Peer-to-Peer Management of XML Data:
Issues and Research Challenges

Georgia Koloniari and Evaggelia Pitoura
Computer Science Department, University of loannina, Greece

(kgeorgia, pitoura}@cs.uoi.gr

ABSTRACT

Peer-to-peer (p2p) systems are attracting increasing atten-
tion as an efficient means of sharing data among large, di-
verse and dynamic sets of users. The widespread use of
XML as a standard for representing and exchanging data in
the Internet suggests using XML for describing data shared
in a p2p system. However, sharing XML data imposes new
challenges in p2p systems related to supporting advanced
querying beyond simple keyword-based retrieval. In this
paper, we focus on data management issues for processing
XML data in a p2p setting, namely indexing, replication,
clustering and query routing and processing. For each of
these topics, we present the issues that arise, survey related
research and highlight open research problems.

1. INTRODUCTION

The popularity of file sharing systems (such as Napster
[33] and Gnutella [17]) has resulted in attracting much cur-
rent research in peer-to-peer (p2p) architectures as an ef-
ficient means of sharing data. Peer-to-peer computing [32]
refers to a form of distributed computing that involves a
large number of autonomous computing nodes (the peers)
that cooperate to share resources and services. The peers
form logical overlay networks by establishing links to some
other peers they know or discover. A user in a p2p system
issues queries that describe data of interest. The queries are
propagated through the overlay network to locate peers that
provide data relevant to the query and any matching results
are returned to the user.

Although the best-known application of p2p systems is
file sharing (for example, music files in Napster), p2p sys-
tem applications go beyond data sharing. Peer-to-peer com-
puting is also a way of implementing systems based on the
notion of increased decentralization and self-organization of
systems, applications, or simply algorithms. By leveraging
vast amounts of computing power, storage, and connectiv-
ity from personal computers distributed around the world,
p2p systems provide a substrate for a variety of applications
such as network monitoring and routing, web search and
large scale event/notification systems.

XML [54] has evolved as the new standard for the rep-
resentation and exchange of semistructured data on the In-
ternet. Several application domains for XML already show
that XML is inherently distributed on the Web, for exam-
ple, Web services that use XML-based descriptions in WSDL
and exchange XML messages with SOAP, e-commerce and
e-business, collaborative authoring of large electronic doc-
uments and management of large-scale network directories.
All these applications demonstrate that much of the traffic
and data available in the Internet are already represented

in XML format. Thus, it is natural to assume that much
of the data in a p2p system is already represented in XML
format. Furthermore, the deployment of XML as the un-
derlying data model for p2p systems can provide a solution
to two important issues in current p2p systems: the lim-
ited expressiveness of the available query languages and the
heterogeneity of data.

In most p2p systems, different users and applications em-
ploy various formats and schemas to describe their data. A
user is usually unaware of the schemas remote peers use.
Moreover, some application domains, such as health-related
applications, use sensitive data that are required not to be
exposed to all users for privacy reasons. Therefore, there is
a need for a query language that can work with incomplete
or no-schema knowledge but also capture whatever semantic
knowledge is available. The flexibility of XML in represent-
ing heterogeneous data that follow different schemas makes
it suitable for distributed applications where the data are
either native XML documents or XML descriptions of data
or services that are represented in various formats in the
underlying sources (i.e. in relational databases).

With regards to the query language, in most p2p sys-
tems, users specify the data they are interested in through
simple keyword-based queries. These keywords are matched
against the names of the shared files and any results are
returned to the user. Often, most results returned are not
relevant to what the user is interested in. Thus, new more
expressive languages are needed to describe and query the
shared data. XML seems to be a promising candidate in this
direction, since it enables more precise search through pro-
vision of structural and self-describing metadata that allow
for context and category-based search.

Traditionally, research work in XML querying has been
following one of the two paths: the structured query ap-
proach (XQuery [7]) and the keyword-based approach (XKey-
word [21], XSEarch [9]). While structured queries work ef-
fectively with the inherent structure of XML data and can
convey complex semantic meaning, they require from the
user to know the schema (or part of the schema) of the
XML data to write the right query. The problem becomes
even more difficult when the user has to deal with data from
different schemas where the query requires rewriting before
it can be evaluated. On the other hand, keyword-based
searches do not require any knowledge about the underlying
data schema but they also do not allow the users to convey
semantic knowledge in their queries.

