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Abstract—In many large-scale content sharing applications, participants or nodes are connected with each other based on their

content or interests, thus forming clusters. In this paper, we model the formation of such clustered overlays as a strategic game, where

nodes determine their cluster membership with the goal of improving the recall of their queries. We study the evolution of such overlays

both theoretically and experimentally in terms of stability, optimality, load balance, and the required overhead. We show that, in

general, decisions made independently by each node using only local information lead to overall cost-effective cluster configurations

that are also dynamically adaptable to system updates such as churn and query or content changes.

Index Terms—Clustering, distributed systems, data sharing.
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1 INTRODUCTION

RECENTLY, there has been an explosion in the use of content
sharing applications such as those involving social

networking and peer-to-peer (p2p) file sharing. Measure-
ments from the deployment of such large-scale systems have
shown that the interactions among their participants or
nodes indicate the existence of groups or clusters of nodes
having similar content or interests. For example, in measure-
ments of popular online social networks [14], it was observed
that the network structure is such that users form clusters
based on common interests, social affiliations, or the wish to
exploit their shared content. The formation of implicit
groups centered around topics described by common key-
words has also been observed in the blogosphere [2].
Furthermore, the peer selection algorithm used in BitTorrent
was shown to lead to the formation of clusters of peers
having similar interests and upload capacities [13].

In this paper, we focus on large-scale distributed
systems, where nodes form clusters by creating logical
links to other nodes that share similar content or interests,
thus creating a clustered overlay network on top of the
physical one. The main reason for the formation of such
clusters is that clustered overlays enable their participants
to find and exchange data relevant to their queries with less
effort. For example, traces of popular p2p systems have
indicated that nodes exhibit the property of interest-based
locality, that is, if a node holds content satisfying some
query of another node, then it most likely also maintains
additional content of interest to this other node [8], [15].
Thus, placing such nodes in the same cluster would
increase the recall of their queries. Although there has been
a large body of research on the discovery and construction
of clustered overlays, e.g., [3], [4], [18], their dynamic
maintenance has been mostly ignored.

We address the dynamic creation and adaptation of
clustered overlays by taking a game-theoretic approach. We
model the problem of cluster formation as a strategic game
with nodes as the players. Each node plays by selecting
which clusters to join. This selection or strategy is deter-
mined individually by each node so as to minimize a utility
function that depends on the cluster membership cost and on
the cost of evaluating queries outside of the clusters the node
belongs to. Game-theoretic models have been previously
proposed for creating overlays based on the connection cost
or the radius of the network graph, e.g., [6], [17]. The
originality of our approach lies in that we model clustered
overlays and aim at increasing the recall of queries.

We present an uncoordinated cluster formulation proto-
col that relies on local decisions made independently by each
node based only on its partial view of the system. We also
study both theoretically and experimentally the formation
and evolution of clusters under the individual actions of each
node. Our theoretical results provide conditions under which
the game reaches a stable state as well as the associated cost
and the achieved load balance. Our experimental results
show that the uncoordinated protocol leads to cost-effective
cluster configurations adaptable to system changes including
content, query, and topology (nodes join/leave) updates.
Moreover, our experiments show that using coordination
and global decisions does not improve the quality of the
attained configurations considerably.

The rest of this paper is organized as follows. In
Section 2, we introduce the cluster formation game, while
in Section 3, we study the stability, optimality, and load
balance of specific configurations. In Section 4, we present
distributed protocols that implement the game. Section 5
reports experimental results and Section 6 related re-
search. Section 7 offers conclusions.

2 A CLUSTER FORMATION GAME

We consider dynamic large-scale content sharing distrib-
uted systems. In such systems, it is not possible for a node
to know and directly communicate with all other nodes in
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the system. Instead, each node establishes logical links with
only a few other nodes. These logical links create a logical
overlay network on top of the physical one (e.g., the Internet).
In this paper, we consider clustered overlays, where nodes
with similar content or interests form groups, called clusters.
The nodes inside each cluster are highly connected with
each other to achieve an efficient intracluster communica-
tion (Fig. 1).

Let V be the current set of nodes. We model the problem
of cluster overlay formation as a strategic game, where each
node is a player whose strategy is defined by the set of
clusters it joins. In particular, each node ni 2 V chooses
which clusters to join from the set C of clusters in the
system, thus defining its strategy si � C. We constrain the
maximum number of clusters in C to jV j, i.e., it cannot
exceed the number of nodes. Note that some of the clusters
may be empty.

