense to get the content stream of a page from
one PDF document, and copy that stream into another PDF without copying
all the resources that are needed.

The Hero example was an exception: the syntax to draw the vector image of Superman
was self-contained, and this is very unusual. As soon as there’s text involved, you’ll
have at least a reference to a font. If you don’t copy that font, you’ll get warnings or
errors, such as “Could not find a font in the Resources dictionary.” That’s why it’s
never advisable to extract a page from PdfReader directly. Instead, you should pass the
reader object to the writer class, and ask the writer (not the reader!) to import a page.
A PdfImportedPage object is returned. Behind the scenes, all the necessary resources
(such as images and fonts) are retrieved and copied to the writer.

FAQ Why are all my links lost when I copy a page with PAf ImportedPage? It’s
important to understand the difference between resources needed to ren-
der the content of a page and the interactive features of a page. In general,
these features are called annotations. They include links, text annotations,
and form fields. Annotations aren’t part of the content stream. They aren’t
listed in the resources dictionary of the page, but in the annotation diction-
ary. These interactive features aren’t copied when using PdfImportedPage,
which means that all interactivity is lost when copying a page with the get-
ImportedPage () method of the PdfWriter class.

The pdfImportedPage class extends PdfTemplate, but you can’t add any new content
to it. It’s a read-only XObject you can reuse in a document with the method addTem-
plate(); or you can wrap it inside an Image. You've already used these techniques in

6.2.2

Copying pages from existing PDF documents 167

section 3.4. The original dimensions of each imported page are the same as the origi-
nal media box, but in this example, the Pdf ImportedPages are scaled to fit inside a
table. Note that the rotation of the original page isn’t taken into account. If that’s a
problem, you’ll have to apply the rotation.

Listing 6.5 ImportingPages2.java

PdfPTable table = new PdfPTable(2);

for (int i = 1; i <= n; i++) {
page = writer.getImportedPage (reader, 1i);
table.getDefaultCell () .setRotation (-reader.getPageRotation(i)) ;
table.addCell (Image.getInstance (page)) ;

}

You can see the result in figure 6.1 (the figure in the back). Observe that cell and
image rotations go counterclockwise. In the next example, we’ll look at how to apply
more transformations.

Scaling and superimposing pages

You can transform pages in iText, just like you can transform images. Do you remem-
ber figure 3.2? That was the image I used to explain the different content layers used
by iText. I created this image by generating a document with four pages, and then
importing those pages into a new one; see figure 6.2.

The imported pages are added to the new PDF document using addTemplate ().
The parameters are calculated so that each page is scaled and skewed.

= layers_orig pof - Adobe Reader = layers pof - Adobe Reader

LAWRENCE OF ARABLY

3;.9%
=

S P CPEST

Foobar Film Festrval

8.26x583in

Figure 6.2 Scaling and skewing pages from an existing PDF

168

CHAPTER 6 Working with existing PDFs

Listing 6.6 Layers.java

PdfContentByte canvas = writer.getDirectContent () ;

PdfImportedPage page;

BaseFont bf = BaseFont.createFont (BaseFont.ZAPFDINGBATS, "',

BaseFont . EMBEDDED) ;

for (int 1 = 0; i < reader.getNumberOfPages();) {
page = writer.getImportedPage (reader, ++1i);
canvas.addTemplate (page, 1f, 0, 0.4f, 0.4f, 72, 50 * i);
canvas.beginText () ;
canvas.setFontAndSize (bf, 20);
canvas.showTextAligned (Element . ALIGN_CENTER,

String.valueOf ((char) (181 + 1)), 496, 150 + 50 * i, 0);

canvas.endText () ;

}

A common technique used with PDF files is called superimposing.

SUPERIMPOSING PDF PAGES

Superimposing means that you add different PDF pages on top of each other on the
same page. You could do this with the four pages shown to the left in figure 6.2 to
obtain the PDF shown in figure 6.3.

Foobar Eilm Egsti:al
[e 0P Uiy

L]

Listing 6.7 Superimposing.java

Figure 6.3 PDF created by
superimposing four different pages

PdfReader reader = new PdfReader (SOURCE) ;

Document document = new Document (PageSize.POSTCARD) ;

PdfWriter writer = PdfWriter.getInstance (document,
new FileOutputStream (RESULT)) ;

document .open () ;

PdfContentByte canvas = writer.getDirectContent () ;

PdfImportedPage page;

Copying pages from existing PDF documents 169

for (int i = 1; i <= reader.getNumberOfPages(); i++) {
page = writer.getImportedPage (reader, 1i);
canvas.addTemplate (page, 1f, 0, 0, 1, 0, 0);

}

document .close () ;

Superimposing is often used to create documents with a standard header and footer.

