
M A N N I N G

Bruno Lowagie

SECOND EDITION

Covers iText 5

SAMPLE CHAPTER

iText in Action, Second Edition

by Bruno Lowagie

Chapter 6

Copyright 2010 Manning Publications

vii

brief contents
PART 1 CREATING PDF DOCUMENTS FROM SCRATCH1

1 ■ Introducing PDF and iText 3

2 ■ Using iText’s basic building blocks 20

3 ■ Adding content at absolute positions 57

4 ■ Organizing content in tables 93

5 ■ Table, cell, and page events 122

PART 2 MANIPULATING EXISTING PDF DOCUMENTS...............157

6 ■ Working with existing PDFs 159

7 ■ Making documents interactive 194

8 ■ Filling out interactive forms 236

PART 3 ESSENTIAL ITEXT SKILLS..281

9 ■ Integrating iText in your web applications 283

10 ■ Brightening your document with color and images 317

11 ■ Choosing the right font 349

12 ■ Protecting your PDF 380

BRIEF CONTENTSviii

PART 4 UNDER THE HOOD...411

13 ■ PDFs inside-out 413

14 ■ The imaging model 452

15 ■ Page content and structure 493

16 ■ PDF streams 526

Part 2

Manipulating
 existing PDF documents

Part 2 deals with existing PDF files, be they documents created with iText as
discussed in part 1, or PDFs created with Adobe Acrobat, Open Office, or any
other PDF producer. You’ll learn different ways to copy, stamp, split, and merge
documents. You’ll add actions and JavaScript, and you’ll learn all about filling
out interactive forms.

159

Working
 with existing PDFs

When I wrote the first book about iText, the publisher didn’t like the subtitle “Cre-
ating and Manipulating PDF.” He didn’t like the word manipulating because of some
of its pejorative meanings. If you consult the dictionary on Yahoo! education, you’ll
find the following definitions:

■ To influence or manage shrewdly or deviously
■ To tamper with or falsify for personal gain

Obviously, that’s not what the book is about. The publisher suggested “Creating
and Editing PDF” as a better subtitle. I explained that PDF isn’t a document format
well suited for editing. PDF is an end product. It’s a display format. It’s not a word pro-
cessing format.

This chapter covers
■ Importing pages from existing PDF documents
■ Adding content to existing PDF documents and

filling forms
■ Copying pages from existing PDF documents

160 CHAPTER 6 Working with existing PDFs

 In a word processing format, the content is distributed over different pages when
you open the document in an application, not earlier. This has some disadvantages: if
you open the same document in different applications, you can end up with a differ-
ent page count. The same text snippet can be on page X when looked at in Microsoft
Word, and on page Y when viewed in Open Office. That’s exactly the kind of problem
you want to avoid by choosing PDF.

 In a PDF document, every character or glyph on a PDF page has its fixed position,
regardless of the application that’s used to view the document. This is an advantage,
but it also comes with a disadvantage. Suppose you want to replace the word “edit”
with the word “manipulate” in a sentence, you’d have to reflow the text. You’d have to
reposition all the characters that follow that word. Maybe you’d even have to move a
portion of the text to the next page. That’s not trivial, if not impossible.

 If you want to “edit” a PDF, it’s advised that you change the original source of the
document and remake the PDF. If the original document was written using Microsoft
Word, change the Word document, and make the PDF from the new version of the
Word document. Don’t expect any tool to be able to edit a PDF file the same way you’d
edit a Word document.

 This being said, the verb “to manipulate” also means

■ To move, arrange, operate, or control by the hands or by mechanical means,
especially in a skillful manner

That’s exactly what you’re going to do in this chapter. Using iText, you’re going to
manipulate the pages of a PDF file in a skillful manner. You’re going to treat a PDF
document as if it were made of digital paper.

 But before you can take copies of pages or add new content, you’ll need an object
that can “read” an existing PDF document.

6.1 Accessing an existing PDF with PdfReader
First, we’ll look at how you can retrieve information about the document you’re going
to manipulate. For instance, how many pages does the original document have?
Which page size is used? All of this is done with a PdfReader object.

6.1.1 Retrieving information about the document and its pages

In this first example, we’ll inspect some of the PDF documents you created in part 1.
You can query a PdfReader instance to get the number of pages in the document, the
rectangle defining the media box, the rotation of the page, and so on.

public static void inspect(PrintWriter writer, String filename)
 throws IOException {
 PdfReader reader = new PdfReader(filename);
 writer.println(filename);
 writer.print("Number of pages: ");
 writer.println(reader.getNumberOfPages());

Listing 6.1 PageInformation.java

161Accessing an existing PDF with PdfReader

 Rectangle mediabox = reader.getPageSize(1);
 writer.print("Size of page 1: [");
 writer.print(mediabox.getLeft());
 writer.print(',');
 writer.print(mediabox.getBottom());
 writer.print(',');
 writer.print(mediabox.getRight());
 writer.print(',');
 writer.print(mediabox.getTop());
 writer.println("]");
 writer.print("Rotation of page 1: ");
 writer.println(reader.getPageRotation(1));
 writer.print("Page size with rotation of page 1: ");
 writer.println(reader.getPageSizeWithRotation(1));
 writer.print("File length: ");
 writer.println(reader.getFileLength());
 writer.print("Is rebuilt? ");
 writer.println(reader.isRebuilt());
 writer.print("Is encrypted? ");
 writer.println(reader.isEncrypted());
 writer.println();
 writer.flush();
}

The following output was obtained while inspecting some of the PDFs from chap-
ters 1 B and C, 3 D, and 5 E.

results/part1/chapter01/hello_landscape1.pdf
Number of pages: 1
Size of page 1: [0.0,0.0,612.0,792.0]
Rotation of page 1: 90
Page size with rotation of page 1:
 Rectangle: 792.0x612.0 (rot: 90 degrees)
Is rebuilt? false
Is encrypted? false

results/part1/chapter01/hello_landscape2.pdf
Number of pages: 1
Size of page 1: [0.0,0.0,792.0,612.0]
Rotation of page 1: 0
Page size with rotation of page 1:
 Rectangle: 792.0x612.0 (rot: 0 degrees)
Is rebuilt? false
Is encrypted? false

results/part1/chapter03/movie_templates.pdf
Number of pages: 8
Size of page 1: [0.0,0.0,595.0,842.0]
Rotation of page 1: 90
Page size with rotation of page 1:
 Rectangle: 842.0x595.0 (rot: 90 degrees)
Is rebuilt? false
Is encrypted? false

results/part1/chapter05/hero1.pdf
Number of pages: 1

Output from PDF
in chapter 1

Output from PDF
in chapter 1

Output from PDF
in chapter 3

Output from PDF
in chapter 5

162 CHAPTER 6 Working with existing PDFs

Size of page 1: [-1192.0,-1685.0,1192.0,1685.0]
Rotation of page 1: 0
Page size with rotation of page 1:
 Rectangle: 2384.0x3370.0 (rot: 0 degrees)
Is rebuilt? false
Is encrypted? false

The most important PdfReader methods you’ll use in this chapter are getNumberOf-
Pages() and getPageSizeWithRotation(). The former method will be used to loop
over all the pages of the existing document; the latter is a combination of the methods
getPageSize() and getPageRotation().

PAGE SIZE

The first two examples show the difference between creating a document with land-
scape orientation using

Document document = new Document(PageSize.LETTER.rotate());

and a document created using

Document document = new Document(new Rectangle(792, 612));

This difference will matter when you import a page or when you stamp extra content
on the page. Observe that in example E of the earlier output, the coordinates of the
lower-left corner are different from (0,0) because that’s how I defined the media box
in section 5.3.1.

BROKEN PDFS

When you open a corrupt PDF file in Adobe Reader, you can expect the message,
“There was an error opening this document. The file is damaged and could not be
repaired.” PdfReader will also throw an exception when you try to read such a file. You
can get an InvalidPdfException with the following message: “Rebuild failed: trailer
not found; original message: PDF startxref not found.” If that happens, iText can’t do
anything about it: the file is damaged, and it can’t be repaired. You’ll have to contact
the person who created the document, and ask him or her to create a version of the
document that’s a valid PDF file.