Motivated by the important role of XML in p2p systems,
in this paper, we survey recent work on distributed process-
ing of XML data in p2p systems. We focus on data manage-
ment issues, such as indexing (Section 3), clustering (Section

SIGMOD Record, Vol. 34, No. 2, June 2005

4), replication (Section 5) and query processing and routing
(Section 6). Although, schema integration of heterogeneous
data is one of major issues in p2p processing [20], [22], it is
beyond the scope of this survey.

2. P2P DATA MANAGEMENT

In this section, we provide a classification of p2p systems
and describe some of their distinctive characteristics.

2.1 P2p characteristics

Scalability: While even in large traditional distributed
systems, the number of participating nodes is in the order
of hundreds; p2p systems must achieve scalability at the
Internet-level.

Decentralization: Peer-to-peer computing is an alterna-
tive to the centralized and client-server models of comput-
ing, where there is typically a single or small cluster of
servers and many clients. In its purest form, the peer-to-
peer model has no concept of a server; rather all partici-
pants are equal, with each node given both server and client
capabilities. Between the centralized and the pure peer-
to-peer approach, there are hybrid p2p systems, in which
some of the participants, called superpeers, have extended
responsibilities and control over the others. The superpeers
are often peers that have increased capabilities (storage and
processing) and good stability properties.

Autonomy: We distinguish four kinds of autonomy, (i)
storage, (ii) execution, (iii) lifetime and (iv) connection au-
tonomy. Storage autonomy refers to the freedom of what
a node in the system stores. In traditional distributed sys-
tems with central administration, the system enforces to the
nodes which data items or indexes to store. P2p systems are
self-configured: each peer stores its own data according to its
interests and needs. Storage autonomy has another dimen-
sion related to ownership of data. This kind of autonomy
allows a peer to determine which other peers in the system
can store its own data or index information about its data.

Ezecution autonomy refers to the ability of a node to an-
swer queries and change its own data. Lifetime autonomy
refers to the freedom of each node to join and leave the
system arbitrarily. In contrast to traditional distributed sys-
tems, p2p systems support this kind of dynamism and many
issues concerning fault-tolerance, self-maintenance, ad-hoc
connectivity and data availability arise from this require-
ment. Since the peers leave the system very frequently, a
p2p system has to provide mechanisms to cope with these
disconnections without causing significant problems in its
operation. Furthermore, self-maintenance techniques should
be used to deal with the frequent changes in the network.
Finally, connection autonomy refers to the form of the over-
lay network in a p2p system. It enables a peer to select
with how many and which peers it will connect to, based for
example on trust or friendship with other users.

Due to the various forms of autonomy, many peers may ex-
hibit selfish behavior. Selfish peers may refuse to evaluate or
propagate queries or store index information or data copies.
Such selfish peers try to exploit the resources and services
provided by the system, without being willing to offer any-
thing back to the peer community. To prevent this kind of
behavior, p2p systems must provide incentives to peers for
sharing their data and participating in query processing.

Other challenges that p2p systems need to cope with in-
clude anonymity, security and administration transparency.

SIGMOD Record, Vol. 34, No. 2, June 2005

A nice introduction to p2p systems and their basic goals
and characteristics can be found in [32]. Some research chal-
lenges with emphasis on search are presented in [40], search
and security issues are discussed in [13] and initial research
ideas on data management in [19].

2.2 Types of p2p data management systems

We classify peer-to-peer data management systems based
on (i) the degree of decentralization, (ii) the topology of
the overlay network, (iii) the way information is distributed
among the nodes and (iv) the type of data they store. Re-
garding the degree of decentralization, this varies from pure
p2p systems, where all peers have equal roles, to hybrid
architectures, where specific peers (the superpeers) are as-
signed different roles. Topology refers to the way the nodes
in the p2p system are interconnected. Example topologies
include the star, ring and the grid topology. In hybrid ar-
chitectures, the topology of the superpeers may differ from
that of the other peers. For instance, the superpeers may
be fully inter-connected, while each simple peer is only con-
nected with a single superpeer.