IMPORTING COMPANY STATIONERY

Suppose your company has preprinted paper containing the company name and logo
in the letterhead, and maybe also a watermark. All letters are printed on this company
stationery. You can achieve something similar with PDF, as shown in figure 6.4.

" stationery.pdf - Adobe Reader =@ =5 T teet_on_stationerypef - Adobe Reader = B R

FOORAR FILM FESTIVAL

[FOOBAR FILM FESTIVAL

United Hargdom

Lawrenie of Arabiz
aar: 12 ron et 218 mirten

- Laan David

Lotes

Yoar: A2, run g 152 mirutes

- Wuitrich, Starbay

Or. Strange Mo | and Love the Bomts.
Year: 104 run lengic B3 minues.

- Wukrick. Starbay
2001: A Space Cdyvaey

Toar: HOR:; run lenge: 141 mines
- Wusteek. Suarbey

A Clockwork Orange.

Yaar: 171 ran lengehc 136 minctes
- Wusbrick. Starvey

Barry Lynden

Yaar 175 run lengec 154 minctees

Yoar HED; run lenge: 142 miguaes
- Wautrich, Susrlay

The Terminator

Yoar: F4: run lenga | Ol minaes
- Cameron, James

sl Mistal Jsckint

Toar: T, lenge 118 mirutes
- Kuitesck] Suanbery
Loawing Lis Vegss

Voar 8 run lenger 111 mintes
- Figps. Mae

Eyws Wide Sand

Woar HOG, run lagt 150 miruten
- Muitrick, Sraniey

Himakaya
Hemataga - fonfance dun chef
Year: 1456 run lengi 108 minutes
- Vai, Eng

Figure 6.4 Using an existing PDF as background image for new PDFs

In figure 6.4, the PDF to the left is the equivalent of the preprinted paper. When creat-
ing a new document, as shown to the right, the template page is imported and added
to the background of each new page using a page event.

Listing 6.8 Stationery.java

public class Stationery extends PdfPageEventHelper {
protected PdfImportedPage page;

public void useStationary (PdfWriter writer) throws IOException
writer.setPageEvent (this) ;
PdfReader reader = new PdfReader (STATIONERY) ;
page = writer.getImportedPage (reader, 1);

170

6.2.3

CHAPTER 6 Working with existing PDFs

}

public void onEndPage (PdfWriter writer, Document document) {
writer.getDirectContentUnder () .addTemplate (page, 0, 0);

}
}
We’ll conclude the series of PdfImportedPage examples by introducing two more
concepts.

N-up copying and tiling PDF documents

When searching for PDF tools on the internet, you’ll find numerous small tools that
are designed to meet specific requirements, such as one that creates an N-up layout in
a PDF file.

To cut paper costs by 50 percent when printing a PDF document, you can copy an
existing PDF into a new one that has half the number of pages. All you have to do is
put two pages next to each other on one page. This is called 2-up copying. Figure 6.5
shows the document you created in the previous example in its 2-up, 4-up, 8-up,
and 16-up forms.

Most of the tools you can find online have iText on the inside.

" renultZup.pdt - Adobe Reader i - Adobe Reader

Figure 6.5 N-up copying combines multiple pages onto one page

Copying pages from existing PDF documents 171

Listing 6.9 NUp.java

public void manipulatePdf (String src, String dest, int pow)
throws IOException, DocumentException {

PdfReader reader = new PdfReader (src) ; g:;z:gimal
Rectangle pageSize = reader.getPageSize(1l);
Rectangle newSize = (pow % 2) == 0 ?
new Rec’.:angle()) , Sets page size of
pageSize.getWidth (), pageSize.getHeight()) new document
new Rectangle (
pageSize.getHeight (), pageSize.getWidth()) ;
Rectangle unitSize = new Rectangle (
pageSize.getWidth (), pageSize.getHeight ()) ;
for (int i = 0; i < pow; i++) { Calculates page
unitSize = new Rectangle(size of unit

unitSize.getHeight () / 2, unitSize.getWidth()) ;
1
int n = (int)Math.pow (2, pow) ;
int r = (int)Math.pow(2, pow / 2);
int ¢ =n / r

Document document = new Document (newSize, 0, 0, 0, 0);
PdfWriter writer = PdfWriter.getInstance (document,
new FileOutputStream(String.format (dest, n)));
document .open () ;
PdfContentByte cb = writer.getDirectContent () ;
PdfImportedPage page;
Rectangle currentSize;
float offsetX, offsetY, factor;
int total = reader.getNumberOfPages() ;
for (int i = 0; i < total;) {

if (1 $ n == 0) {

document .newPage () ;
}

in
Calculates
helper variables

7

currentSize = reader.getPageSize (++1);
factor = Math.min(Calculates
unitSize.getWidth() / currentSize.getWidth(), scale factor

unitSize.getHeight () / currentSize.getHeight());
offsetX = unitSize.getWidth() * ((i % n) % c)