 In other cases, for example if a rogue application added unwanted carriage return
characters, Adobe Reader will open the document and either ignore the fact that the
PDF isn’t syntactically correct, or will show the warning “The file is damaged but is
being repaired” very briefly. PdfReader can also overcome small damages like this. No
alert box is shown, because iText isn’t necessarily used in an environment with a GUI.
You can use the method isRebuilt() to check whether or not a PDF needed repairing.

 You may also have difficulties trying to read encrypted PDF files.

ENCRYPTED PDFS

PDF files can be protected by two passwords: a user password and an owner password.
If a PDF is protected with a user password, you’ll have to enter this password before
you can open the document in Adobe Reader. If a document has an owner password,
you must provide the password along with the constructor when creating a PdfReader

Output from PDF
in chapter 5

163Accessing an existing PDF with PdfReader

instance, or a BadPasswordException will be thrown. More details about the different
ways you can encrypt a PDF document, and about the different permissions you can
set, will follow in chapter 12.

6.1.2 Reducing the memory use of PdfReader

In most of this book’s examples, you’ll create an instance of PdfReader using a String
representing the path to the existing PDF file. Using this constructor will cause
PdfReader to load plenty of PDF objects (from the file) into Java objects (in memory).
This can be overkill for large documents, especially if you’re only interested in part of
the document. If that’s the case, you can choose to read the PDF only partially.

PARTIAL READS

Suppose you have a document with 1000 pages. PdfReader will do a full read of these
pages, even if you’re only interested in page 1. You can avoid this by using another
constructor. You can compare the memory used by different PdfReader instances cre-
ated to read the timetable PDF from chapter 3:

public static void main(String[] args) throws IOException {
 MovieTemplates.main(args);
 PrintWriter writer = new PrintWriter(new FileOutputStream(RESULT));
 fullRead(writer, MovieTemplates.RESULT);
 partialRead(writer, MovieTemplates.RESULT);
 writer.close();
}
public static void fullRead(PrintWriter writer, String filename)
 throws IOException {
 long before = getMemoryUse();
 PdfReader reader = new PdfReader(filename);
 reader.getNumberOfPages();
 writer.println(String.format("Memory used by full read: %d",
 getMemoryUse() - before));
 writer.flush();
}
public static void partialRead(PrintWriter writer, String filename)
 throws IOException {
 long before = getMemoryUse();
 PdfReader reader = new PdfReader(
 new RandomAccessFileOrArray(filename), null);
 reader.getNumberOfPages();
 writer.println(String.format("Memory used by partial read: %d",
 getMemoryUse() - before));
 writer.flush();
}

The file size of the timetable document from chapter 3 is 15 KB. The memory used by
a full read is about 35 KB, but a partial read needs only 4 KB. This is a significant differ-
ence. When reading a file partially, more memory will be used as soon as you start
working with the reader object, but PdfReader won’t cache unnecessary objects. That

Listing 6.2 MemoryInfo.java

164 CHAPTER 6 Working with existing PDFs

also makes a huge difference, so if you’re dealing with large documents, consider
using PdfReader with a RandomAccessFileOrArray parameter constructed with a path
to a file.

NOTE In part 4, you’ll see how to manipulate a PDF at the lowest level.
You’ll change PDF objects in PdfReader and then save the altered PDF. For
this to work, the modified objects need to be cached. Depending on the
changes you want to apply, using a PdfReader instance created with a Ran-
domAccessFileOrArray may not be an option.

Another way to reduce the memory usage of PdfReader up front is to reduce the num-
ber of pages before you start working with it.

SELECTING PAGES

Next, you’ll read the timetable from example 3 once again, but you’ll immediately tell
PdfReader that you’re only interested in pages 4 to 8.

PdfReader reader = new PdfReader(MovieTemplates.RESULT);
reader.selectPages("4-8");

The general syntax for the range that’s used in the selectPages() method looks like
this:

[!][o][odd][e][even]start[-end]

You can have multiple ranges separated by commas, and the ! modifier removes pages
from what is already selected. The range changes are incremental; numbers are added
or deleted as the range appears. The start or the end can be omitted; if you omit
both, you need at least o (odd; selects all odd pages) or e (even; selects all even pages).

 If you ask the reader object for the number of pages before selectPages() in list-
ing 6.3, it will tell you that the document has 8 pages. If you do the same after making
the page selection, it will tell you that there are only 5 pages: pages 4, 5, 6, 7, and 8.
The old page 4 will be the new page 1. Be careful not to try getting information about
pages that are outside the new range. Don’t add the following line to listing 6.3:

reader.getPageSize(6);

This line will throw a NullPointerException because there are no longer 6 pages in
the reader object.

 Now that you’ve had a short introduction to PdfReader, you’re ready to start
manipulating existing PDF documents.

6.2 Copying pages from existing PDF documents
You probably remember the Superman PDF from chapter 5. The Hero example
imported a plain text file containing PDF syntax into the direct content. I explained
that this wasn’t standard practice. If you want to reuse existing content, it’s dangerous

Listing 6.3 SelectPages.java

165Copying pages from existing PDF documents

to copy and paste PDF syntax like I did in listing 5.14. There are safer ways to import
existing content, as you’ll find out in the next example.

 In this section, you’ll use an object named PdfImportedPage to copy the content from
an existing PDF opened with PdfReader into a new Document written by PdfWriter.

6.2.1 Importing pages

Let’s continue working with the timetable from chapter 3. Suppose you want to reuse
the pages of this document and treat them as if every page were an image. Figure 6.1
shows how you could organize these imported pages into a PdfPTable. The document
in the front of figure 6.1 is created with the code in listing 6.4.

Document document = new Document();
PdfWriter writer = PdfWriter.getInstance(
 document, new FileOutputStream(RESULT));
document.open();
PdfPTable table = new PdfPTable(2);
PdfReader reader = new PdfReader(MovieTemplates.RESULT);
int n = reader.getNumberOfPages();
PdfImportedPage page;
for (int i = 1; i <= n; i++) {
 page = writer.getImportedPage(reader, i);
 table.addCell(Image.getInstance(page));
}
document.add(table);
document.close();

Listing 6.4 ImportingPages1.java

Figure 6.1 Importing pages from an existing PDF document

Step 1

Step 2

Step 3

Step 4
Step 5

166 CHAPTER 6 Working with existing PDFs

You’ll recognize the five steps in the PDF creation process discussed in part 1. Now
you’re also creating a PdfReader object and looping over all the pages, getting PdfIm-
portedPage instances with the getImportedPage() method (as highlighted in bold).
What does this method do?

PAGE CONTENT AND RESOURCES

If you browse the API of the PdfReader class, you’ll discover the getPageContent()
method, which returns the content stream of a page. This content stream is very simi-
lar to what’s inside the hero.txt file. In general, such a content stream contains refer-
ences to external objects, images, and fonts.

 In section 3.4.1, for instance, we examined the PDF syntax needed to draw a raster
image:

q 232 0 0 362 25.5 27 cm /img0 Do Q

In this snippet, /img0 referred to a key in the /Resources dictionary of the page. The
corresponding value was a reference to a stream object containing the bits and bytes of
the image. Without the bits and bytes of the image, the PDF syntax referring to /img0
is meaningless.

WARNING It doesn’t make sense to get the content stream of a page from
one PDF document, and copy that stream into another PDF without copying
all the resources that are needed.

The Hero example was an exception: the syntax to draw the vector image of Superman
was self-contained, and this is very unusual. As soon as there’s text involved, you’ll
have at least a reference to a font. If you don’t copy that font, you’ll get warnings or
errors, such as “Could not find a font in the Resources dictionary.” That’s why it’s
never advisable to extract a page from PdfReader directly. Instead, you should pass the
reader object to the writer class, and ask the writer (not the reader!) to import a page.
A PdfImportedPage object is returned. Behind the scenes, all the necessary resources
(such as images and fonts) are retrieved and copied to the writer.