With regards to the distribution of information among
the peers, we distinguish between structured and unstruc-
tured p2p systems. In wunstructured p2p systems, there is
no assumption about the distribution of data to the peers.
Unstructured p2p systems can be further distinguished be-
tween systems that use indexes and those that are based on
flooding and its variations. Topologies in unstructured p2p
systems are usually not restricted to some regular structure,
however, they may be regulated, for instance, by setting
limits on the number of neighbors each peer can have.

In structured p2p systems, data items (or indexes of data
items) are placed at specific nodes. Usually the distrib-
ution of data items to the peers is based on distributed
hashing (DHTSs) (such as in CAN [38] and Chord [45]). In
DHTs, each item is associated with a key and each peer is
assigned a range of keys and thus items. We make an ad-
ditional distinction regarding structured p2p systems based
on whether they assign to peers actual data items or indexes
of items. Most DHT-based structured p2p systems follow a
strict topology (such as a ring or torus) in which each peer
has a specific number of neighbors. For example, in Chord,
a hash function creates an m-bit identifier space. Identifiers
are ordered on an identifier circle modulo 2", that forms
the Chord virtual ring. As new peers join the system, their
identifier, produced by hashing their IP address and port,
is used for mapping them to the virtual ring. Data keys are
also hashed and distributed to the peers according to their
hash value, so that each key is assigned to its successor peer,
which is the peer with the nearest hash-value traveling the
ring clockwise. When a peer n joins the system, certain keys
previously assigned to n’s successor now become assigned to
n. When peer n leaves the network, all of its assigned keys
are reassigned to n’s successor. Each peer maintains a fin-
ger table with its successors. Query routing proceeds by
consulting the finger tables to locate the peer with the iden-
tifier closer to the search key. Other DHT-based systems
exploit a less strict topology. For instance, P-Grid [1] builds
a virtual distributed search tree which may be unbalanced.

DHT-based p2p systems support efficient key lookup (e.g.,
of order O(logn) in Chord). However, in most structured
p2p systems, both storage and connection autonomy is com-
promised. The peers are forced to store information for data

Dimension Values

Topology Random graph ‘ Star ‘ Tree ‘ Torus ‘
Decentralization Centralized Hybrid p2p Pure p2p
Data ‘ Index
Struct
ructure Unstructured Loosely—structured Structured (DHT-based)
o ————— 0
Data Type Schema-less ‘ Schema-based

Figure 1: Classification of p2p systems

items assigned to them by distributed hashing and also fol-
low a regulated topology. In addition, structured p2p sys-
tems require sophisticated load balancing procedures to cope
with the increased demand for popular items and the dy-
namic behavior of the peers. There are also systems that
are not based on distributed hashing, but do impose some
structure. Such systems organize the overlay network into
groups of peers with similar properties. We call such sys-
tems loosely-structured or clustered p2p systems.

Note that structured, unstructured and loosely structured
p2p systems can use either pure or hybrid p2p architec-
tures. For example in the case of structured DHT-based
p2p systems, the DHT may be built only upon the super-
peers, which have to follow the strict topology imposed by
the system, while simple peers may connect to one or more
superpeers without following any particular structure.

Finally, we distinguish between schema-less and schema-
based p2p systems. In schema-based p2p systems, the peers
use explicit schemas to describe their content. Schemas can
be heterogeneous. A potential candidate for describing re-
sources in p2p systems is the Resource Description Frame-
work (RDF). RDF [39] is used to annotate resources on the
Web, thus providing the means by which computer systems
can exchange and comprehend data. RDF schemas are flex-
ible and can evolve over time by allowing the easy extension
of schemas with additional properties, thus being suitable
for dynamic p2p systems. RDF usually uses an XML-based
syntax to represent the metadata of the described resources.
Apart from representing RDF descriptions in XML, RDF
schemas can be used to provide semantic meaning for XML
documents by using ontologies that are also described in
RDF [23]. Figure 1 summarizes our taxonomy.

