
A Framework for Providing Consistent and Recoverable Agent-Based 
Access to Heterogeneous Mobile Databases 

Evaggelia Pitoura and Bharat Bhargava 
Department of Computer Science 

Purdue University 
West Lafayette, IN 47907-1398 
{pitoura, bb}@cs.purdue.edu 

Abstract 

Information applications are increasingly required to be dis- 
tributed among numerous remote sites through both wireless 
and wired links. Traditional models of distributed comput- 
ing are inadequate to overcome the communication barrier 
this generates and to support the development of complex 
applications. In this paper, we advocate an approach based 
on agents. Agents are software modules that encapsulate 
data and code, cooperate to solve complicated tasks, and 
run at remote sites with minimum interaction with the user. 
We define an agent-based framework for accessing mobile 
heterogeneous databases. We then investigate concurrency 
control and recovery issues and outline possible solutions. 
Agent-based computing advances database transaction and 
control flow management concepts and remote programming 
techniques. 

Keywords: agents, mobile computing, workflow, multidata- 
bases, transactions, concurrency control, recovery 

1 Introduction 

With the rapid development of networking, computing ap- 
plications increasingly rely on the network to obtain and up- 
date information from numerous remote sites. Such applica- 
tions may often incorporate wireless connections, which are 
expensive, unreliable, slow and currently not widely avail- 
able. Given these technical impediments, users of wireless 
communications wiIl be connected only intermittently with 
the rest of the distributed system [14, 191. 

Today, networking is based on remote procedure calling 
(RPC), where a network carries messages. To overcome the 
communication barrier, there is a need for lighter-weight and 
more flexible architectures. An alternative such approach 
is remote programming (RP) [26]. In this case, a network 
carries agents which are objects that encapsulate data and 
procedures that the receiving computer executes. To exe- 
cute an agent is to perform its procedures in the context of 
its data. Agents simplify the necessary distribution of com- 
putation and overcome the communication barrier by mini- 

mizing the number of interchanged messages. Furthermore, 
agents can easily be customized, thus making the network 
an open platform for developers. Much recent research has 
been devoted to agent-based systems [22] and their imple- 
mentation in new commercial products. Among them. the 
General Magic Telescript is in use in AT & T PersonalLink 
servers and in the Sony Magic Link [28, 261. 

Most current research on agent-based models focuses on 
aspects related to intelligence. Although some of the intel- 
ligence characteristics attributed to agents are highly un- 
realistic, there is a short-term product potential in agent 
technologies intended for database applications, email fil- 
ters, and group-enabled applications [I2]. In this paper, we 
focus on the consistency and recovery aspects of agent-based 
computing. We provide a framework for agent-based access 
to heterogeneous mobile databases, explore the implications 
of such a model, and identify the aspects in which it dif- 
fers from traditional database models. We then introduce 
appropriate workflow constructs and outline solutions for 
concurrency and recovery. Many of the concepts in this pa- 
per have been previously introduced in various contexts: our 
objective here is to integrate them through the perspective 
of the agent-based paradigm. 

The remainder of this paper is organized as follows. The 
agent-based model of computing is introduced in Section 2, 
along with an exploration of its implications for concurrency 
control and recovery. In Section 3, we present a control 
flow model for agent-based computing. In Section 4 and 5, 
respectively, we discuss concurrency control and recovery. 
In Section 6, we compare our work with related research. 
and concluding remarks are offered in Section 7. 

2 The Agent-Based Model 

We shall consider the case of a distributed environment 
consisting of heterogeneous and autonomous database sys- 
tems. To provide interoperability, each database system ex- 
ports a predefined set of operations called primitive data- 
base methods. Applications interact with these database sys- 
tems through the submission of application agents (or simply 
agents). An application agent can access the databases only 
by employing primitive database methods. Special agents, 
called database agents, coordinate access to the database 
items. These database agents are responsible for maintain- 
ing the consistency of each database system and for handling 
recovery in case of failures. 