From the set of strategies S ¼ fs1; s2; . . . ; sjV jg that the
nodes in V deploy, i.e., the strategy profile, we can derive the
set of nodes belonging to each cluster in C. The set S is also
called (cluster) configuration. For example, consider V ¼
fn1; n2; n3; n4g and C ¼ fc1; c2; c3; c4g, and let the corre-
sponding strategies be s1 ¼ fc1; c2g, s2 ¼ fc1g, s3 ¼ fc3g,
and s4 ¼ fc2; c3g meaning that n1 belongs to clusters c1 and
c2, n2 belongs to c1, n3 to c3, and n4 to c2 and c3. Each node
decides which clusters to join so as to minimize a utility
function that expresses its individual cost. A node plays more
than once to cope with system updates; thus, the cluster
configuration is dynamic.

2.1 Cost Function

Each node both stores content and poses queries for
content. We call global workload, and denote with Q, the
multiset of all queries in the system. Note that the same
query may appear in Q more than once. Similarly, for each
node ni, we denote with QðniÞ its local workload defined as
the multiset of all queries issued by ni. For a local or global
workload Q0 and a query q, numðQ0Þ stands for the size of
Q0, i.e., the number of (not necessarily distinct) queries in Q0

and numðq;Q0Þ for the number of times q appears in Q0.
We characterize the importance of a node ni in the

evaluation of a query q based on the number of results that
ni offers for q with regard to the total number of available
results for q, i.e., the recall achieved when q is evaluated
solely on ni. We assume that each result is distinct.
Specifically, let resultðq; niÞ be the number of results for a
query q provided by node ni; we define

rðq; niÞ ¼
resultðq; niÞP

nk2V resultðq; nkÞ
:

Let V ðsiÞ be the set of all nodes belonging to clusters in
si. Our premise is that intracluster query evaluation is very
efficient. Thus, the benefit for a node ni from choosing
strategy si is the recall attained by evaluating the queries in
QðniÞ against the nodes in V ðsiÞ. Stated differently, the
recall cost for ni associated with strategy si is the cost for
obtaining query results from nodes located in clusters that
do not belong to si, that is, from nodes not in V ðsiÞ.

The recall cost is minimized, if a node joins all clusters.
However, cluster membership imposes communication and
processing costs. The cluster membership cost depends on
the size and the topology of the cluster. The larger the size
of the cluster, the higher the cost of joining, leaving, and
maintaining it. Furthermore, a highly connected topology,
where each node maintains links to a large number of other
nodes, also increases the cluster membership cost. To
capture this, the cluster membership cost is defined as a
monotonically increasing function � of the number of nodes
belonging to the cluster, i.e., as a function of the cluster size
jcj. This function depends on the cluster topology, for
instance, for a mesh topology (Fig. 1a), � may be linear,
whereas for structured overlays (Fig. 1b), � may be
logarithmic.

Definition 1 (Individual Node Cost). In a cluster config-
uration S, the individual cost for a node ni for choosing
strategy si is

icostðni; SÞ ¼ �
X
ck2si

�ðjckjÞ
jV j

þ
X

q in QðniÞ

numðq;QðniÞÞ
numðQðniÞÞ

X
nj 62V ðsiÞ

rðq; njÞ:

The first term models the cluster membership cost, while
the second one models the recall cost for obtaining results
from nodes outside the selected clusters, that is, the
average result loss from not participating in all clusters.
The recall cost for each query is weighted by its frequency
in the local workload of ni. The factor 1=jV j is used for
normalizing the cluster membership cost. Parameter �
(� � 0) determines the influence of the cluster membership
cost in cluster formation.

From a system perspective, � characterizes the ratio
between updates and queries. For a given �, a large value
of � means that updates are rather frequent and, therefore,
the cost for cluster maintenance is high, while a small
value indicates that query evaluation is more important in
the overall system performance. Observe that the two
terms of the cost function tend to guide the nodes toward
selecting opposite strategies. For example, in a cluster
configuration where all nodes form a single cluster, the
membership cost is maximized, while the recall loss is
minimized, since for each node all results for its queries are
located within its cluster. In contrast, the recall loss is
maximized when each node forms a cluster of its own,
while, in this case, the membership cost is minimized.

The local workload and the query loss for a node ni do
not need to be fixed or known a priori for the whole game.
Instead, each node plays, i.e., re-evaluates its individual
cost, multiple times, to cope with changes of its local query
workload and of the content offered by the other nodes.
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Fig. 1. Examples of cluster topologies.