+(unitSize.getWidth ()

- (currentSize.getWidth() * factor))/2f;

offsetY = newSize.getHeight () S#:el::lates
- (unitSize.getHeight () * (((i $ n) / ¢) + 1))
+ (unitSize.getHeight ()
- (currentSize.getHeight () * factor))/2f;
page = writer.getImportedPage (reader, 1i);
Scales and

cb.addTemplate (page,
factor, 0, 0, factor, offsetX, offsetY);
1

document.close () ;

}

positions page

172

CHAPTER 6 Working with existing PDFs

Figure 6.6 Scaling and tiling a PDF file

The opposite of N-up copying a PDF file is when you have one page, and you want to
print it on different pages; see figure 6.6. We already looked at this in chapter 5, but
now you’ll do the exercise again using Pdf ImportedPage.

The next bit of code takes one page from a PDF document and scales it so that the
one page is “tiled” over 16 pages.

Listing 6.10 TilingHero.java

public void manipulatePdf (String src, String dest)
throws IOException, DocumentException {
PdfReader reader = new PdfReader (src) ;
Rectangle pagesize = reader.getPageSizeWithRotation(1l) ;
Document document = new Document (pagesize) ;
PdfWriter writer =
PdfWriter.getInstance (document, new FileOutputStream(dest)) ;
document .open () ;
PdfContentByte content = writer.getDirectContent () ;
Pdf ImportedPage page = writer.getImportedPage (reader, 1);

float x, y;

for (int i = 0; i < 16; i++) {
X = -pagesize.getWidth() * (i % 4);
y = pagesize.getHeight() * (i / 4 - 3);
content .addTemplate (page, 4, 0, 0, 4, X, V);

document .newPage () ;

}

document.close () ;

6.3

6.3.1

Adding content with PdfStamper 173

In this section, we’ve been reusing content from existing PDF documents in a new doc-
ument. You can take digital photocopies of existing pages, scale them up or down, and
use them as if they were an image or an XObject.

In the next section, we’re going to take an existing PDF and add extra content.

Adding content with PdfStamper

Up until now, we’ve created new documents using the five steps in the iText docu-
ment-creation process. In this chapter we’ll add content to an existing document
using PdfStamper.

PdfStamper uses a different mechanism, as demonstrated in the manipulateWith-
Stamper () method.

Listing 6.11 SelectPages.java

public static void main(Stringl[] args)
throws IOException, DocumentException {
new MovieTemplates () .createPdf (MovieTemplates.RESULT) ;
PdfReader reader = new PdfReader (MovieTemplates.RESULT) ;
reader.selectPages ("4-8") ; L"
manipulateWithStamper (reader) ;

}

private static void manipulateWithStamper (PdfReader reader)
throws IOException, DocumentException {
PdfStamper stamper =
new PdfStamper (reader, new FileOutputStream(RESULT1)) ; L/!)
stamper.close() ;

}

You’ve already seen part of this example in listing 6.3. It’s an example that creates a
new PDF document containing only a selection of pages from the original document.
In @, you create a PdfReader that will read the 8 pages of the timetable PDF, but you
immediately tell the reader that you're only interested in pages 4 to 8. In @, you cre-
ate a PdfStamper object. As soon as you close the stamper, a new document will be cre-
ated. It will contain only 5 pages. You can add content between the constructor and
the close () method.

Adding content at absolute positions

Let’s start with the “Hello World” examples with paper size Letter in landscape format
from chapter 1. There were two versions of this example. Let’s add the words “Hello
people!”

Listing 6.12 StampText.java

PdfReader reader = new PdfReader (src) ;
PdfStamper stamper = new PdfStamper (reader, new FileOutputStream(dest)) ;
PdfContentByte canvas = stamper.getOverContent (1) ;
ColumnText .showTextAligned (canvas,

Element .ALIGN_ LEFT, new Phrase("Hello people!"), 36, 540, 0);
stamper.close() ;

174

CHAPTER 6 Working with existing PDFs

"1 hellol.pdf - Adobe Reader = |68 =

Hello World
Heflo peoplel

) hello2pdf - Adobe Reader =3 ®

Hello World

(apdoad oo

= hellod.pdf - Adobe Reader =B x4

Hedllo World
Heillo people!

Figure 6.7 Adding text to an existing document

The getOverContent () method is similar to the getDirectContent () method dis-
cussed in chapter 3. It returns a PdfContentByte object that allows you to write to a
new layer that goes on top of the existing content of the page you choose. There’s also
a getUnderContent () method, which is the equivalent of getDirectContentUnder ().