Agents, like distributed processes, model task executions. 
Multiple agents are executed concurrently and access one or 
more database systems. Each agent is written in a high-level 

44 SIGMOD Record, Vol. 24, No. 3, September 1995 



distributed programming language that allows internal par- 
allelism. The structure of the agent is then translated into 
a set of dependencies among execution states. This infor- 
mation is used to schedule the components of an agent. Ad- 
ditional dependencies may result from concurrency control 
protocols used to ensure database consistency. An applica- 
tion agent can communicate with other application agents 
in the cooperative execution of their assigned tasks. This 
communication is accomplished by invoking methods to ac- 
cess the local data belonging to another agent. Again, these 
operations are selected from a pre-specified set of primitive 
methods called primitive application methods. Formally, 

Definition 1 (agent) An agent is an active object (‘0, M, 
SD, P), where 2) is a set of local data, M a set of methods, 
2) a set of structural dependencies among methods, and P a 
set of break and relocation points. 

Deflnition 2 (method) A method of an agent is (a) a 

primitive database or application method that accesses data 
from a database or another agent, respectively; (b) a local 
method that accesses the agent’s local data; or (c) a combi- 
nation of local and primitive methods. 

Structural dependencies and break and relocation points 
are described in Section 3. An agent executes its methods 
in the context of its data. Methods can modify both local 
and remote data as well as the specifications of an agent. 

2.1 Examples 

We will present three agent-based scenarios. The first de- 
scribes electronic news filtering and is slightly adapted from 
[16]. The second is located in the context of the electronic 
market place and is slightly adapted from [27]. The final 
example pertains to mobile computing and is taken from 

1141. 

Example 1: Electronic News Filtering. Mary creates 
an application agent to select from the available news items 
those that match interests which she has previously specified 
in a profile database. The agent interacts with both the 
profile and the news database agents, performs some form 
of text analysis and retrieves the appropriate information. 
Different application agents are created to express each of 
Mary’s interests; for instance, a “politics agent” searches for 
politics news while a “literature agent” searches for news 
about new book releases. The agents accept feedback from 
Mary and then update her database profile to reflect any 
changes in her interests. 

Example 2: Shopping. John wants to buy a camera. 
He creates an application agent with specific instructions 
to find the least expensive camera of a specific brand and 
purchase it using John’s credit card account. To carry this 
out, John’s agent visits the yellow pages database agent. 
It then communicates with the database agents of each of 
the shops listed there, negotiates with them regarding the 
price, returns to the database agent of the shop offering the 
best value, and purchases the camera. Finally, the agent 
updates John’s personal files by communicating with their 
supervising database agent. 

Example 3: Mobile Computing. Mary, an insurance 
agent on her way to meet a prospective customer, creates 
an application agent to check his credit record and other 
credentials. The application agent continues executing even 
while Mary turns off her palmtop to save energy. In the 

process of formulating an individually-tailored policy, the 
application agent interacts with other application agents in- 
cluding that of Mary’s insurance company. 

2.2 Characteristics of the agent-based model 

We can identify the following characteristics of agent-based 
computation that have an impact on concurrency control 
and recovery: 

Since an agent accesses multiple heterogeneous, au- 
tonomous, and distributed database sites, concurrency 
control is in some respects similar to that in multi- 
database systems. There are, however, some signifi- 
cant differences from traditional multidatabase sche- 
mas: 

a Agent-based computation is decentralized. There 
is no global transaction manager or central data- 
base agent, since the environment is open and 
evolving. Since agents are submitted from various 
sites, including mobile stations, it would be unre- 
alistic and inefficient to route all agents through 
a central point. 

l The decomposition of an agent into local and prim- 
itive methods can not be determined at the time 
of its creation. This decomposition depends on 
the results of the execution of its previous actions 
and can be dynamically modified at runtime. 

l The interface offered by each database system is 
a collection of primitive methods. In contrast, 
multidatabase concurrency control assumes that 
applications interact with the database systems 
by submitting read and write operations. 

Agents must coordinate with each other and exchange 
information, and an agent thus cannot be executed as 
an isolated transaction. In addition, since agents exe- 
cute complex activities advanced control flou! features 
must be provided. 

Each agent executes in the context of its own local 
data. 

Each agent is a robust, recoverable object. In case of 
failure, not only the data items in the databases should 
be restored but also the local data and the computa- 
tion state of the agent. 

Figure 1 highlights the architectural differences between 
traditional multidatabase and agent-based systems. 

3 Flow of Control Specification 

An application agent consists of a set of methods and a num- 
ber of control flow specifications. The control flow specifi- 
cations of an agent include (1) structural dependencies that 
define the order of method execution; (2) breakpoints that 
define the points of interaction among agents; and (3) relo- 
cation points that define the execution environment. 