We measure the overall quality of a cluster configuration
S by the achieved social cost (SCost)

SCostðSÞ ¼
X
ni2V

icostðni; SÞ:

2.2 Stability and Optimality

The goal of each player (node) is to minimize its individual
cost. The question that arises is: If we leave the players free
to play the game to achieve their goal, will the system ever
reach a stable state in which no players desire to change
their strategy (the set of clusters they belong to)? That is,
will the system reach a Nash equilibrium?

Formally, a (pure) Nash equilibrium is a configuration S

such that, for each node ni with strategy si 2 S, and for all
alternative configurations S0 which differ only in the ith
component (different cluster sets s0i for ni)

icostðni; SÞ � icostðni; S0Þ: ð1Þ

Let us first present a couple of properties of stable
configurations (see [9] for proofs).

Lemma 1. In any stable cluster configuration, there are no

clusters ci, cj such that ci � cj, i 6¼ j.

From Lemma 1, it holds that:

Corollary 1. A cluster configuration where a node forms both a
cluster of its own and also belongs to another cluster is not stable.

The following lemma expresses the fact that in a stable
configuration, there is no incentive for a node to join a cluster
whose other members offer no results to its queries, since
participation in such a cluster would only increase its cost.

Lemma 2. For any strictly increasing function �, there is no

stable configuration in which 9ci; jcij > 1; ci 2 sj, andP
q in QðnjÞ

P
nk2ci rðq; nkÞ ¼ 0.

It can also be shown that:

Proposition 1. A pure Nash equilibrium does not always exist
for the cluster formation game.

The optimal social cost is the minimum social cost over all
possible configurations. In general, the cost of a stable
configuration is not necessarily optimal.

2.3 Load Balance

First, we define size-based load balance.

Definition 2 (Size-Based Balanced Configuration). A

configuration S is ð�sÞ-size balanced, if and only if,

8ci; cj 2 C, it holds that: ðjcij � jcjjÞ=jV j � ��s, where
0 � �s � 1.

For small �s, such clusters have small differences in the
number of nodes that belong to them and thus, small
differences in their membership cost.

We also consider the distribution of the system load
among the clusters of the system. The system load includes
both the query workload and content. Specifically, for each
cluster ci, we define the cluster query load, denoted byLqðciÞ,

as the percentage of queries generated from its nodes over
all system queries

LqðciÞ ¼
X
nk2ci

numðQðnkÞÞ=numðQÞ:

Similarly, we define, for each cluster ci, the cluster content
load, denoted by LrðciÞ, as the percentage of content offered
by its nodes over all available content

LrðciÞ ¼
X
nk2ci

X
q in Q

rðq; nkÞ
�X

nk2V

X
q in Q

rðq; nkÞ:

Definition 3 (Content and Query Balanced Configura-

tion). A configuration S is ð�q; �rÞ-load balanced, if and only
if, 8ci, cj 2 C, it holds that

LqðciÞ � LqðcjÞ � ��q;
LrðciÞ � LrðcjÞ � ��r;

where 0 � �q; �r � 1.

Observation 1. If we assume a uniform distribution of the
global query workload and content among all nodes;
then, a ð�Þ-size balanced configuration is also ð�; �Þ-load
balanced.

3 CASE STUDIES

In this section, we focus on a number of characteristic
special cases of content sharing and study for each one of
them, the properties of a number of cluster configurations.
The formal definition of each case as well as the derivation
of our results can be found in [9].

CASE I: NO UNDERLYING CLUSTERING. In this case,
there is no content or query similarity among the nodes.

CASE II: SYMMETRIC SCENARIO. This case corresponds to
the most favorable scenario for clustering. There are g ðg � 1Þ
content categories and the nodes belong to gdisjoint groups of
the same size ðjV j=gÞ such that the members of each group
offer and request content from the same category.

CASE III: ASYMMETRIC SCENARIO. The shared content
again belongs to t ðt > 1Þ different categories; however, each
node has content that belongs to one category, but poses
queries for content that belongs to a single different category.

The selected cases represent extremes between which the
usual behavior in a content sharing system lies. In the first
case, the content and the queries of the users are too diverse to
favor clustering. Also, while a perfect symmetric scenario
may not occur, in practice, most nodes have only one or a few
prominent interests and most of their content and queries are
focused around them. Thus, we expect clustering to occur
based on these few common interests. Similarly, while having
completely disjoint content and queries is uncommon, this
may occur when the interests and queries of a user change
and the content it maintains is no longer of interest, while new
content has not been attained yet.