NOTE The methods getOverContent () and getUnderContent () give you
the option to write to the direct content on a layer that goes on top of or
below the existing content. They don’t give you access to the layer with the
existing content. You can’t use these methods to replace existing content,
nor to complete it. It’s not possible to say: “I want to add the words ‘Hello
people!” after the words ‘Hello World’.” You can only add those words to the
layer above or below the existing content at an absolute position whose coor-
dinates you know.

The media box of the file that was used as the basis for hello3.pdf was 792 pt x 612 pt.
I've added the extra text at the coordinates (36,540). That’s near the top-left corner.
The file used as the basis for hellol.pdf had a media box measuring 612 pt x 792 pt,
but the page had a rotation of 90 degrees. The difference between these two ways of
creating a page in landscape is made transparent: iText took the rotation into account
and rotated the coordinate system. If you don’t want this, you can tell iText to ignore
the fact that the page is rotated. That’s what happened with hello2.pdf in figure 6.7.

In the next code snippet, the extra text was added at the same coordinates as in
listing 6.12, but the rotation of the page isn’t taken into account. This is prevented
with the setRotateContents () method.

6.3.2

Adding content with PdfStamper 175

Listing 6.13 StampText.java (continued)

PdfReader reader = new PdfReader (src);
PdfStamper stamper = new PdfStamper (reader, new FileOutputStream(dest)) ;
stamper.setRotateContents (false) ;
PdfContentByte canvas = stamper.getOverContent (1) ;
ColumnText .showTextAligned (canvas,

Element .ALIGN_LEFT, new Phrase("Hello people!"), 36, 540, 0);
stamper.close () ;
We could now repeat everything that we covered in chapter 3, and explain how to
draw lines, shapes, and text to the PdfContentByte layers obtained with getOverCon-

tent () and getUnderContent (), butit’s a better idea to look at practical examples.

Creating a PDF in multiple passes

In section 5.4.2, we solved the “page X of ¥’ problem by using page events and a
PdfTemplate object. One of the problems inherent to this solution is that you don’t
know the number of pages when you create and position the placeholder. You create a
small canvas up front, but you can only add the page number once the document is
completely finished. You don’t know in advance how much space will be needed to
draw this number. Will the document eventually have 9 pages or 99997 You could
guess the number of digits beforehand and reserve enough space for them accord-
ingly, but you won’t always be able to make the right guess.

That’s why you might consider an alternative way to add page numbers. The docu-
ment shown in figure 6.8 is made in two passes.

In the first pass, the document is created without a header. The header, and—if
necessary—a footer and a watermark, can be added in a second pass. Note that itisn’t
necessary to create two files on disk. If the file size isn’t huge, and the memory
available in your JVM allows it, you can easily keep the file created during the first pass
in memory.

page_x_al_y.pd! - Adobe Reader = | &

FOOEBAR FILMFESTIVAL Page 21 of 39
Mexico

Cronos

Year: 1993; run length: 94 minutes
- del Toro, Guillermo

Amores perros

Year: 2000; run length: 154 minutes
- Ifiamitu, Alejandro Gonzalez

The Devil's Backbone

El espinazo del diablo

Year: 2001; run length: 106 minutes
- del Toro, Guillermo

Figure 6.8 Adding a page X of } header to an existing document

176 CHAPTER 6 Working with existing PDFs

Listing 6.14 TwoPasses.java

ByteArrayOutputStream baos
= new ByteArrayOutputStream() ;
Document document =
new Document (PageSize.A4, 36, 36, 54, 36);
PdfWriter.getInstance (document, baos) ;
g () Code that adds

document .open () ; content omitted

First pass

document.close () ;

PdfReader reader = new PdfReader (baos.toByteArray()) ;
PdfStamper stamper =
new PdfStamper (reader, new FileOutputStream(RESULT)) ;
int n = reader.getNumberOfPages () ;
for (int i = 1; i <= n; i++) { Second pass
getHeaderTable (i, n) .writeSelectedRows (
0, -1, 34, 803, stamper.getOverContent (i)) ;

}

stamper.close() ;

Instead of writing the document to a FileOutputStream in the first pass, you keep the
file in memory using a ByteArrayOutputStream (see section 1.3.2). In the second
pass, you use the bytes from this OutputStream to create a PdfReader instance.

FAQ PdfStamper always creates a nmew PDF file, but how can I manipulate the
existing file? You can’t use the same physical file used by PdfReader to create
a FileOutputStream for PdfStamper. Common sense tells us that changing a
file while you’re still reading it risks corrupting the file. There are different
ways to work around this. Some applications read a file into memory before
changing it; you could read the original file into a byte array and create a
PdfReader object as demonstrated in listing 6.13. Other applications work
with temporary files; once you’ve finished “stamping,” you could replace the
original file with the new one. Finally, you could also create the new file in
memory using a ByteArrayOutputStream, and then overwrite the original
file using these bytes. The “best choice” depends on the context. As a rule of
thumb, I prefer temporary files for applications that run on the desktop; in
a web environment, I create all files in memory.