FAQ Why are all my links lost when I copy a page with PdfImportedPage? It’s
important to understand the difference between resources needed to ren-
der the content of a page and the interactive features of a page. In general,
these features are called annotations. They include links, text annotations,
and form fields. Annotations aren’t part of the content stream. They aren’t
listed in the resources dictionary of the page, but in the annotation diction-
ary. These interactive features aren’t copied when using PdfImportedPage,
which means that all interactivity is lost when copying a page with the get-
ImportedPage() method of the PdfWriter class.

The PdfImportedPage class extends PdfTemplate, but you can’t add any new content
to it. It’s a read-only XObject you can reuse in a document with the method addTem-
plate(); or you can wrap it inside an Image. You’ve already used these techniques in

167Copying pages from existing PDF documents

section 3.4. The original dimensions of each imported page are the same as the origi-
nal media box, but in this example, the PdfImportedPages are scaled to fit inside a
table. Note that the rotation of the original page isn’t taken into account. If that’s a
problem, you’ll have to apply the rotation.

PdfPTable table = new PdfPTable(2);
for (int i = 1; i <= n; i++) {
 page = writer.getImportedPage(reader, i);
 table.getDefaultCell().setRotation(-reader.getPageRotation(i));
 table.addCell(Image.getInstance(page));
}

You can see the result in figure 6.1 (the figure in the back). Observe that cell and
image rotations go counterclockwise. In the next example, we’ll look at how to apply
more transformations.

6.2.2 Scaling and superimposing pages

You can transform pages in iText, just like you can transform images. Do you remem-
ber figure 3.2? That was the image I used to explain the different content layers used
by iText. I created this image by generating a document with four pages, and then
importing those pages into a new one; see figure 6.2.

 The imported pages are added to the new PDF document using addTemplate().
The parameters are calculated so that each page is scaled and skewed.

Listing 6.5 ImportingPages2.java

Figure 6.2 Scaling and skewing pages from an existing PDF

168 CHAPTER 6 Working with existing PDFs

PdfContentByte canvas = writer.getDirectContent();
PdfImportedPage page;
BaseFont bf = BaseFont.createFont(BaseFont.ZAPFDINGBATS, "",

BaseFont.EMBEDDED);
for (int i = 0; i < reader.getNumberOfPages();) {
 page = writer.getImportedPage(reader, ++i);
 canvas.addTemplate(page, 1f, 0, 0.4f, 0.4f, 72, 50 * i);
 canvas.beginText();
 canvas.setFontAndSize(bf, 20);
 canvas.showTextAligned(Element.ALIGN_CENTER,
 String.valueOf((char)(181 + i)), 496, 150 + 50 * i, 0);
 canvas.endText();
}

A common technique used with PDF files is called superimposing.

SUPERIMPOSING PDF PAGES

Superimposing means that you add different PDF pages on top of each other on the
same page. You could do this with the four pages shown to the left in figure 6.2 to
obtain the PDF shown in figure 6.3.

PdfReader reader = new PdfReader(SOURCE);
Document document = new Document(PageSize.POSTCARD);
PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream(RESULT));
document.open();
PdfContentByte canvas = writer.getDirectContent();
PdfImportedPage page;

Listing 6.6 Layers.java

Listing 6.7 Superimposing.java

Figure 6.3 PDF created by
superimposing four different pages

169Copying pages from existing PDF documents

for (int i = 1; i <= reader.getNumberOfPages(); i++) {
 page = writer.getImportedPage(reader, i);
 canvas.addTemplate(page, 1f, 0, 0, 1, 0, 0);
}
document.close();

Superimposing is often used to create documents with a standard header and footer.

IMPORTING COMPANY STATIONERY

Suppose your company has preprinted paper containing the company name and logo
in the letterhead, and maybe also a watermark. All letters are printed on this company
stationery. You can achieve something similar with PDF, as shown in figure 6.4.

In figure 6.4, the PDF to the left is the equivalent of the preprinted paper. When creat-
ing a new document, as shown to the right, the template page is imported and added
to the background of each new page using a page event.

public class Stationery extends PdfPageEventHelper {
 protected PdfImportedPage page;

 public void useStationary(PdfWriter writer) throws IOException {
 writer.setPageEvent(this);
 PdfReader reader = new PdfReader(STATIONERY);
 page = writer.getImportedPage(reader, 1);

Listing 6.8 Stationery.java

Figure 6.4 Using an existing PDF as background image for new PDFs

170 CHAPTER 6 Working with existing PDFs

 }

 public void onEndPage(PdfWriter writer, Document document) {
 writer.getDirectContentUnder().addTemplate(page, 0, 0);
 }
}

We’ll conclude the series of PdfImportedPage examples by introducing two more
concepts.

6.2.3 N-up copying and tiling PDF documents

When searching for PDF tools on the internet, you’ll find numerous small tools that
are designed to meet specific requirements, such as one that creates an N-up layout in
a PDF file.

 To cut paper costs by 50 percent when printing a PDF document, you can copy an
existing PDF into a new one that has half the number of pages. All you have to do is
put two pages next to each other on one page. This is called 2-up copying. Figure 6.5
shows the document you created in the previous example in its 2-up, 4-up, 8-up,
and 16-up forms.

 Most of the tools you can find online have iText on the inside.

Figure 6.5 N-up copying combines multiple pages onto one page

171Copying pages from existing PDF documents

public void manipulatePdf(String src, String dest, int pow)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 Rectangle pageSize = reader.getPageSize(1);
 Rectangle newSize = (pow % 2) == 0 ?
 new Rectangle(
 pageSize.getWidth(), pageSize.getHeight()) :
 new Rectangle(
 pageSize.getHeight(), pageSize.getWidth());
 Rectangle unitSize = new Rectangle(
 pageSize.getWidth(), pageSize.getHeight());
 for (int i = 0; i < pow; i++) {
 unitSize = new Rectangle(
 unitSize.getHeight() / 2, unitSize.getWidth());
 }
 int n = (int)Math.pow(2, pow);
 int r = (int)Math.pow(2, pow / 2);
 int c = n / r;

 Document document = new Document(newSize, 0, 0, 0, 0);
 PdfWriter writer = PdfWriter.getInstance(document,
 new FileOutputStream(String.format(dest, n)));
 document.open();
 PdfContentByte cb = writer.getDirectContent();
 PdfImportedPage page;
 Rectangle currentSize;
 float offsetX, offsetY, factor;
 int total = reader.getNumberOfPages();
 for (int i = 0; i < total;) {
 if (i % n == 0) {
 document.newPage();
 }
 currentSize = reader.getPageSize(++i);
 factor = Math.min(
 unitSize.getWidth() / currentSize.getWidth(),
 unitSize.getHeight() / currentSize.getHeight());
 offsetX = unitSize.getWidth() * ((i % n) % c)
 +(unitSize.getWidth()
 - (currentSize.getWidth() * factor))/2f;
 offsetY = newSize.getHeight()
 - (unitSize.getHeight() * (((i % n) / c) + 1))
 + (unitSize.getHeight()
 - (currentSize.getHeight() * factor))/2f;
 page = writer.getImportedPage(reader, i);
 cb.addTemplate(page,
 factor, 0, 0, factor, offsetX, offsetY);
 }
 document.close();
}

Listing 6.9 NUp.java

Gets original
page size

Sets page size of
new document

Calculates page
size of unit

Calculates
helper variables

Calculates
scale factor

Calculates
offset

Scales and
positions page

172 CHAPTER 6 Working with existing PDFs

The opposite of N-up copying a PDF file is when you have one page, and you want to
print it on different pages; see figure 6.6. We already looked at this in chapter 5, but
now you’ll do the exercise again using PdfImportedPage.