We assume that both the content and the queries are
distributed among the system nodes and the nodes in each
category (when applicable) uniformly. For each of these
three cases, we consider a number of cluster configura-
tions and study them in terms of stability, optimality, and
load balance.
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In particular, we consider a configuration (A), where
there is just a single cluster and all nodes belong to it, a
configuration (B), where each node forms a cluster of its
own, and a configuration (C), where the nodes form
m; 1 < m < jV j, equal-sized clusters, where for Case II, m ¼
g and each cluster contains nodes from the same group, and
for Case III, m ¼ tðt� 1Þ=2 and half of the nodes in each
cluster maintain content from a category ti and pose queries
for another category tj and the other half the other way
around. Table 1 summarizes the results of our analysis.

For stability, we ensure that the cost of each node in the
given configuration is smaller than that in any other
feasible configuration (see Ineq. (1)) using Lemmas 1 and
2 to reduce the number of configurations to be considered.
Various observations can be made from Table 1. For
example, we see that even for Case I, where there is no
similarity among the nodes, depending on the membership
versus the recall cost, some cluster configurations are
stable. As an example, for a � function corresponding to a
linear function of the form �ðnÞ ¼ �n; 0 < � � 1, configura-
tion (A), where all nodes form a single cluster, is stable for
� � 1=�. Recall that large values of � mean that the
membership cost is weighted more than the recall cost.
Thus, for the same �, for values of � larger than this
threshold, the membership cost would surpass the recall
benefits and would lead to splitting the cluster. Note also
that whether a single cluster is stable or not depends also
on the topology as captured by function �. For instance,
when � is small (less connected topology), a single cluster
remains stable for larger values of �. As another example,
comparing Case I with k ¼ 1 and Case II (perfect under-
lying clustering), we see that in Case II, configuration (B),
where each node forms a cluster of its own is stable for
larger values of �. For instance, for a linear �, it is stable for
� � g=� as opposed to � � 1=�. Note also that in config-
uration (C), small values of g (which correspond to a
smaller number of larger groups) require smaller values of
� for being stable.

We also study whether the social cost of the stable
configurations is optimal. To this end, we acquire a bound
on the optimal social cost by considering the best individual
cost for each node in any possible configuration using the
following lemma.

Lemma 3. Let � be a function such that for any x, xj 2 N ,
1 � j � k, if x <

Pk
j¼1 xj ) �ðxÞ <

Pk
j¼1 �ðxjÞ, then for any

node ni, a configuration S with minimum icostðni; SÞ is such
that ni belongs to just one cluster.

As indicated in Table 1, in some cases, the stable
configurations have cost equal to this estimation. In terms
of load balance, by construction all three configurations are
(0)-size balanced. Case I is also (0, 0)-load balanced, while II
and III are (0, 0)-load balanced only if the total amount of
query workload and content of each of the g and t categories
is the same. We have also studied a couple of configurations
with nonequal sized clusters [9].

4 CLUSTER FORMATION PROTOCOLS

In this section, we describe how the game is played by the
individual nodes in a distributed system. By playing the
game, the nodes reconstruct the overlay network to form
clusters to improve their recall. The game can be deployed
both to bootstrap a nonclustered overlay network and to
reformulate an already clustered one. Cluster reformulation
is necessary when the recall achieved in the current cluster
configuration deteriorates. Changes that affect the quality of
clustering include topology updates as nodes enter and
leave the system as well as updates of the content or queries
of each node.

4.1 Uncoordinated Protocol

Let Scur and Ccur be the current cluster configuration and set
of (nonempty) clusters, respectively. Each node ni considers
all possible configurations Sj that differ from Scur only at
their ith component, i.e., the strategy si that ni follows.
Then, ni chooses the strategy snew for which the correspond-
ing cluster configuration Snew is such that

Snew ¼ arg min
Sj

icostðni; SjÞ:

To measure how much a node benefits from changing its
strategy, we use gain defined as

gainðniÞ ¼ icostðni; ScurÞ � icostðni; SnewÞ:

If gainðniÞ > 0, ni selects the new strategy. Each node
plays, i.e., re-examines its strategy selection, repeatedly to
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Conditions for Stability,

p
Indicates Optimality for � as in Lemma 3, k Stands

for the Maximum Number of Clusters a Node May Belong to



cope with the system dynamics. In our (basic) uncoordinated
protocol, each node ni autonomously decides to play, i.e., re-
evaluates its gain, after the evaluation of each of its local
queries in QðniÞ. Besides local queries, other nonlocal events
(such as other nodes joining or leaving a cluster) may affect
the gain of a node. For completeness, we also consider a
variation, called uncoordinated protocol with monitoring, where
a node re-evaluates its gain after any (local and nonlocal)
event. Note that this protocol makes the unrealistic assump-
tion that a node monitors the system continuously to detect
potential updates that may affect its gain.