In section 6.2, you added an existing PDF as the background of a newly created PDF
using page events. But suppose you’re given an existing PDF, and you need to add
company stationery after the fact. That’s what the next example is about.

6.3.3 Adding company stationery to an existing document

Figure 6.9 looks very similar to figure 6.4, but now you have an existing file, original.pdf,
to which you want to add the file stationary.pdf, with the file stamped_stationery.pdf
being the result.

To achieve this, you need to import a page from one PDF and add it as the back-
ground to another PDF.

Adding content with PdfStamper 177

T stationery.pdf - Adobe Resder

]

[FOOBAR FILM FESTIVAL

- N —
T oniginalpdf - Adobe Reader =@ B

Argentina

HNine Queens
Nueve reinas
Year: 2000; run length: 114 minutf = , ary e
- Bielinsky, Fabian = - |
Kamchatka

Year. 2002; run length; 106 minu
- Pifleyro, Marcelo

Captive

Cautrva

Year: 2003, run length: 115 minut

[FOOBAR FILM FESTIVAL

Argentina

Nine Queens

Nueve reinas

Year: 2000; run length: 114 minutes
- Bielinsky, Fabian

Kamchatka

Year: 2002; run length: 106 minutes
- Pifieyro, Marcelo

Captive

Cautiva

Year: 2003; run length: 115 manutes

Figure 6.9 Adding stationery to an existing document

Listing 6.15 StampStationery.java

PdfReader reader = new PdfReader (src);
PdfReader s_reader = new PdfReader (stationery);
PdfStamper stamper =
new PdfStamper (reader, new FileOutputStream(dest)) ;
PdfImportedPage page = stamper.getImportedPage(s_reader, 1);
int n = reader.getNumberOfPages () ;
PdfContentByte background;
for (int i = 1; i <= n; i++) {
background = stamper.getUnderContent (i) ;
background.addTemplate (page, 0, 0);
}

stamper.close() ;
Here you obtain a Pdf ImportedPage object from PdfStamper with the getImported-
Page () method. This method writes the resources necessary to render the imported
page to the writer associated with the stamper.

This technique is often used to add watermarks to existing document. You can eas-
ily adapt the example to add an Image with the addImage () method instead of an
imported page. All the methods from chapter 3 are at your disposal.

178

6.3.4

CHAPTER 6 Working with existing PDFs

NOTE This example combines PdfStamper with PdfImportedPage. All the
interactive features present in the document that’s being manipulated with
PdfStamper are preserved, but the interactive features that were present on
the page that’s being imported are lost.

As discussed in the introduction of this chapter, PDF isn’t a format that can be used
for word processing. You can’t insert a couple of lines between two existing para-
graphs on a page. You can only insert complete pages. That’s what you’re going to do
in the next example.

Inserting pages into an existing document

In section 5.2.4, you were faced with a problem concerning the TOC of a document.
You were only able to create the table of contents (TOC) once the document was fin-
ished. But you wanted to display the TOC before the rest of the content, not after. In
listing 5.12, you reordered the pages.

Listing 6.16 offers an alternative solution: you could create the PDF in two passes
and add the TOC in the second pass by inserting extra pages. You could, for instance,
create a ColumnText object containing a series of Paragraphs, then you add these
Paragraphs to a number of pages that are inserted into the existing document.

Listing 6.16 InsertPages.java

ColumnText ct = new ColumnText (null) ; Constructs
while (rs.next()) { ColumnText
ct.addElement (new Paragraph (24, object
new Chunk (rs.getString("country")))); Keeps track
J of page
PdfReader reader = new PdfReader (src); number

PdfReader stationery = new PdfReader (Stationery.STATIONERY) ;
PdfStamper stamper = new PdfStamper (reader, new FileOutputStream(dest)) ;
PdfImportedPage page = stamper.getImportedPage (stationery, 1);
int i = 0;

while (true) ({ Inserts new page
stamper.insertPage (++1, reader.getPageSize(l)) ; <F4J
stamper.getUnderContent (i) .addTemplate (page, 0, 0); <}45> setscanvaSOf_
ct.setCanvas (stamper.getOverContent (1)) ; ColumnText object
ct.setSimpleColumn (36, 36, 559, 770); Adds content
if (!ColumnText.hasMoreText (ct.go())) W from ColumnText
break; to new page

itamper.close();

There’s a significant difference between what you did in chapter 3 and how you create
the ColumnText object here in 0. Normally, you have to pass a Pdf ContentByte object
with the constructor. In this case, you don’t have a reference to the direct content yet:
you use null as the parameter. You wait to set the canvas until @. In € you try to fit
the content inside a rectangle. If the content doesn’t fit on page one, you insert a sec-
ond page, and so on.