 The next bit of code takes one page from a PDF document and scales it so that the
one page is “tiled” over 16 pages.

public void manipulatePdf(String src, String dest)
 throws IOException, DocumentException {
 PdfReader reader = new PdfReader(src);
 Rectangle pagesize = reader.getPageSizeWithRotation(1);
 Document document = new Document(pagesize);
 PdfWriter writer =
 PdfWriter.getInstance(document, new FileOutputStream(dest));
 document.open();
 PdfContentByte content = writer.getDirectContent();
 PdfImportedPage page = writer.getImportedPage(reader, 1);
 float x, y;
 for (int i = 0; i < 16; i++) {
 x = -pagesize.getWidth() * (i % 4);
 y = pagesize.getHeight() * (i / 4 - 3);
 content.addTemplate(page, 4, 0, 0, 4, x, y);
 document.newPage();
 }
 document.close();
}

Listing 6.10 TilingHero.java

Figure 6.6 Scaling and tiling a PDF file

173Adding content with PdfStamper

In this section, we’ve been reusing content from existing PDF documents in a new doc-
ument. You can take digital photocopies of existing pages, scale them up or down, and
use them as if they were an image or an XObject.

 In the next section, we’re going to take an existing PDF and add extra content.

6.3 Adding content with PdfStamper
Up until now, we’ve created new documents using the five steps in the iText docu-
ment-creation process. In this chapter we’ll add content to an existing document
using PdfStamper.

 PdfStamper uses a different mechanism, as demonstrated in the manipulateWith-
Stamper() method.

public static void main(String[] args)
 throws IOException, DocumentException {
 new MovieTemplates().createPdf(MovieTemplates.RESULT);
 PdfReader reader = new PdfReader(MovieTemplates.RESULT);
 reader.selectPages("4-8");
 manipulateWithStamper(reader);
 ...
}
private static void manipulateWithStamper(PdfReader reader)
 throws IOException, DocumentException {
 PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT1));
 stamper.close();
}

You’ve already seen part of this example in listing 6.3. It’s an example that creates a
new PDF document containing only a selection of pages from the original document.
In B, you create a PdfReader that will read the 8 pages of the timetable PDF, but you
immediately tell the reader that you’re only interested in pages 4 to 8. In C, you cre-
ate a PdfStamper object. As soon as you close the stamper, a new document will be cre-
ated. It will contain only 5 pages. You can add content between the constructor and
the close() method.

6.3.1 Adding content at absolute positions

Let’s start with the “Hello World” examples with paper size Letter in landscape format
from chapter 1. There were two versions of this example. Let’s add the words “Hello
people!”

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
PdfContentByte canvas = stamper.getOverContent(1);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, new Phrase("Hello people!"), 36, 540, 0);
stamper.close();

Listing 6.11 SelectPages.java

Listing 6.12 StampText.java

B

C

174 CHAPTER 6 Working with existing PDFs

The getOverContent() method is similar to the getDirectContent() method dis-
cussed in chapter 3. It returns a PdfContentByte object that allows you to write to a
new layer that goes on top of the existing content of the page you choose. There’s also
a getUnderContent() method, which is the equivalent of getDirectContentUnder().

NOTE The methods getOverContent() and getUnderContent() give you
the option to write to the direct content on a layer that goes on top of or
below the existing content. They don’t give you access to the layer with the
existing content. You can’t use these methods to replace existing content,
nor to complete it. It’s not possible to say: “I want to add the words ‘Hello
people!’ after the words ‘Hello World’.” You can only add those words to the
layer above or below the existing content at an absolute position whose coor-
dinates you know.

The media box of the file that was used as the basis for hello3.pdf was 792 pt x 612 pt.
I’ve added the extra text at the coordinates (36,540). That’s near the top-left corner.
The file used as the basis for hello1.pdf had a media box measuring 612 pt x 792 pt,
but the page had a rotation of 90 degrees. The difference between these two ways of
creating a page in landscape is made transparent: iText took the rotation into account
and rotated the coordinate system. If you don’t want this, you can tell iText to ignore
the fact that the page is rotated. That’s what happened with hello2.pdf in figure 6.7.

 In the next code snippet, the extra text was added at the same coordinates as in
listing 6.12, but the rotation of the page isn’t taken into account. This is prevented
with the setRotateContents() method.

Figure 6.7 Adding text to an existing document

175Adding content with PdfStamper

PdfReader reader = new PdfReader(src);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
stamper.setRotateContents(false);
PdfContentByte canvas = stamper.getOverContent(1);
ColumnText.showTextAligned(canvas,
 Element.ALIGN_LEFT, new Phrase("Hello people!"), 36, 540, 0);
stamper.close();

We could now repeat everything that we covered in chapter 3, and explain how to
draw lines, shapes, and text to the PdfContentByte layers obtained with getOverCon-
tent() and getUnderContent(), but it’s a better idea to look at practical examples.

6.3.2 Creating a PDF in multiple passes

In section 5.4.2, we solved the “page X of Y” problem by using page events and a
PdfTemplate object. One of the problems inherent to this solution is that you don’t
know the number of pages when you create and position the placeholder. You create a
small canvas up front, but you can only add the page number once the document is
completely finished. You don’t know in advance how much space will be needed to
draw this number. Will the document eventually have 9 pages or 9999? You could
guess the number of digits beforehand and reserve enough space for them accord-
ingly, but you won’t always be able to make the right guess.

 That’s why you might consider an alternative way to add page numbers. The docu-
ment shown in figure 6.8 is made in two passes.

 In the first pass, the document is created without a header. The header, and—if
necessary—a footer and a watermark, can be added in a second pass. Note that it isn’t
necessary to create two files on disk. If the file size isn’t huge, and the memory
available in your JVM allows it, you can easily keep the file created during the first pass
in memory.

Listing 6.13 StampText.java (continued)

Figure 6.8 Adding a page X of Y header to an existing document

176 CHAPTER 6 Working with existing PDFs

ByteArrayOutputStream baos
 = new ByteArrayOutputStream();
Document document =
 new Document(PageSize.A4, 36, 36, 54, 36);
PdfWriter.getInstance(document, baos);
document.open();
...
document.close();
...
PdfReader reader = new PdfReader(baos.toByteArray());
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT));
int n = reader.getNumberOfPages();
for (int i = 1; i <= n; i++) {
 getHeaderTable(i, n).writeSelectedRows(
 0, -1, 34, 803, stamper.getOverContent(i));
}
stamper.close();

Instead of writing the document to a FileOutputStream in the first pass, you keep the
file in memory using a ByteArrayOutputStream (see section 1.3.2). In the second
pass, you use the bytes from this OutputStream to create a PdfReader instance.

FAQ PdfStamper always creates a new PDF file, but how can I manipulate the
existing file? You can’t use the same physical file used by PdfReader to create
a FileOutputStream for PdfStamper. Common sense tells us that changing a
file while you’re still reading it risks corrupting the file. There are different
ways to work around this. Some applications read a file into memory before
changing it; you could read the original file into a byte array and create a
PdfReader object as demonstrated in listing 6.13. Other applications work
with temporary files; once you’ve finished “stamping,” you could replace the
original file with the new one. Finally, you could also create the new file in
memory using a ByteArrayOutputStream, and then overwrite the original
file using these bytes. The “best choice” depends on the context. As a rule of
thumb, I prefer temporary files for applications that run on the desktop; in
a web environment, I create all files in memory.

In section 6.2, you added an existing PDF as the background of a newly created PDF
using page events. But suppose you’re given an existing PDF, and you need to add
company stationery after the fact. That’s what the next example is about.

6.3.3 Adding company stationery to an existing document

Figure 6.9 looks very similar to figure 6.4, but now you have an existing file, original.pdf,
to which you want to add the file stationary.pdf, with the file stamped_stationery.pdf
being the result.

 To achieve this, you need to import a page from one PDF and add it as the back-
ground to another PDF.

Listing 6.14 TwoPasses.java

First pass
Code that adds
content omitted

Second pass

177Adding content with PdfStamper

PdfReader reader = new PdfReader(src);
PdfReader s_reader = new PdfReader(stationery);
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(dest));
PdfImportedPage page = stamper.getImportedPage(s_reader, 1);
int n = reader.getNumberOfPages();
PdfContentByte background;
for (int i = 1; i <= n; i++) {
 background = stamper.getUnderContent(i);
 background.addTemplate(page, 0, 0);
}
stamper.close();

Here you obtain a PdfImportedPage object from PdfStamper with the getImported-
Page() method. This method writes the resources necessary to render the imported
page to the writer associated with the stamper.