The individual cost, icost, of each node depends on the
recall of its queries and its cluster membership cost. Both
quantities are estimated. To this end, we assume that each
cluster has a unique identifier, cid, known by all its nodes,
which is assigned based on node IPs and timestamps. For
example, when the first node joins a cluster, its cid is formed
by the IP of the node concatenated with a timestamp. When
other nodes join the cluster, they are informed of its cid.
When all nodes leave a cluster, its cid just becomes unused.
Recycling cids is beyond the scope of this paper. Query
results are annotated with the corresponding cids of the
clusters that provide them. A node does not need to know
all system cids, but gradually learns them, as its queries
acquire results annotated with new cids. Based on the
annotated query results, each node can monitor its recall
with respect to the other clusters in the system and use it to
evaluate its individual cost for the different configurations
it needs to consider when it plays.

4.2 Coordinated Protocol

For comparison, we also consider a coordinated protocol,
where one node ri at each cluster ci serves as a cluster
representative. Representatives achieve coordination by
gathering and exchanging information with the nodes in
their cluster. In particular, unlike the basic uncoordinated
protocol, the coordinated protocol is triggered by each
global event. The representatives inform the nodes in their
cluster who in turn re-evaluate their strategy similarly to
the uncoordinated protocol. Then, nodes send an update
request for the new strategy they want to select along with
their corresponding gain to one of the representatives of the
clusters they belong to. Finally, the representatives ex-
change these requests, order them by nonincreasing value
of gain, and the overall top-K percentage of them is
granted. The algorithm is presented in detail in [9].

4.3 Partial Knowledge

To play the game, a node evaluates the cost of various
strategies and chooses the best one among them. However,
in practice, a node ni may know only a subset CðniÞ � Ccur
of the current clusters. Note that if CðniÞ � Ccur, then a node
may need to occasionally refresh the clusters in CðniÞ. For
instance, if a node is aware only of its own cluster, it may
become isolated. Moreover, since the cost of contacting all
clusters may be high, a node ni may choose to contact only a
subset of the clusters known to it. To model this, we also
consider for ni the sets RCðni; qÞ � CðniÞ such that ni routes
each query q 2 QðniÞ to all clusters in RCðni; qÞ. We assume
that each node ni uses these RCðni; qÞ sets to estimate its
membership and recall costs. We use the term full set routing

(FSR) for the case in which a node ni evaluates all of its
queries using all of its known clusters, i.e., RCðni; qÞ ¼
CðniÞ, 8q 2 QðniÞ. All other protocols that evaluate queries
using subsets of the known clusters are called subset routing
(SSR) protocols.

Instead of considering all possible configurations when it
re-evaluates its strategy, a node only considers the clusters
it is aware of and has received annotated results from.
Thus, the selected strategy may not be the best among all
possible ones. Moreover, while in full set routing, each
node ni evaluates the actual value of its recall cost for each
cluster cj 2 CðniÞ, in subset routing, this value is only an
estimation based on the subset of the queries in the local
query workload of ni that are forwarded to cj. On a positive
note, due to Lemma 2, lack of knowledge of clusters that do
not provide any results to a node does not affect the
correctness of the best strategy selection. We further study
how partial knowledge affects the outcome of the game in
our experiments.

4.4 Overhead Control

The gains that individual nodes attain from strategy
changes may not always worth the re-organization costs.
To this end, we present parameters for overhead control that
can be used either alone or in combinations. The values of
the various parameters can either be the same for all nodes
or be set individually by each node. They express a trade-off
between consuming system resources for reclustering and
tolerating low recall values from a poor clustering.

4.4.1 Stopping Condition

To restrict the number of cluster updates, we consider a
threshold value or stopping condition �, such that each node
decides to update its strategy if its gain is larger than �.