6.3.5

Adding content with PdfStamper 179

In the previous example, the TOC consists of only two pages; the actual content
consists of 39 pages. What if you want to reorder the pages?

Listing 6.17 InsertPages.java (continued)

PdfReader reader = new PdfReader (RESULT1) ;
reader.selectPages ("3-41,1-2");
PdfStamper stamper =

new PdfStamper (reader, new FileOutputStream(RESULT2)) ;
stamper.close() ;
There’s nothing new in the listing. It’s almost identical to what you did in listing 6.11,
but now you’re using selectPages () to reorder the pages. The document created by
PdfStamper will start on page 3 of the original document, go on until page 41, and
then add pages 1 and 2 at the end of the document.

These are practical examples that can be used to solve common problems with the
help of PdfStamper, and using the concept of writing to the direct content as dis-
cussed in chapter 3. In the next section, we’ll look at a totally different concept. We’ll
talk about interactive forms.

Filling out a PDF form

There are different flavors of forms in PDF. We’ll discuss the details in chapter 8,
where we’ll create forms using iText. For now, we’re going to use another tool to cre-
ate an interactive PDF form.

CREATING A FORM WITH OPEN OFFICE

Figure 6.10 shows how you can use Open Office to create an XML form document.
Using the Form Controls toolbar, you can add different kinds of form fields. Figure
6.11 shows a Film Data Sheet. It has text fields for the title, director, year, and dura-
tion. It has check boxes for the locations, because one movie can be screened in dif-
ferent movie theaters during the film festival. Finally, it has radio buttons for the

i il
&

Welcome to

OpenOffice.org

Create a new document

= (&=

E-;_:\ Text Dotument || Soreacuhest
‘l-ﬂf Presentation 'i""‘ Drawing
B oasase)| rermols

51 v
& Opep & document_
Figure 6.10 Creating

an XML form document
with Open Office Writer

180 CHAPTER 6 Working with existing PDFs

Ty
B datasheetodt - OpenOtfice.arg XML Form Document =@l & |
(fle fdit Miew Jnsent Fgrmat Tgble Took Window Help & x
BrBcBeal T KL -0 B0 -@ - W2pETQA 0,

) Defat =] =]

Film Data Sheet

7l [Tite I 1]
o [Dirmr I] | 5]
A [Vear I [Duration [T

. Cinema Paradiso 1 g5 |Official Selection: it 5 J
- Cinema Paradiso 2 1 |ofcial Selection: festival > I
.;. Cinema Paradiso 3 O Focus on the director
- Googolplex 3] |Focus en Stanley Kubrick |
T Googolplex 4 O Focus on Akira Kurosawa
- Googolplex 7 O Focus on Zhang Yimen O
Googolplex §] |Focus onAng Les O
e The Majestic 2 [|Focus on Kim Ki-Duk 3] -
e = — T = Background color,... ~
i - | =
TEEEE = B% - - e, T
Pagel/1 Default et | s || || (o000 ot6x0m| (DB |8——e—— @ 100% |J
Figure 6.11 Creating fields in an Open Office document
category, because each film in the selection —
. PDF Options L=
belongs to only one category. The properties
. | General | Initial Vi User Interf. Links | Securi
for each of these fields—name, possible val- || = P et ik e
. nge -
ues, and so on—are set in a separate Proper- @A
ties dialog box. © Boges
When you create such a document, you : o
. . mages —
may want to save it as an ODT file first. This © Lossless compression
will allow you to edit the document after- @.JPEG compression _ _
wards, in case something has to be changed. i3 , (0% 5
i [”] Reduce image resolution {300 DPI - |
Then choose File > Export as PDF to open the R —_—
PDF Options dialog box shown in figure 6.12. [l PRF/A-L
Make sure that the check box next to [il‘gg'd i
: . | Create PDF form
Create PDF Form is checked. The resulting =)
A . Submit format HTML B]
PDF document will be a form, as shown in 7] Export bookmarks
figure 6.13. [Export notes
This is an interactive form. You can start BB it ncenanicaly et Eeb gt
entering data manually into the fields you _
defined. However, when using Adobe [Export |[conce |[Hep

Reader, you’ll get a message saying, “You
cannot save data typed into this form.” In .0 615 Exporting an Open Office
section 9.2, you’ll see how data entered in a document as a PDF form

Adding content with PdfStamper 181

T datasheet pdf - Adobe Reader i

B e =]