 This technique is often used to add watermarks to existing document. You can eas-
ily adapt the example to add an Image with the addImage() method instead of an
imported page. All the methods from chapter 3 are at your disposal.

Listing 6.15 StampStationery.java

Figure 6.9 Adding stationery to an existing document

178 CHAPTER 6 Working with existing PDFs

NOTE This example combines PdfStamper with PdfImportedPage. All the
interactive features present in the document that’s being manipulated with
PdfStamper are preserved, but the interactive features that were present on
the page that’s being imported are lost.

As discussed in the introduction of this chapter, PDF isn’t a format that can be used
for word processing. You can’t insert a couple of lines between two existing para-
graphs on a page. You can only insert complete pages. That’s what you’re going to do
in the next example.

6.3.4 Inserting pages into an existing document

In section 5.2.4, you were faced with a problem concerning the TOC of a document.
You were only able to create the table of contents (TOC) once the document was fin-
ished. But you wanted to display the TOC before the rest of the content, not after. In
listing 5.12, you reordered the pages.

 Listing 6.16 offers an alternative solution: you could create the PDF in two passes
and add the TOC in the second pass by inserting extra pages. You could, for instance,
create a ColumnText object containing a series of Paragraphs, then you add these
Paragraphs to a number of pages that are inserted into the existing document.

ColumnText ct = new ColumnText(null);
 while (rs.next()) {
 ct.addElement(new Paragraph(24,
 new Chunk(rs.getString("country"))));
}

PdfReader reader = new PdfReader(src);
PdfReader stationery = new PdfReader(Stationery.STATIONERY);
PdfStamper stamper = new PdfStamper(reader, new FileOutputStream(dest));
PdfImportedPage page = stamper.getImportedPage(stationery, 1);
int i = 0;
while(true) {
 stamper.insertPage(++i, reader.getPageSize(1));
 stamper.getUnderContent(i).addTemplate(page, 0, 0);
 ct.setCanvas(stamper.getOverContent(i));
 ct.setSimpleColumn(36, 36, 559, 770);
 if (!ColumnText.hasMoreText(ct.go()))
 break;
}
stamper.close();

There’s a significant difference between what you did in chapter 3 and how you create
the ColumnText object here in B. Normally, you have to pass a PdfContentByte object
with the constructor. In this case, you don’t have a reference to the direct content yet:
you use null as the parameter. You wait to set the canvas until C. In D you try to fit
the content inside a rectangle. If the content doesn’t fit on page one, you insert a sec-
ond page, and so on.

Listing 6.16 InsertPages.java

B Constructs
ColumnText
object

Inserts new page

Keeps track
of page
number

Sets canvas of
ColumnText object

C

D Adds content
from ColumnText
to new page

179Adding content with PdfStamper

 In the previous example, the TOC consists of only two pages; the actual content
consists of 39 pages. What if you want to reorder the pages?

PdfReader reader = new PdfReader(RESULT1);
reader.selectPages("3-41,1-2");
PdfStamper stamper =
 new PdfStamper(reader, new FileOutputStream(RESULT2));
stamper.close();

There’s nothing new in the listing. It’s almost identical to what you did in listing 6.11,
but now you’re using selectPages() to reorder the pages. The document created by
PdfStamper will start on page 3 of the original document, go on until page 41, and
then add pages 1 and 2 at the end of the document.

 These are practical examples that can be used to solve common problems with the
help of PdfStamper, and using the concept of writing to the direct content as dis-
cussed in chapter 3. In the next section, we’ll look at a totally different concept. We’ll
talk about interactive forms.

6.3.5 Filling out a PDF form

There are different flavors of forms in PDF. We’ll discuss the details in chapter 8,
where we’ll create forms using iText. For now, we’re going to use another tool to cre-
ate an interactive PDF form.

CREATING A FORM WITH OPEN OFFICE

Figure 6.10 shows how you can use Open Office to create an XML form document.
Using the Form Controls toolbar, you can add different kinds of form fields. Figure
6.11 shows a Film Data Sheet. It has text fields for the title, director, year, and dura-
tion. It has check boxes for the locations, because one movie can be screened in dif-
ferent movie theaters during the film festival. Finally, it has radio buttons for the

Listing 6.17 InsertPages.java (continued)

Figure 6.10 Creating
an XML form document
with Open Office Writer

180 CHAPTER 6 Working with existing PDFs

category, because each film in the selection
belongs to only one category. The properties
for each of these fields—name, possible val-
ues, and so on—are set in a separate Proper-
ties dialog box.

 When you create such a document, you
may want to save it as an ODT file first. This
will allow you to edit the document after-
wards, in case something has to be changed.
Then choose File > Export as PDF to open the
PDF Options dialog box shown in figure 6.12.

 Make sure that the check box next to
Create PDF Form is checked. The resulting
PDF document will be a form, as shown in
figure 6.13.

 This is an interactive form. You can start
entering data manually into the fields you
defined. However, when using Adobe
Reader, you’ll get a message saying, “You
cannot save data typed into this form.” In
section 9.2, you’ll see how data entered in a

Figure 6.11 Creating fields in an Open Office document

Figure 6.12 Exporting an Open Office
document as a PDF form

181Adding content with PdfStamper

form that has a Submit button can be posted to a server, but the film data sheet you’re
using in this chapter was created for a different purpose: you’re going to fill it out pro-
grammatically, using iText and PdfStamper. That is, after you’ve learned how to
inspect the form.

INSPECTING THE FORM AND ITS FIELDS

If you want to fill out the form using iText, you need to know the name of each field
you want to fill out. In the case of check boxes and radio buttons, you also need to
know the different values that can be chosen. You know these names and values if
you’ve created the form yourself, but in most cases the form will be created by a
graphical designer. As a developer, you’ll have to inspect the form to find out which
names were used.

 Listing 6.18 shows the different types of fields you can encounter. These types will
be discussed in detail in chapter 8, except for signature fields, which will be discussed
in chapter 12.

PdfReader reader = new PdfReader(DATASHEET);
AcroFields form = reader.getAcroFields();
Set<String> fields = form.getFields().keySet();
for (String key : fields) {

Listing 6.18 FormInformation.java

Figure 6.13 A form created with Open Office Writer

Gets read-only
AcroFields instance

Gets all field names

182 CHAPTER 6 Working with existing PDFs

 writer.print(key + ": ");
 switch (form.getFieldType(key)) {
 case AcroFields.FIELD_TYPE_CHECKBOX:
 writer.println("Checkbox");
 break;
 case AcroFields.FIELD_TYPE_COMBO:
 writer.println("Combobox");
 break;
 case AcroFields.FIELD_TYPE_LIST:
 writer.println("List");
 break;
 case AcroFields.FIELD_TYPE_NONE:
 writer.println("None");
 break;
 case AcroFields.FIELD_TYPE_PUSHBUTTON:
 writer.println("Pushbutton");
 break;
 case AcroFields.FIELD_TYPE_RADIOBUTTON:
 writer.println("Radiobutton");
 break;
 case AcroFields.FIELD_TYPE_SIGNATURE:
 writer.println("Signature");
 break;
 case AcroFields.FIELD_TYPE_TEXT:
 writer.println("Text");
 break;
 default:
 writer.println("?");
 }
}

writer.println("Possible values for CP_1:");
String[] states = form.getAppearanceStates("CP_1");
for (int i = 0; i < states.length; i++) {
 writer.print(" - ");
 writer.println(states[i]);
}
writer.println("Possible values for category:");
states = form.getAppearanceStates("category");
for (int i = 0; i < states.length - 1; i++) {
 writer.print(states[i]);
 writer.print(", ");
}
writer.println(states[states.length - 1]);

The result when executing this code for the form shown in figure 6.13 looks like this:

MA_2: Checkbox
GP_8: Checkbox
GP_7: Checkbox
director: Text
CP_1: Checkbox
MA_3: Checkbox
CP_2: Checkbox
CP_3: Checkbox
title: Text

Checks
field type

Gets different values
for check box CP_1

Gets different values for
radio group category

183Adding content with PdfStamper

duration: Text
category: Radiobutton
GP_3: Checkbox
GP_4: Checkbox
year: Text
Possible values for CP_1:
 - Off
 - Yes
Possible values for category:
spec, toro, anim, comp, hero, Off, worl, rive, teen, kim,
kauf, zha, fest, s-am, fdir, lee, kubr, kuro, fran, scan

Note that the movie theaters are stored in the database like this: CP.1, GP.3, MA.3, ...
But when you define the check boxes using Open Office (as in figure 6.11), you
replace the dot with an underscore character because the dot character is forbidden
in field names.