3.1 Structural dependencies 

Structural dependencies are dependencies among control- 
lable states of the methods of an agent. In terms of primitive 
methods, the finest granularity of the lifetime of an agent 
that can be controlled at t,he time of its specification or ex- 
ecution is the completion (commit or abort state) and the 

SIGMOD Record, Vol. 24, NO. 3, September 1995 



: .___________ !wlriteJ : load sitr ____..____---------- 

(a) (b) 

Figure 1: (a) Traditional multidatabase architecture (b) Agent-based architecture 

submission (begin state) of the method. The actual execu- 
tion time of a primitive method is under the control of the 
corresponding database or cooperating database agent. In 
addition, some database agents provide a prepare-to-commit 
state that indicates that a primitive method has completed 
execution and its results are about to become permanent. 
In terms of local methods, an agent has also control over 
their execution time. We distinguish two types of commit- 
ment depending on whether the result of the execution is 
semantic failure or semantic success. 

Definition 3 (structural dependency) A structural de- 
pendency SD is a triple (C, M, S), where C is a specifi- 
cation, M is a set of methods, and S is a set of control- 
lable states of the methods M E M. For a primitive M, a 
controllable state in S may be commit (semantic failure or 
semantic success), abort, prepare-to-commit, or submit, and 
for a local method it can also be execute. 

We distinguish three types of structural dependency based 
on the form of C: trigger, ordering, and real-time dependen- 
cies. 

Definition 4 (trigger) In a triggering structural dependency 
(C, M, S), C has the following form: if M, enters state s,, 
then M, must enter state s, for M,, M3 E M and s,, s, E 
S. 

Special cases of triggering structural dependencies in- 
clude critical, contingency, and compensation methods. Crit- 
ical methods are methods that, when aborted (or fail seman- 
tically) cause the entire agent to abort (or fail semantically). 
Contingency methods are methods that are executed as al- 
ternatives when a method fails semantically. Compensation 
methods are methods that are executed to semantically undo 
the effect of a committed method when some other method 
aborts. 

Definition 5 (order) In an ordering structural dependency 
(C, M, S), C has one of the following forms: M, can enter 
state s, only after M, has entered state sJ, or M, cannot 
enter state s, after MI has entered state s, for M,, MJ E 
M and s,, s, E S. 

Ordering structural dependencies can be used to express 
data flow dependencies, for instance that M, reads data pro- 
duced by M,. 

Definition 6 (real-time) In a real-time structural depen- 
dency (C, M, S), C specifies a requirement for the real time 
submission or completion of the methods in M. 

All methods of an agent are executed in parallel unless 
otherwise indicated by an ordering dependency or by re- 
strictions imposed by concurrency control. The ordering 
dictated by concurrency control is necessary for the consis- 
tency of the database data or the local data of an agent. 

3.2 Cooperation among agents 

Since agents are by nature synergistic [ll], an agent-based 
model must support cooperation among application agents. 
To support agent cooperation, in General Magic, for in- 
stance, the invocation of the meet command permits two 
agents to interchange information, if this is authorized by 
their specifications [28]. The Knowledge Query and Ma- 
nipulation Language (KQML) under development as part 
of a large DARPA-sponsored knowledge initiative is a lan- 
guage and a protocol which supports high-level communica- 
tion among intelligent agents [9]. In KQML, agents commu- 
nicate by exchanging messages. 

Thus, we see that agents, unlike traditional transactions 
are not isolated from other concurrently executing agents. 
This principle may be stated formally with the assistance 
of concepts found in advanced transaction models. One 
such appropriate concept is the breakpoint [a]. In this ap- 
proach, the steps (here, methods) of two transactions (here, 
agents) can be interleaved only at pre-specified execution 
points called breakpoints. 

Definition 7 (breakpoint) A breakpoint of an agent A 1s 
a triple (B,, B,, {(A,, MI)}) where {(A,, M,)} is a set of 
pairs of methods and agents, and B,, B, are controllable 
states of methods in A which allow members of {(A,,M,)} 
to be executed between states B, and B, of A. 

3.3 Relocation 

In the remote procedure calling model, programs are im- 
mobile and each application is statically installed on a site. 
Agents, however, are by nature dynamically distributed with 
their components executed in remote databases or cooper- 
ative agents. Agents are also mobile in that their context, 
i.e., their local data, can change dynamically. To model 
relocation, we use a notion similar to delegation [5, ‘1. 