Film Data Sheet

| Title

| Director

[\'c:lr Duration

Cinema Paradiso 1 Official Selection: competition

The Majestic 2 Focus on Kim Ki-Duk

|

Cinema Paradiso 2 O Official Selection: festival
Cmnema Paradiso 3 El Focus on the director
Googolplex 3 | Focus on Stanley Kubrick
Googolplex 4 1) Focus on Akira Kurosawa
Googolplex 7 7] Focus on Zhang Yimou
Googolplex § 1 Focus on Ang Lee

O

=]

The Majesnc 3 Focus on Guillermo del Toro

World cinema

French cinema

Scandinavian cinema

South-Amencan cimema

Figure 6.13 A form created with Open Office Writer

form that has a Submit button can be posted to a server, but the film data sheet you're
using in this chapter was created for a different purpose: you’re going to fill it out pro-
grammatically, using iText and PdfStamper. That is, after you’ve learned how to
inspect the form.

INSPECTING THE FORM AND ITS FIELDS
If you want to fill out the form using iText, you need to know the name of each field
you want to fill out. In the case of check boxes and radio buttons, you also need to
know the different values that can be chosen. You know these names and values if
you’ve created the form yourself, but in most cases the form will be created by a
graphical designer. As a developer, you’ll have to inspect the form to find out which
names were used.

Listing 6.18 shows the different types of fields you can encounter. These types will
be discussed in detail in chapter 8, except for signature fields, which will be discussed
in chapter 12.

Listing 6.18 Forminformation.java

Gets read-only

PdfReader reader = new PdfReader (DATASHEET) ; AcroFields instance

AcroFields form = reader.getAcroFields() ;

Set<String> fields = form.getFields () .keySet () ;
for (String key : fields) { Gets all field names

182

CHAPTER 6 Working with existing PDFs

writer.print(key + ": ");
switch (form.getFieldType (key)) {
case AcroFields.FIELD_TYPE CHECKBOX:
writer.println ("Checkbox") ;
break;
case AcroFields.FIELD_TYPE COMBO:
writer.println ("Combobox") ;
break;
case AcroFields.FIELD_TYPE LIST:
writer.println("List");
break;
case AcroFields.FIELD_TYPE NONE:
writer.println ("None") ;
break;
case AcroFields.FIELD_TYPE PUSHBUTTON:
writer.println ("Pushbutton") ;
break;
case AcroFields.FIELD_TYPE RADIOBUTTON:
writer.println ("Radiobutton") ;
break;
case AcroFields.FIELD_TYPE SIGNATURE:
writer.println("Signature") ;
break;
case AcroFields.FIELD TYPE TEXT:
writer.println("Text") ;
break;
default:
writer.println("?");
}
}

writer.println("Possible values for CP_1:");
String[] states = form.getAppearanceStates("CP_1");
for (int i = 0; i < states.length; i++) ({
writer.print (" - ");
writer.println(states[i]);
1
writer.println("Possible values for category:");
states = form.getAppearanceStates ("category") ;
for (int i = 0; i < states.length - 1; i++) {
writer.print (states[i]);
writer.print (", ");
}

writer.println(states[states.length - 11);

Checks
field type

Gets different values
for check box CP_lI

Gets different values for
radio group category

The result when executing this code for the form shown in figure 6.13 looks like this:

MA 2: Checkbox
GP_8: Checkbox
GP_7: Checkbox
director: Text
CP_1: Checkbox
MA_3: Checkbox
CP_2: Checkbox
CP_3: Checkbox
title: Text

Adding content with PdfStamper 183

duration: Text
category: Radiobutton
GP_3: Checkbox
GP_4: Checkbox
year: Text
Possible values for CP_1:
- Off
- Yes
Possible values for category:
spec, toro, anim, comp, hero, Off, worl, rive, teen, kim,
kauf, zha, fest, s-am, fdir, lee, kubr, kuro, fran, scan
Note that the movie theaters are stored in the database like this: CP.1, GP.3, MA.3, ...
But when you define the check boxes using Open Office (as in figure 6.11), you
replace the dot with an underscore character because the dot character is forbidden
in field names.

A check box has two possible values that correspond with an appearance state. In the
case of the locations, the value can be 0Of f—the check box isn’t checked—or Yes—the
check box is checked. These values can vary from PDF to PDF, so it’s important to
check the possible states before you start filling out the form. The possible values for
the group of radio buttons is either Off—no radio button is selected—or a code that
corresponds with the keyword field in the festival_category table (see figure 3.4).

Now that you’ve inspected the form, you have enough information to fill it out
using iText.

FILLING OUT THE FORM
Filling out forms programmatically is usually done for two reasons: prefilling data in
an editable form, and presenting information in a standard layout.