 A check box has two possible values that correspond with an appearance state. In the
case of the locations, the value can be Off—the check box isn’t checked—or Yes—the
check box is checked. These values can vary from PDF to PDF, so it’s important to
check the possible states before you start filling out the form. The possible values for
the group of radio buttons is either Off—no radio button is selected—or a code that
corresponds with the keyword field in the festival_category table (see figure 3.4).

 Now that you’ve inspected the form, you have enough information to fill it out
using iText.

FILLING OUT THE FORM

Filling out forms programmatically is usually done for two reasons: prefilling data in
an editable form, and presenting information in a standard layout.

 Imagine an online insurance company. When a customer wants to report an inci-
dent, they can log in, and choose among a number of PDF forms. These forms contain
a number of standard fields with content that’s already present in the company’s data-
base: name, address, and so on. When the customer logs in, the application could
have access to this information, so why require the customer to enter all this informa-
tion manually? Wouldn’t it be better to take the blank form and prefill part of the
information to save time for the customer?

 That’s what’s done in figure 6.14. The film data sheet is filled with data from the
database, but the data is still editable. In the context of an insurance company, the
customer’s phone number could be filled in, but the customer could still change it in
case his number has changed.

 Another typical use of PDF forms is when you want to use the form as a standard
template. You don’t really need a form to communicate with an end user. You just
want to create documents that share the same structure, but with differing content.

 The PDF shown in figure 6.15 was made using the Film Data Sheet form, but it’s no
longer interactive. The form has disappeared. The fields were only used as placehold-
ers for the film title, director, and so on.

 The process of keeping the data but removing the form is called flattening, and
there are different possibilities in-between. You can choose to flatten only specific

184 CHAPTER 6 Working with existing PDFs

fields, or you can change the status of specific fields to read-only. For instance, a cus-
tomer of an insurance company is allowed to change their telephone number on the
prefilled form, but not their name. Flattening will be discussed in chapter 8; in this
chapter, you’ll only use the basic mechanism of form filling.

Figure 6.14 A form filled out using iText

Figure 6.15 A form filled out and flattened using iText

185Adding content with PdfStamper

public static void main(String[] args)
 throws SQLException, IOException, DocumentException {
 DatabaseConnection connection = new HsqldbConnection("filmfestival");
 List movies = PojoFactory.getMovies(connection);
 PdfReader reader;
 PdfStamper stamper;
 for (Movie movie : movies) {
 if (movie.getYear() < 2007)
 continue;
 reader = new PdfReader(DATASHEET);
 stamper = new PdfStamper(reader,
 new FileOutputStream(
 String.format(RESULT, movie.getImdb())));
 fill(stamper.getAcroFields(), movie);
 if (movie.getYear() == 2007)
 stamper.setFormFlattening(true);
 stamper.close();
 }
 connection.close();
}

public static void fill(AcroFields form, Movie movie)
 throws IOException, DocumentException {
 form.setField("title", movie.getMovieTitle());
 form.setField("director", getDirectors(movie));
 form.setField("year",
 String.valueOf(movie.getYear()));
 form.setField("duration",
 String.valueOf(movie.getDuration()));
 form.setField("category",
 movie.getEntry().getCategory().getKeyword());
 for (Screening screening :
 movie.getEntry().getScreenings()) {
 form.setField(
 screening.getLocation().replace('.', '_'), "Yes");
 }
}

In this listing, you’re creating a separate document for every movie in the database
that was made after 2006. The new reader instance is created inside the loop.

FAQ Why do I get a DocumentException saying “The original document was
reused. Read it again from file.”? Every PdfReader object can be used for one
and only one PdfStamper object. Looking at the example in listing 6.19, you
might argue that new PdfReader(DATASHEET) could be moved outside the
loop, because it’s the same for all the PdfStamper objects, but that won’t
work. As soon as you use a PdfReader object to create a PdfStamper, the
reader object is tampered. You can check this by adding the line
reader.isTampered();. If this method returns true, you can’t use the
reader to create a new stamper object. You have to create a new instance—
which is exactly what the error message tells you.

Listing 6.19 FillDataSheet.java

Gets AcroFields
instance from stamper

Creates reader
and stamper

B
Flattens forms for
movies in 2007Closes

stamper

Fills out
fields

186 CHAPTER 6 Working with existing PDFs

If you want to fill out a form, you need to have an AcroFields object. You can get an
instance of this object using the method getAcroFields().

FAQ Why do I get a DocumentException saying “This AcroFields instance is read-
only?” If you look closely at listings 6.18 and 6.19, you’ll see that the getAc-
roFields() method exists in the PdfReader class as well as in the Pdf-
Stamper class. The AcroFields retrieved in listing 6.18 is read-only, and it
will throw a DocumentException as soon as you try to fill out a field. You
need to use the method with PdfStamper if you want to update the form.

Filling out the form is easy. If you know the field name, such as “title”, you can set its
value using only one line:

form.setField("title", movie.getMovieTitle());

As you can see in listing 6.19 B, the filled-out data sheets of movies dating
from 2007 are flattened. Figure 6.15 shows such a data sheet. It looks like an ordi-
nary PDF file. The content is stamped on the document; it’s no longer an editable
form. In figure 6.14, you see a data sheet for a movie made in 2008. It’s still a form;
you can change the title manually.

 There’s much more to say about forms, but we can’t go into further detail until
we’ve talked about annotations. Also, I haven’t said anything about the different types
of PDF forms yet: there are forms based on AcroForm technology (like the form you
created using Open Office), and there are XFA forms (created with Adobe Designer).
This will have to wait until chapter 8, because we have one more group of PDF manip-
ulation classes left to cover.

6.4 Copying pages with PdfCopy
In the previous section, each PdfStamper object was associated with one and only one
PdfReader object. As soon as you want to assemble pages from more than one docu-
ment, you should use another PDF manipulation class: PdfCopy.

 PdfCopy extends PdfWriter, and you’ll immediately recognize the five steps in the
PDF creation process:

public static void main(String[] args)
 throws IOException, DocumentException {
 new MovieTemplates().createPdf(MovieTemplates.RESULT);
 PdfReader reader = new PdfReader(MovieTemplates.RESULT);
 reader.selectPages("4-8");
 ...
 manipulateWithCopy(reader);
}

private static void manipulateWithCopy(PdfReader reader)
 throws IOException, DocumentException {
 int n = reader.getNumberOfPages();
 Document document = new Document();

Listing 6.20 SelectPages.java

Step 1

187Copying pages with PdfCopy

 PdfCopy copy = new PdfCopy(
 document, new FileOutputStream(RESULT2));
 document.open();
 for (int i = 0; i < n;) {
 copy.addPage(copy.getImportedPage(reader, ++i));
 }
 document.close();
}

The main difference between these five steps and the ones from chapter 1 is that
you’re now using PdfCopy instead of PdfWriter in step 2. You can only add content
using addPage(). Listing 6.20 is a variation on listing 6.11, with only one document
being involved in this example. Let’s extend the example and concatenate two PDFs.

6.4.1 Concatenating and splitting PDF documents

In chapter 2, we created a list with movies containing links to the Internet Movie
Database (IMDB). We also created a historical overview of these movies with book-
marks that were generated automatically. Now let’s combine those two PDFs into one
new document.