4.4.2 Update Probability

Instead of changing its strategy each time there is a positive
gain, a node changes its strategy with an update probability
Pu. The update probability determines how aggressive a
player is.

4.4.3 Batches of Events

A node re-evaluates its gain not after each single event, but
after a number b (batch) of events. The events are either
local queries, in the case of the basic uncoordinated
protocol, or all events, in the case of monitoring.

4.4.4 Quota

Each node is assigned a quota of ch changes, which is the
maximum number of cluster changes it is allowed for a
specified period Tq. After the end of Tq, the quota is
replenished and the node has again ch available changes for
the next Tq. Tq can be either specified as a time interval or as
a number of events. Using events to measure Tq allows us
more demanding nodes to play more often, since their
quota will be replenished more often.

5 EXPERIMENTAL EVALUATION

We consider a system of nodes sharing documents (content)
belonging to different semantic categories. To capture
locality, we use the model of [7] derived from measure-
ments from real traces of content sharing systems. The
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model uses a parameter L as a measure of interest-based
locality [15] that we set accordingly to match our three case
studies (see [9] for details).

With respect to the degree of local knowledge, we study
three cases. The first one assumes full knowledge (FK): for
each node ni, RCðni; qÞ ¼ CðniÞ ¼ Ccur, 8q 2 QðniÞ, that is,
each node knows all current clusters and each query is
routed to all of them. In the second case, for each node ni,
the set CðniÞ corresponds to 50 percent of Ccur, ni uses a full
set routing approach (FSR), RCðni; qÞ ¼ CðniÞ, 8q 2 QðniÞ,
and a refresh period of 10 events. Finally, we consider a
subset routing approach (SSR), where for each node ni,
CðniÞ ¼ Ccur, and 8q, in QðniÞ, RCðni; qÞ corresponds to a set
of clusters randomly selected from 50 percent of Ccur. Note
that, in both the FSR and SSR cases, the same number of
clusters are considered. Additional cases can be found in
[9]. We report the actual social cost of each configuration,
not the one resulting by the estimations of the nodes.

We use Newsgroup articles belonging to 10 different
categories as our data set. The articles were preprocessed,
stop words were removed, lemmatization was applied, and
the resulting words were sorted by frequency of appear-
ance. The articles are distributed among 10,000 nodes.
Nodes inside each cluster are organized in a Chord-like
topology (logarithmic �) [16]. We report the average value
of 100 runs of each experiment; confidence intervals for
mean values of level 95 percent are included in [9]. We
present results for the case where each node belongs to a
single cluster, that is, for each node ni, si ¼ fclg, for some
cl 2 Ccur. The other possible strategies for ni are either
moving to a cluster cv, cv 6¼ cl for cv 2 Ccur or if cl 6¼ fnig,
forming a cluster of its own.

5.1 Sensitivity Analysis

We start with a sensitivity analysis of the uncoordinated
protocol with respect to its tuning parameters. We consider
both the basic uncoordinated protocol (unc) and the
uncoordinated protocol with monitoring (mon), which
makes the unrealistic assumption of knowledge of all
global events. In each experiment, we vary the value of
one of the tuning parameters and set the rest to their default
values (Table 2a). We present results for the asymmetric
scenario, since this is the case with the largest cost and
overhead in terms of node moves (i.e., cluster changes). Our
initial configuration is an overlay, where each node forms a
cluster of its own. We measure the overhead in terms of the
average number of moves per node and the attained social
cost. The social cost of the initial configuration is above
10,000 since all nodes have recall cost equal to 1.

The achieved social cost is mainly controlled by the
stopping condition �. For all values of �, the social cost is
reduced to at most 1,050, that is to almost 1/10th of its
initial value (Fig. 2a). The basic uncoordinated protocol
achieves the best social cost for the smaller value of � ð10�4Þ
within a few moves, while the one with monitoring
achieves similar social cost for � ¼ 10�2 for the same
number of moves (Fig. 2b). If we choose a smaller �, the
number of moves increases without improving the social
cost. With partial knowledge (SSR or FSR), both protocols
involve large overheads that for small � prevent the system
from reaching a stable state. As a result, the social cost is
higher than the one achieved in the case of full knowledge.
The results for the other parameters can be found in [9].