Imagine an online insurance company. When a customer wants to report an inci-
dent, they can log in, and choose among a number of PDF forms. These forms contain
a number of standard fields with content that’s already present in the company’s data-
base: name, address, and so on. When the customer logs in, the application could
have access to this information, so why require the customer to enter all this informa-
tion manually? Wouldn’t it be better to take the blank form and prefill part of the
information to save time for the customer?

That’s what’s done in figure 6.14. The film data sheet is filled with data from the
database, but the data is still editable. In the context of an insurance company, the
customer’s phone number could be filled in, but the customer could still change it in
case his number has changed.

Another typical use of PDF forms is when you want to use the form as a standard
template. You don’t really need a form to communicate with an end user. You just
want to create documents that share the same structure, but with differing content.

The PDF shown in figure 6.15 was made using the Film Data Sheet form, but it’s no
longer interactive. The form has disappeared. The fields were only used as placehold-
ers for the film title, director, and so on.

The process of keeping the data but removing the form is called flattening, and
there are different possibilities in-between. You can choose to flatten only specific

184 CHAPTER 6 Working with existing PDFs

T imdb0948530.pdf - Adobe Reader

Film Data Sheet

Title Moscou, Belgium

Director Christophe Van Rompaey

Year 2008

Duration 102

Cinema Paradiso 1 £3) Official Selection: competition Q
Cinema Paradiso 2 X Official Selection: festival o
Cinema Paradiso 3 3 Focus on the director ©
Googolplex 3 3] Focus on Stanley Kubrick o
Googolplex 4] Focus on Akira Kurosawa o
Googolplex 7 Focus on Zhang Yimou o
Googolplex 8] Focus on Ang Lee o
The Majestic 2 B Focus on Kim Ki-Duk Q
The Majestic 3 [Focus on Guillermo del Toro o
World cinema ®
French cinema o] -

Figure 6.14 A form filled out using iText

fields, or you can change the status of specific fields to read-only. For instance, a cus-
tomer of an insurance company is allowed to change their telephone number on the
prefilled form, but not their name. Flattening will be discussed in chapter 8; in this
chapter, you'll only use the basic mechanism of form filling.

" OS5 2613 pat - Aclobe Reader =@ "
Film Data Sheet

[Tu]c | Gone Baby Gone I

EDjl« tor [Ban Aflack I

[veus [2007 Duration 1]

Cinema Paradiso 1 O |Official Selection: competition O

Cinsema Paradiso 2 m] Official Selection: festival @

Cinema Paradiso 3 O Focus on the director o]

| Googolplex 3 [|Focus on Stanley Kubrick (o]

|Googolplex 4 O |Focus on Akira Kuresawa o

| Googolplex 7 [l Focus on Zhang Yimou (o]

| Googolplex 8 [@ |Focuws onAngLee o

The Majestic 2 O |Focus on Kim Ki-Duk o

e o s F— on e = =

Figure 6.15 A form filled out and flattened using iText

Adding content with PdfStamper 185

Listing 6.19 FillDataSheet.java

public static void main(String[] args)
throws SQLException, IOException, DocumentException {
DatabaseConnection connection = new HsgldbConnection("filmfestival") ;
List movies = PojoFactory.getMovies (connection) ;
PdfReader reader;
PdfStamper stamper;

for (Movie movie : movies) { Gets AcroFields
if (movie.getYear() < 2007) instance from stamper
continue;
reader = new PdfReader (DATASHEET) ;
stamper = new PdfStamper (reader, Creates reader
new FileOutputStream(and stamper
String.format (RESULT, movie.getImdb())));
fill (stamper.getAcroFields (), movie) ; B —
if (movie.getYear() == 2007)
stamper.setFormFlattening (true) ; % Flattens forms for
stamper.close() ; Closes movies in 2007
} stamper

connection.close () ;

}

public static void fill (AcroFields form, Movie movie)

throws IOException, DocumentException {
form.setField("title", movie.getMovieTitle()) ;
form.setField("director", getDirectors (movie)) ;
form.setField("year",

String.valueOf (movie.getYear())) ;
form.setField ("duration",

String.valueOf (movie.getDuration())) ;
form.setField("category",

movie.getEntry () .getCategory () .getKeyword()) ;
for (Screening screening

Fills out
fields

movie.getEntry () .getScreenings()) {
form.setField(
screening.getLocation() .replace('.', ' '), "Yes");

}
}

In this listing, you're creating a separate document for every movie in the database
that was made after 2006. The new reader instance is created inside the loop.

FAQ Why do I get a DocumentException saying “The original document was
reused. Read it again from file.”? Every PdfReader object can be used for one
and only one PdfStamper object. Loo