String[] files = { MovieLinks1.RESULT, MovieHistory.RESULT };
Document document = new Document();
PdfCopy copy = new PdfCopy(document, new FileOutputStream(RESULT));
document.open();
PdfReader reader;
int n;
for (int i = 0; i < files.length; i++) {
 reader = new PdfReader(files[i]);
 n = reader.getNumberOfPages();
 for (int page = 0; page < n;) {
 copy.addPage(copy.getImportedPage(reader, ++page));
 }
}
document.close();

MovieLinks1.RESULT is a document with 34 pages. MovieHistory.RESULT has 26
pages. The page count of the concatenated file is 60.

FAQ After merging two PDFs, I’m seeing unnecessary white space. Why are there so
many blank areas? Sometimes people expect that a document with one page
concatenated with another document counting one page will result in a doc-
ument with only one page. They expect that, when the pages of the original
document are only half full, the new document will put both halves on one
page. That’s not how PDF works! In PDF, you work with complete pages; it’s
not possible to reflow the content on those pages.

There are two different versions of the addPage() method. You can add blank pages if
you use a Rectangle and a rotation value as parameters, or you can add a PdfImport-
edPage obtained from the same PdfCopy instance using getImportedPage().

Listing 6.21 Concatenate.java

Step 2

Step 3

Step 4

Step 5

188 CHAPTER 6 Working with existing PDFs

PRESERVATION OF INTERACTIVE FEATURES

You’ve used imported pages with PdfWriter in section 6.2 and with PdfStamper in sec-
tion 6.3. You’ve scaled these imported pages, rotated them, and so on. All of this isn’t
possible with the PdfImportedPage objects obtained from PdfCopy. You can only add
them to a new document in their original form and size.

 This limitation comes with a major advantage: most of the interactive features of
the page are preserved. The links that are present in MovieLinks1.RESULT are lost if
you import a page using PdfWriter or PdfStamper, but they still work if you import
the same page with PdfCopy. Links are a special type of annotation, and we’ll discuss
the different types of annotations in chapter 7. For now, it’s sufficient to know that all
annotations are kept with PdfCopy. The bookmarks of MovieHistory.RESULT, on the
other hand, are lost.

 We’ll find a way to work around this in the next chapter.

ADDING CONTENT WITH PDFCOPY

In previous sections, I explained that PdfImportedPage is a read-only subclass of
PdfTemplate. You can’t add any content to an imported page. This wasn’t a big deal
when using imported pages with PdfWriter and PdfStamper because we could easily
add content over or under the imported page. When using PdfCopy, it would be inter-
esting if we could somehow add extra content too.

 It would be interesting if we could add a “page X of Y” footer that reflects the new
page numbers.

Document document = new Document();
PdfCopy copy = new PdfCopy(document, new FileOutputStream(RESULT));
document.open();
PdfReader reader1 = new PdfReader(MovieLinks1.RESULT);
int n1 = reader1.getNumberOfPages();
PdfReader reader2 = new PdfReader(MovieHistory.RESULT);
int n2 = reader2.getNumberOfPages();
PdfImportedPage page;
PdfCopy.PageStamp stamp;
for (int i = 0; i < n1;) {
 page = copy.getImportedPage(reader1, ++i);
 stamp = copy.createPageStamp(page);
 ColumnText.showTextAligned(
 stamp.getUnderContent(), Element.ALIGN_CENTER,
 new Phrase(
 String.format("page %d of %d", i, n1 + n2)),
 297.5f, 28, 0);
 stamp.alterContents();
 copy.addPage(page);
}
for (int i = 0; i < n2;) {
 page = copy.getImportedPage(reader2, ++i);
 stamp = copy.createPageStamp(page);
 ColumnText.showTextAligned(
 stamp.getUnderContent(), Element.ALIGN_CENTER,

Listing 6.22 ConcatenateStamp.java

Document 1: reader
and page count

Document 2: reader
and page count

Adds
document 1

B

C

D

Adds
document 2B

C

189Copying pages with PdfCopy

 new Phrase(
 String.format("page %d of %d", n1 + i, n1 + n2)),
 297.5f, 28, 0);
 stamp.alterContents();
 copy.addPage(page);
}
document.close();

With PdfCopy, we can add content to a PdfImportedPage using a PdfCopy.PageStamp
object. Such an object can be obtained with the createPageStamp() method B. This
object has two methods for getting a direct content layer: getUnderContent() and
getOverContent(). These methods return a PdfCopy.StampContent object. PdfCopy.
StampContent extends PdfContentByte, and you can use it just as you’d use any other
PdfContentByte object. In listing 6.22, you use it to add text at an absolute position C.
There’s one caveat: you mustn’t forget to invoke the alterContents() method D.

SPLITTING A PDF

Using a PdfReader instance with PdfCopy doesn’t tamper the reader the way Pdf-
Stamper does. You can reuse the same reader object for different PdfCopy objects. You
can, for instance, construct one reader instance that reads the timetable PDF from
chapter 3, and create a new PdfCopy instance for every page to split the document
into individual pages. In PDF terminology, this process is often called PDF bursting.

PdfReader reader = new PdfReader(MovieTemplates.RESULT);
Document document;
PdfCopy copy;
int n = reader.getNumberOfPages();
for (int i = 0; i < n;) {
 document = new Document();
 copy = new PdfCopy(document,
 new FileOutputStream(String.format(RESULT, ++i)));
 document.open();
 copy.addPage(copy.getImportedPage(reader, i));
 document.close();
}

The original file representing the timetable contained 8 pages, and its size was about 15
KB. Bursting this file results in 8 different single-page documents, each with a file size
of about 4 KB. 8 times 4 KB is 32 KB, which is more than the original 15 KB, because
resources that were shared among pages in the original document are now copied into
each separate document. So you might wonder what would happen if you concatenated
PDF documents containing duplicate content.

6.4.2 PdfCopy versus PdfSmartCopy

In section 6.3.5, you filled out and flattened the film data sheet form to create a sepa-
rate file for movies made in the year 2007. Wouldn’t it be nice to create one single
document that contains the data sheets for all the movies in the database?

Listing 6.23 Burst.java

C

D Adds
document 2

190 CHAPTER 6 Working with existing PDFs

 Here you’ll fill the data sheet using PdfStamper. The resulting PDF files will be kept
in memory just long enough to copy the page into a new document with PdfCopy.

public void createPdf(String filename)
 throws IOException, DocumentException, SQLException {
 Document document = new Document();
 PdfCopy copy = new PdfCopy(
 document, new FileOutputStream(filename));
 document.open();
 addDataSheets(copy);
 document.close();
}

public void addDataSheets(PdfCopy copy)
 throws SQLException, IOException, DocumentException {
 DatabaseConnection connection =
 new HsqldbConnection("filmfestival");
 List<Movie> movies = PojoFactory.getMovies(connection);
 PdfReader reader;
 PdfStamper stamper;
 ByteArrayOutputStream baos;
 for (Movie movie : movies) {
 reader = new PdfReader(DATASHEET);
 baos = new ByteArrayOutputStream();
 stamper = new PdfStamper(reader, baos);
 fill(stamper.getAcroFields(), movie);
 stamper.setFormFlattening(true);
 stamper.close();

 reader = new PdfReader(baos.toByteArray());
 copy.addPage(copy.getImportedPage(reader, 1));
 }
 connection.close();
}

This example works perfectly, and at first sight you won’t find anything wrong with the
resulting PDF when you open it in Adobe Reader. Only when you look at the file size
will you have doubts. The original datasheet.pdf was less than 60 KB, but the resulting
PDF is almost 5 MB.

 This document has 120 pages that are almost identical. Only the specific movie
information differs from page to page; the form template is repeated over and over
again. But PdfCopy isn’t aware of that: it takes every page you add, including its
resources, and copies everything to the writer. The code in listing 6.24 adds the same
bits and bytes representing the original form to the same document 120 times. The
resulting PDF is full of redundant information.