We repeat the experiment with the coordinated proto-
col. We set the percentage ðKÞ of requests the clusters
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TABLE 2
(a) Input Parameters and (b) Results Regarding Cluster Formation

Fig. 2. (a) and (b) Uncoordinated, and (c) and (d) coordinated protocols with varying �.



representatives grant to 70 percent of the total received
requests, similarly to the update probability of the
uncoordinated protocol that also implicitly controls the
number of updates that occur. Coordination does not
improve the social cost (Fig. 2c). The coordinated protocol
(co) requires also high values of � and for these values
achieves approximately the same social cost with the
uncoordinated ones with similar overhead (Fig. 2d). Lack
of knowledge affects the coordinated protocol similarly to
the uncoordinated ones.

In the rest of the experiments, we use the basic
uncoordinated protocol, since it achieves a comparable
social cost without global monitoring or coordination and
set � to 10�3, which is an appropriate value for this protocol.

5.2 Cluster Formation

In this set of experiments, we study the (basic) uncoordi-
nated protocol. We focus on the three scenarios (i.e.,
symmetric, asymmetric, and random from the case studies)
and apply the uncoordinated protocol at a number of initial
configurations. We then evaluate the quality of the
resulting cluster configurations in terms of their social cost,
the overhead required for achieving this cost in number of
moves (i.e., cluster changes), the number of clusters
formed, the achieved balance, and the effect of the lack of
global knowledge.

Let M be the number of groups as defined for
configuration (C) for the symmetric and the asymmetric
scenarios, for example, M ¼ 10 for the symmetric one. We
consider five initial system configurations.

i. Each node forms a cluster of its own.
ii. All nodes form a single cluster.
iii. Nodes are randomly distributed to l groups and we

discern for different values of l the subcases: (a) l ¼M,
(b) l < M, and (c) l > M.

iv. Nodes are clustered according to their content.
v. Nodes are clustered according to their queries.

The results are summarized in Table 2b.
In all scenarios, the nodes reach an �-Nash equilibrium

regardless of the number of clusters in the initial config-
uration. The protocol does not require a predefined number
of clusters, but this is dynamically determined. The value of
�s in all cases is small ð<0:2Þ, i.e., the formed clusters are
(0.2)-size balanced. Similarly, �q and �r are around 0.4.

The system reaches a stable state even in the case of
partial knowledge. However, while the social cost is only
slightly worse, the number of moves per node increases
considerably (the worst case being the asymmetric
scenario). Comparing FSR and SSR, we observe that FSR
requires more moves to reach a stable state, but achieves a
better social cost than SSR. This is because, while it takes
longer for the FSR to consider more clusters, it always
evaluates their cost accurately. In contrast, while SSR
locates relevant clusters faster, it cannot accurately
determine the best among them.

For the symmetric scenario, the social cost depends only
on the membership cost; the recall cost is in most cases zero,
since all results of the local queries for each node are
located within its cluster (Table 2b, lines 3-10). For the given
� ¼ 10, the social cost achieved is close to the social

optimum, we have computed for Case Study (II.C) (when �
is logarithmic) which also considers similar symmetric
nodes. Let us now discuss further the input configurations,
where the nodes are already clustered according to their
content (case (iv)) or queries (case (v)). In this case, for
symmetric nodes, the appropriate clusters are already
formed (Table 2b, lines 9-10). We also observe that the lack
of global knowledge does not affect the formed clusters, i.e.,
it does not damage good cluster configurations. For
asymmetric nodes, both configurations are not stable. Thus,
relying solely on content or query workload is not enough
to provide the appropriate clustering.

In the random scenario, there is no underlying cluster-
ing (Table 2b, lines 19-21). We consider two initial
configurations: a single cluster (case (i)) and singleton
clusters (case (ii)). In this case, the resulting cluster
configuration depends mostly on the membership cost.
Due to its low value (logarithmic � and small �), a social
cost close to the optimum is achieved by the configuration
where all nodes form a single cluster. To further see the
role of �, we performed experiments with different values
of � (Fig. 3a) and both a logarithmic (log) and a linear (lin)
� function. For example, for a large value of � ð� ¼ 100Þ,
both initial configurations converge to the configuration of
singleton clusters. Thus, by tuning �, we can favor
configurations with either a small number of larger clusters
or a large number of smaller clusters.

Finally, let us consider clustering in the case of free riders
(e.g., [1]), which are nodes that use data offered by others,
without contributing any content. We model a free-rider ni
as a node with rðq; niÞ ¼ 0, 8q in Q. Increasing the number
of free riders gradually degenerates the overlay to one in
which each node forms a cluster of its own (Fig. 3b), since
free riders do not acquire any gain by forming clusters
among themselves.