46 SIGMOD Record, Vol. 24, No. 3, September 1995 



Deflnition 8 (relocation point) A relocation or delega- 
tion point of an agent A is a triple (B,, I?,, (A’, B:)) where 
B,, B, are controllable states of methods in A, A’ is another 
agent, and Bi is a controllable state of a method in A’ and 
determrnes that the part of A between the states B, and B, 
:s to be executed (delegated) as part of A’ after B:. 

The ability to relocate the center of computation is of 
great importance in a computing environment with wire- 
less connections. In such an environment, the location of 
a user changes dynamically with time. Thus, the distance 
of a client from an information provider is not a fixed pa- 
rameter of the cost of the service. Relocating a computa- 
tion permits the minimization of communication costs and 
the improvement of response time by reducing the physical 
distance between information providers and by considering 
changing network loads and availability. Mobile agents also 
facilitate load balancing among base stations. 

4 Concurrency Control 

The execution of an application agent consists of local steps, 
primitive message steps, and composite message steps. A 
local step is the execution of a local method. A primitive 

message step is the execution of a primitive database or ap- 
plication method. A composite message step is the execution 
of a composite method and consists of a number of primitive 
and local steps. Thus, 

Deflnition 9 (execution) An agent execution (history) is 

a partial order (T, >) where T is a set of local, primitive, 
and composite steps and break or relocation points and > is 

an order on the steps and points as determined by flow of 
control specifications. 

4.1 Maintaining correctness 

Multiple agents concurrently access shared resources. Such 
access involves two aspects of correctness: structural and 
data correctness. Structural correctness ensures the struc- 
tural properties of agents according to their control flow 
specifications. We assume that, as in TeleScript [ZS], there is 
an engine (an interpreter) within the agent that executes lo- 
cal methods and handles structural dependencies. The spec- 
ification and enforcement of structural dependencies can be 
accomplished by various means including petri nets or active 
rules. 

Data correctness maintains the consistency of shared re- 
sources and is usually specified through a number of in- 
tegrity constraints. In the agent-based model, maintaining 
consistency refers to (a) maintaining the consistency of data 
in each database system and (b) maintaining the consistency 
of the local data of each agent. The second part of the defi- 
nition of correctness is necessary since parts of the code of an 
agent are executed concurrently and since other cooperative 
agents access the agent’s local data. 

The prevailing approach to maintaining data correctness 
and ensuring the isolation property of an execution is serial- 
izability. We assume that each database ensures serializabil- 
ity of histories submitted to its site. We guarantee that each 
agent A ensures: (a) serializability of the local and primitive 
methods executed on its data and of the methods delegated 
to it, and (b) that a nondelegated method M of an agent 
A’ appears among the points B, and B, of A only if this is 
permitted by an appropriate breakpoint. Then, 

Theorem 1 The execution of all agents is serializable (global 
serializability) if there is a serialization order consistent with 
the serialization orders assumed by all database sites and 
agents. 

There are various factors that determine the difficulty of 
maintaining global serializability, including: 

1. The existence of autonomous agents beyond the con- 
trol of the database agents. These autonomous agents 
are part of the autonomous pre-existing database sys- 
tems and are completely hidden from the application 
and database agents. 

2. The existence of interdatabase constraints. that is con- 
straints that span more than one database site. Con- 
straints may also exist among local data of different 
agents or among local data of an agent and a data- 
base. In the absence of such constraints, there is no 
need for global serializability to maintain data correct- 
ness. However, some form of serializability may be 
necessary to ensure some kind of agent isolation. 

3. 

4.2 

The type of histories produced by the database agents. 
For example, for strict histories in which the commit.- 
ment order of methods is the same as their execution 
order, the enforcement of global serializability is rela- 
tively straightforward. 

A decentralized concurrency control algorithm 

We shall now outline a timestamp-based method to ensure 
global serializability. A commutativity relation is defined 
for each pair of primitive and local methods. Two methods 
M , and M, commute if they do not conflict; that is, if the 
result of executing M, after MJ is the same as executing 
h4, after M,. These relations are saved in the form of a 
compatibility matrix. In a closed-nested transaction model, 
such as that in [13], conflicts among primitive or local meth- 
ods result in conflicts among the composite methods with 
which they are invoked. In open-nested transactions [18], 
there is no such implication. The algorithm presented is for 
open-nested transactions but can be adapted to the closed- 
nested situations by using techniques such as hierarchical 
timestamps [13]. 