 This can be avoided by using PdfSmartCopy instead of PdfCopy in step 2.

public void createPdf(String filename)
 throws IOException, DocumentException, SQLException {
 Document document = new Document();

Listing 6.24 DataSheets1.java

Listing 6.25 DataSheets2.java

Step 1

Step 2

Step 3
Step 4

Step 5

Creates single
page in memory

Adds page
to PdfCopy

Step 1

191Copying pages with PdfCopy

 PdfSmartCopy copy = new PdfSmartCopy(
 document, new FileOutputStream(filename));
 document.open();
 addDataSheets(copy);
 document.close();
}

Now the size of the resulting PDF file is only about 300 KB; that’s a much better result.
 PdfSmartCopy extends PdfCopy. It inherits the same functionality, but it checks

every page that’s added for redundant objects, so it can save plenty of disk space or
bandwidth. There’s a price to pay for this extra “intelligence.” PdfSmartCopy needs
more memory and more time to concatenate files than PdfCopy. It will be up to you to
decide what’s more important: file size and bandwidth, or memory and time. It will
also depend on the nature of the documents you want to concatenate. If there is little
resemblance between the pages, you might as well use PdfCopy. If different docu-
ments all have the same company logo on every page, you might want to consider
using PdfSmartCopy to detect that logo.

 In this example, you’ve concatenated flattened forms. But what happens if
you concatenate the original forms? You don’t have to try this: it won’t work.
Although PdfCopy (and PdfSmartCopy) preserve the annotations used to visualize a
form, the form functionality will be broken if you try to concatenate two or more
documents containing forms using PdfCopy. Your best chance to achieve this is to
use PdfCopyFields.

6.4.3 Concatenating forms

Suppose you want to create a film data sheet form with two or more pages. This can
easily be done with only four lines of code.

NOTE These examples will only work if your forms are created using Acro-
Form technology. It’s not possible to concatenate XFA forms using iText.

PdfCopyFields copy = new PdfCopyFields(new FileOutputStream(RESULT));
copy.addDocument(new PdfReader(DATASHEET));
copy.addDocument(new PdfReader(DATASHEET));
copy.close();

DATASHEET refers to the file datasheet.pdf. RESULT refers to a new form with two identi-
cal pages. This form probably won’t work the way you expect it to. You probably want
to be able to enter the information about one movie on the first page, and about
another movie on the second page. That’s impossible with this form. Although the
field “title” is physically present in two different locations in the same document,
there’s only one logical field with the name “title” in the form. This single field can
only have one value. If you enter a title on page one, you’ll see the same title appear
on page two. That may not be your intention; you probably want to create a form with
two pages that can be used to enter information about two different movies.

Listing 6.26 ConcatenateForms1.java

Step 2

Step 3
Step 4

Step 5

192 CHAPTER 6 Working with existing PDFs

 That’s only possible if you use forms with different field names, or if you rename
the fields.

public static void main(String[] args)
 throws IOException, DocumentException {
 PdfCopyFields copy = new PdfCopyFields(new FileOutputStream(RESULT));
 copy.addDocument(new PdfReader(renameFieldsIn(DATASHEET, 1)));
 copy.addDocument(new PdfReader(renameFieldsIn(DATASHEET, 2)));
 copy.close();
}
private static byte[] renameFieldsIn(String datasheet, int i)
 throws IOException, DocumentException {
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 PdfStamper stamper =
 new PdfStamper(new PdfReader(datasheet), baos);
 AcroFields form = stamper.getAcroFields();
 Set<String> keys
 = new HashSet(form.getFields().keySet());
 for (String key : keys) {
 form.renameField(
 key, String.format("%s_%d", key, i));
 }
 stamper.close();
 return baos.toByteArray();
}

This code snippet renames fields such as “title” into “title_1” (on page 1) and “title_2”
(on page 2). Now there’s no longer a conflict between the field names on the differ-
ent pages.

NOTE Don’t use PdfCopyFields to concatenate PDF documents without
form fields. As opposed to concatenating documents using PdfCopy, Pdf-
CopyFields needs to keep all the documents in memory to update the com-
bined form. This can become problematic if you’re trying to concatenate
large documents.

The PdfCopyFields example completes this chapter on the different PDF manipula-
tion classes. It’s high time for a summary with an overview that will help you pick the
right class for the job.

6.5 Summary
In this chapter, you’ve been introduced to the different PDF manipulation classes
available in iText. You’ve used these classes to solve a series of common problems: N-
up copying and tiling PDF documents, using a PDF as company stationery, adding
headers, footers, watermarks, and “page X of Y” to existing documents, concatenating
and splitting PDFs, and so on.

 Every class had its specific specialties and limitations. Table 6.1 gives an overview of
the classes that were discussed in this chapter.

Listing 6.27 ConcatenateForms2.java

Creates new
version of
formRenames

fields

193Summary

In the next chapter, we’ll focus mainly on PdfStamper. I’ll introduce the concept of
annotations, and you’ll learn that form fields are a special type of annotation. You’ll
create a form from scratch using iText, and we’ll discuss the different types of interac-
tive forms in PDF.

Table 6.1 An overview of the PDF manipulation classes

iText class Usage

PdfReader Reads PDF files. You pass an instance of this class to one of the other PDF
manipulation classes.

PdfImportedPage A read-only subclass of PdfTemplate. Can be obtained from a PDF manipu-
lation class using the method getImportedPage().

PdfWriter Generates PDF documents from scratch. Can import pages from other PDF
documents. The major downside is that all interactive features of the imported
page (annotations, bookmarks, fields, and so forth) are lost in the process.

PdfStamper Manipulates one (and only one) PDF document. Can be used to add content at
absolute positions, to add extra pages, or to fill out fields. All interactive fea-
tures are preserved, except when you explicitly remove them (for instance, by
flattening a form).

PdfCopy Copies pages from one or more existing PDF documents. Major downsides:
PdfCopy doesn’t detect redundant content, and it fails when concatenating
forms.

PdfSmartCopy Copies pages from one or more existing PDF documents. PdfSmartCopy is
able to detect redundant content, but it needs more memory and CPU than
PdfCopy.

PdfCopyFields Puts the fields of the different forms into one form. Can be used to avoid the
problems encountered with form fields when concatenating forms using
PdfCopy. Memory use can be an issue.

S
earch for “Java PDF” and what do you think you’ll fi nd in
the #1 position? Why, iText, of course. Ever since its launch
in 2000, this open source Java library has been the most

popular and most broadly used tool for programmatic creation
and manipulation of PDF. With it you too can easily transform
static PDF into live, interactive applications.

iText in Action, Second Edition is an entirely revised new version
of the popular fi rst edition. It introduces the latest version of
iText, and it lowers the learning curve to its advanced features.
Following its innovative, practical examples, you’ll master new
form types, including AcroForm, explore the XML Forms Archi-
tecture (XFA), and discover techniques for linking documents,
creating a PDF based on records in a database, and much more.

What’s Inside
Automate static and dynamic XFA forms
How to generate dynamic PDF from XML or a database
How to add digital signatures
Covers iText 5

Written by the creator of iText, this new edition covers the latest
version of iText and Java 5. Th e examples can be easily adapted to
.NET using iTextSharp or iText.NET.

Bruno Lowagie is the original developer and current maintainer
of iText.

For a free ebook for owners of this book, go to
manning.com/iTextinActionSecondEdition

$59.99 / Can $68.99 [INCLUDING eBOOK]

iText IN ACTION Second Edition

JAVA/PDF

Bruno Lowagie

“Deep coverage of both iText
 and PDF—indispensable.”
 —Kevin Day, Trumpet, Inc.

“Th e classic, revised with
 practical code everyone
 can use.”
 —John S. Griffi n
 Overstock.com

“Masterful, comprehensive.”
 —Saicharan Manga
 Services and Solutions

“Invaluable examples...
 what you need is here.”
 —Paulo Soares
 Glintt Business Solutions

“Th e canonical source on
 iText.”
 —Michael Klink
 AuthentiDate International AG

M A N N I N G

SEE INSERT