5.3 Cluster Updates

In this set of experiments, we evaluate how the protocol
reacts to changes. We start from a “good” cluster config-
uration and apply query and content updates. In particular,
we focus on a general query update scenario (WSc1), in
which a data category becomes more popular; x percent of
nodes selected randomly from all clusters change their
query workload to queries for this category.

Compared to a static overlay in which no measures are
taken to deal with updates (no-change), our protocol
reduces the social cost up to 1=3 of its value (Fig. 4a).
Fig. 4b shows the associated overhead, i.e., how the social
cost improves as the average number of moves per node
increases, for 50 percent of updated nodes.
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We also compare the social cost achieved by playing the
game repeatedly with applying the protocol from scratch.
Re-clustering from scratch (Fig. 4c) reduces the social cost
of up to 10 percent compared to our incremental
reformulation protocol (Fig. 4a). However, reclustering
entails 270 turns (total times any node evaluates a positive
gain) even with FK, while the incremental reformulation
entails only 10-15 turns. Also, reclustering requires more
than jV j moves, regardless of the number of updated
nodes, unlike reformulation that mostly affects the updated
nodes. For FSR and SSR, the difference between recluster-
ing and reformulation are even smaller in terms of the
social cost, but the overhead is increased.

Finally, we consider a content update scenario ðCSc1Þ
corresponding to WSc1, where x percent of the nodes
selected randomly from all clusters change their content to
a specific category. Nodes react faster to query changes
than to content updates (Fig. 4d). This is because a change
in the content of a node does not instigate a strategy
change for this specific node, since it does not affect its
cost, while for a node to become aware of the change in
the content of others, this change has to affect a large
number of nodes. Results including additional query and
update scenarios as well as topology updates (nodes join/
leave) can be found in [9].

6 RELATED WORK

There has been a lot of work on the application of game
theory to network creation [17]. In the basic form of the
network formation game [6], nodes act as uncoordinated
selfish agents whose goal is to choose other nodes to link
with. The nodes pay for the creation of a link, but gain by
reducing their shortest distance to all other nodes in the
system. In [5], theoretical results regarding the achieved
social cost are presented including variations of the game,
such as a bilateral version where links are created only with
the consent of both endpoints.

Various versions of the game have been proposed for
overlay networks. The novelty of our approach lies in using
games to model clustered overlay creation toward improv-
ing query recall. We present next a couple of approaches
with some resemblance to our game (additional related work
can be found in [9]). In [11], degrees of selfishness are
introduced through a social range matrix f , where fij shows
how much node ni cares about node nj. Then, the cost of ni is
the sum of the costs of all other nodes nj weighted by fij. As a
case study, a network formation game is presented, where
the cost has two components: one modeling the connection

cost and one modeling the gain of being a member of a

connected group as a function of the number of nodes within

the distance at maximum r-hops. In our model, we consider

clustered overlays instead of unstructured ones and the gain

depends on the recall not on the number of nodes. In [12], a

model is introduced that enforces strict bounds on the out

degree of the nodes, links are directed and nodes are allowed

to express preferences regarding the choice of their

neighbors. Our approach can be viewed as setting these

preferences based on recall benefits.
Many recent research efforts in p2p overlays have

focused on organizing nodes in clusters [9]. In most cases,

the focus is on cluster formation and query processing and

the adaptation of the overlay is not addressed. None of

these efforts takes a game-theoretic approach.
This paper is a revised version of a conference paper [10]

with an extended theoretical and experimental evaluation

that includes partial knowledge.

7 SUMMARY AND FUTURE WORK

In this paper, we have modeled the creation and main-

tenance of clustered overlays as a game. Nodes act as

players that choose their strategy, i.e., which clusters to join,

so as to minimize a utility function of the cluster member-

ship cost and query recall. To cope with churn and query

and content updates, nodes re-evaluate their strategies

resulting in dynamic reclustering.
There are many directions for future work. One is to

consider altruistic nodes that aim at improving either the

cost of other nodes or the overall system cost. Some

preliminary results for the first case were reported in [10].

With regard to the model, possible extensions include

adding to the cost function an explicit load-balance

component as well as a component for the intercluster

communication. Also, we plan to modify our protocol to

efficiently handle multiple cluster membership without

increasing its complexity. Finally, another direction is

identifying possible connections between our game-based

approach to clustering and traditional approaches based on

distance measures.
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