Upon creation, each application agent receives a time- 
stamp. The timestamp is defined to be a combination of 
the value of the clock and the user’s id. The timestamp of 
an agent corresponds to its global serialization order. Each 
application agent serializes all conflicting methods on its lo- 
cal data based on the timestamp order. An operation on its 
local data issued by another agent is executed only after en- 
suring that the two agents are allowed to “meet” at a break 
or relocation point. 

We now describe the submission of a primitive method 
from an application agent to a database agent. The al- 
gorithm is a slight variation of [I] for the case of a data- 
base interface of primitive methods. To execute a composite 
method, each application agent can use techniques such as 
the semantic-based locks of [18]. 

Each database agent possesses a variable called an agent 
ticket (AT). In the case of autonomous agents, an addi- 
tional data item per database site is needed. This data item 
is physically stored in that site and is called a physical ticket 
(PT). Each database agent keeps a list of the timestamps 
of all primitive methods that have been submitted to the 
site. A method that does not commute with a submitted 
method is not allowed to execute concurrently with it; thus. 

SIGMOr! Record, Vol. 24, No. 3, September 1995 4i 



if such a method arrives with timestamp smaller than AT, 
it is aborted. Two commutable methods can be executed 
concurrently. Indirect conflicts among commutable meth- 
ods may arise through conflicts with the operations of au- 
tonomous agents; these can be avoided by forcing direct con- 
flicts among them. This is accomplished by having a data- 
base agent execute the following code after a commutable 
method M of an application agent A is received, 

getCAT) 
ifs?T > A’s timestamp) abort(M) 

submit(M) to database 
then in a critical region 

@(AT) 
tfisyT > A’s timestamp) abort(M) 

write(PT, A ‘s timestamp) 
send prepare-to-commit(M) to A 
if decision taken to commit M 

set (AT, A’s timestamp) 
commit(M) 

else abort(M) 0 

If there are no autonomous agents, then commutable 
methods are allowed to execute concurrently without any 
additional control. 

Weak consistency. Distributed systems that include wire- 
less connections are characterized by frequent and predictable 
disconnections. As a consequence, agent methods executed 
on mobile hosts usually must rely only on locally available 
and possibly obsolete data. Inconsistency may be handled 
by introducing weak primitive methods as part of the inter- 
face of a mobile database agent. Weak methods are methods 
that access only local data and thus are only locally consis- 
tent [21]. Their commitment is deferred until connection 
with other sites becomes feasible. 

5 Recovery 

Failures in a distributed system include communication and 
site failures. In the agent-based model, the information that 
must be recoverable, called the contest, includes the local 
data of the agent and the environment of its computation. 
Following an approach similar to that of Contract [25], we 
assume that the context is saved in a private database for 
each agent called context database. The context database is 
stored in stable storage and survives failures. 

Instead of overwriting the local data of an agent, several 
versions are kept in the context database. The value last 
written to a data item by a committed method is called 
the last committed value for that data item. A committed 
context database state with respect to an execution is the 
state in which each data item contains its last committed 
value. Methods of an agent that are executed concurrently 
at different databases or cooperating agents take a copy of 
the appropriate context database. 

We rely on system support provided by database agents 
to handle database site failures that occur during the execu- 
tion of a primitive database method of an agent. We assume 
that such failures are either transparent to the application 
agent or result in aborting the submitted method. When 
a site failure occurs after a primitive method was success- 
fully executed but before its results become persistent, the 
method is compensated. The method is then either retried 

or considered as aborted. Site failures that occur while an 
agent’s local method or a primitive application method of a 
cooperative agent is executed are handled by using the local 
context of the agent. A committed context database state 
is restored. Communication failures are detected by speci- 
fying time-outs. In such cases, when an agent is lost, it is 
reconstructed using its context. 

In order to limit the size of the context database as new 
versions of local data are stored some old versions must be 
deleted. An entry is removed if the method by which it was 
written has been aborted or overwritten by a method that 
has been committed. 

The atomicity property. The atomicity property refers 
to the requirement that either all or none of the methods of 
an application agent must be committed. Ensuring atomic- 
ity becomes complicated when each database or application 
agent makes independent decisions on whether to commit or 
abort a primitive method submitted by an application agent 
A. In this case, A may need either to compensate (seman- 
tically undo) a committed primitive method or to retry an 
aborted primitive method. However, the atomicity property 
may not be appropriate for many agents, since aborting the 
whole computation is usually too costly. Alternative char- 
acterizations have been proposed; the interested reader is 
referred to [3] for an overview of some of these proposed 
approaches. 

6 Related Work 

Techniques to support an agent-based model for accessing 
database systems combine concepts from multidatabase con- 
currency control, advanced transaction models, and con- 
trol flow management. [4] offers an excellent survey of the 
problem of concurrency control in multidatabase systems. 
We outlined the differences between concurrency control 
in agent-based systems and multidatabases in Section 2.3. 
Multidatabase systems that offer method-based interfaces 
include the DOM project [17] and the VODAK system [l5]. 
The majority of multidatabase transaction management sys- 
tems adopt a centralized approach; [29, l] are possible ex- 
ceptions. Many researchers have identified the need for ad- 
vanced transaction models (see [7] for examples). ACTA [5] 
provides a framework based on first-order logic for reasoning 
about extended transaction models. This model is low-level: 
a higher-level model based on transaction primitives is de- 
scribed in [2]. These two models can be used to express and 
to implement respectively some of the control flow charac- 
teristics of agents. On the basis of extended transaction 
models, many researchers have defined control flow specifi- 
cations [23, 101 along the lines of Section 3. Computations 
as recoverable objects are discussed in [25]. Finally. trans- 
action management in mobile computing environments is 
addressed in [6, 20, 301. The agent-based approach is in 
compliance with these models. 

7 Conclusions 

We are currently witnessing the emergence of a new model of 
distributed computing which is based on the presence of mul- 
tiple, autonomous, and persistent communicating agents. 
This model is tailored to the computing requirements of a 
future that includes wireless connections and numerous dis- 
tributed sites and for which the onus of coordination must 
be shifted from users to application programs. In this pa- 
per, we have introduced a framework for agent-based access 

SIGMOD Record, Vol. 24, No. 3, September 1995 



to heterogeneous mobile databases. We have identified the 
implications of this new computational paradigm on con- 
currency control and recovery and noted its differences from 
traditional models. Although much remains to be investi- 
gated on this fascinating topic, we have presented an initial 
outline of its features and pointed to several potential solu- 
tion to emerging problems. 

References 

[l] R. K. Batra, M. Rusinkiewics, and D GeorKakopoulos. A De- 
centralized Deadlock-free Concurrency C&t&l Method for 
Multidatabase Transactions. In Proceedings of the fLth In- 
ternational Conference on Distributed Computing Systems, 
June 1992. 

PI 

[31 

[41 

(51 

bl 

PI 

k31 

PI 

PJI 

1111 

[121 

P31 

1141 

I151 

A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, and K. Ra- 
mamritham. ASSET: A System for Supporting Extended 
Transactions. In Proceedings of Ihe 1994 SIGMOD Confer- 
ence, pages 44-54, May 1994. 

Y. Breitbart, A. Silberschatz, and G. R. Thompson. Trans- 
action Management in a Failure-Prone Multidatabase Sys- 
tem Environment. VLDE Journal, l(l):l-39,1992. 

Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. 
Overview of Multidatabase Transaction Management. 
VLDE Journal, 1(2):181-239, 1992. 

P. K. Chrysanthis and K. Ramamritham. Synthesis of Ex- 
tendedTransaction Models using ACTA. ACM Transactions 

on Database Systems, 19(3):450-491, September 1994. 

P. K. Chrysanthis. Transaction Processing in Mobile Com- 
puting Environment. In Proceedings of the IEEE Workshop 
on Advance8 in Parallel and Distributed Systems, pages 77- 
83, October 1993. 

A. K. Elmag-id, editor. Database Transaction Models for 
.4duanced .4pplicalions. Morgan Kaufmann, 1992. 

A. A. Farrag and M. T. Ozsu. Using Semantic Knowledge of 
Transactions to Increase Concurrency. ACM Transactions 
on Database Syslems, 14(4):503-525, December 1989. 

T. Finin, D. McKay, R. Fritzson, and R. McEntire. KQML: 
An Information and Knowledge Exchange Protocol. In 
Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge Build- 
zng and Knowledge Sharing. Ohmsha and 10s Press, 1994. 

D. Georgakopoulos, M. Hornick D., and A. Sheth. Workflow 
Management: From Process Modeling to Workflow Automa- 

tion Infrastructure. Distributed and Parallel Databases, An 
Inlernalional Journal, 3. 1995. 

R. Goodwin. Formalizing Properties of Agents. Technical 
Report CMU-CS-93-159, Carnegie Mellon University, School 
of Computer Science, 1993. 

1. Greif. Desktop Agents in Group-Enabled Products. In 
[22], pages 100-105. 

T. Hadjilacos and V. Hadjilacos. Transaction Synchroniza- 
tion in Object Bases. Journal of Computer and System Sci- 
ences, 43:2-24, 1991. 

T. Imielinksi and B. R. Badrinath. Wireless Mobile Com- 
puting: Challenges in Data Management. Commonications 
of the .4CM, 37(10), October 1994. 

W. Klas, P. Fankhauser, P. Muth, T. Rakow, and 
E. J. Neuhold. Database Integrationusing the Open Object- 
Oriented Database System VODAK. In Ahmed Elmag-id 
and Onwan Bukhres, editors, Object-Oriented Multidatabo- 
ses. Prentice Hall, 1995. 

[I61 

iI71 

iI81 

WI 

PI 

[23] 

[241 

[25] 

WI 

1271 

[=I 

WI 

1301 

1 

P. Maes. Agents that Reduce Work and Information Over- 
load. In [22] pages 31-40. 

F. Manola, S. Heiler, D. Georgakopoulos, M. Hornick, and 
M. Brodie. Distributed Object Management. International 
Journal of Intelligent and Cooperative Information Systems, 
l(l), June 1992. 

P. Muth, T. C. Rakow, G. Weikum, P. Brossler, and 

C. Hasse. Semantic Concurrency Control in Object-Oriented 
Database Systems. In Proceedings of the 9th Inlernational 

Conference on Data Engineering, pages 233-242, 1993. 

E. Pitoura and B. Bhargava. Building Information Systems 
for Mobile Environments. In Proceedings of Ihe Third Inter- 
national Conjerence on Information and Knowledge Man- 
agement, pages 371-378, November 1994. 

E. Pitoura and B. Bhargava. Revising Transaction Concepts 
for Mobile Environments. In Proceedings of Ihe 1st IEEE 
Workshop on Mobile Computing Systems and Applications, 

December 1994. 

E. Pitoura and B. Bhargava. Maintaining Consistency of 
Data in Mobile Distributed Environments. In Proceedings 
of the 15th International Conference on Distributed Com- 

puting Systems, May 1995. 

D. Riecken. editor. Special Issue on Intelligent Agents. Com- 
munications of the ACM, 37(7), July 1994. 

M. Rusinkiewicz and A. Sheth. Specification and Execu- 
tion of Transaction Workflows. In W. Kim, editor, Modern 
Database Systems: The Object Model and Beyond, pages 

592-620. Addison Wesley, 1995. 

H-J. Scheck, G. Weikum, and W. Schaad. A Multi- 
level Transaction Approach to Federated DBMS Transac- 
tion Management. In Proceeding8 of the Fir82 Inlerna- 
lional Workshop on Interoperability in Ma&database Sys- 
tems, pages 280-287, April 1991. 

H. Wachter and A. Reuter. The ConTract Model. In [7], 
pages 239-264. 

J. E. White. Mobile Agents Make a Network an Open Plat- 
form for Third-Party Developers. IEEE Computer. Hot Top- 
ics, pages 89-90, November 1994. 

J. E. White. Telescript Technology: Scenes from the Elec- 

tronic Marketplace. General Magic White Paper, 1994. 

J. E. White. Telescript Technology: The Foundation for the 
Electronic Marketplace. General Magic White Paper, 1994. 

4. Wolski and J. Veijalainen. Achieving Serializability in 
?resence of Failures in a Heterogeneous Multidatabase. In 
Proceedings of Ihe Parbase Conference, February 1990. 

>. H. Yeo and A. Zaslavsky. Submission of Transactions 

‘ram Mobile Workstations in a Cooperative Multidatabase 

‘recessing Environment. In Proceedings of Ihe 14th Interna- 

iional Conference on Distributed Computtng Systems, June 

L994. 

SIGMOD Record, Vol. 24, No. 3, September 1995 49 