3. DISTRIBUTED INDEXES

In a p2p system, queries are initiated at various peers.
These queries may require data that are located at a large
number of peers distributed over the system. Tradition-
ally, distributed systems use centralized or distributed in-
dexes (catalogs) to store information about the location of
data. For query processing, the indexes are consulted and
the queries are sent to the appropriate nodes and evaluated
there. Maintaining indexes in p2p systems poses additional
requirements. In particular, indexes in p2p systems must
support frequent updates, as peers join and leave the sys-
tem constantly. Furthermore, the indexes need to be highly
scalable, since the number of peers reaches Internet-scale,
while in traditional distributed systems, the number of par-
ticipating nodes is much smaller and controlled.

3.1 Types of p2p indexes

There are three basic approaches regarding indexes: main-
taining (i) no index, (ii) a centralized index and (iii) a dis-
tributed index. When there is no indez (such as in Gnutella

[17]), some form of flooding is used for routing: the peer
where the query is initiated contacts its neighbors in the
overlay network, which in turn contact their own neighbors
until the requested items are located or some system-defined
bound is reached. Flooding does not compromise storage
autonomy but incurs large network overheads. In the case
of a centralized index (such as in Napster [33]), information
about the contents of all peers in the system is maintained at
a single peer. Peers that enter the system publish informa-
tion about their data in this central index that is consulted
when a query is submitted. The drawback of this approach
is that the central index server becomes a bottleneck and a
single point of failure. Maintaining replicas of the central-
ized index may increase reliability and scalability but still
fails to handle efficiently the huge number of updates.

The distribution of the index depends on the overlay topol-
ogy and on whether the system is structured or unstruc-
tured. In structured p2p systems, each peer stores index
information for the data assigned to it by the hash function.
For the evaluation of a query, its hash value is computed
and the query is routed through the peer overlay network
towards the peer that is responsible for storing the corre-
sponding value.

In unstructured p2p systems, a popular form of distrib-
uted indexing is routing indexes [10]. The routing indezes
of a peer summarize information about the contents of other
reachable peers; they are used during routing to direct the
queries towards the peers that are expected to hold relevant
data. Since knowledge about all peers in the network is in-
feasible for scalability reasons, horizons are used to limit the
number of other peers for which each peer stores informa-
tion. Each index of a peer summarizes information about
the data of all other peers that can be reached at a maxi-
mum distance h, where h is called the radius of the horizon.
A peer may have just one such index or one for each of its
links, summarizing the information of all peers on the path
starting from this link and at a maximum distance h. An-
other distribution strategy is a hierarchical topology. In this
case, the peers form one or multiple hierarchies. Each peer
in the hierarchy stores information about the peers in its
subtree, and the roots of the hierarchies are interconnected.
The peers in the upper layers of the hierarchy assume most
of the load and use their indexes to forward the queries to
parts of the hierarchy where relevant data may be found.

Distributed indexes can also vary according to the degree
of decentralization of the p2p system. In hybrid p2p sys-
tems, each superpeer is responsible for a number of other
peers for which it stores index information. The superpeers
are interconnected with each other following either a struc-
tured or an unstructured architecture. Each query is for-
warded to a superpeer that is responsible for propagating it
to the relevant peers or superpeers using its indexes. Query
routing follows different protocols among the superpeers and
the peers of the system and different types of indexes are
used between superpeers and between superpeers and peers.

When using XML as the underlying data format, addi-
tional requirements arise for p2p indexes. In partcular, for
XML documents, we need both value and path indezes for
addressing the content as well as the structure of documents.
Commonly used path indexes are indexes that assume an
unordered tree structured data model and consist of a tree
structure that summarizes path information [18]. Evaluat-
ing a query consists of traversing the path tree and match-

SIGMOD Record, Vol. 34, No. 2, June 2005

N1 | D1: device/printer/postscript, D2: device/camera
N2 | D3: device/printer/postscript, device/local/printer
N3 | D4: device/camera

N4 | D5: device/local/printer, D6: device/network/printer
N5 | D7: printer/laser/color, device/camera

N6 | D8: network/printer/laser
N7 | D9: book/databases/greek
N8 | D10: book/databases/english

Figure 2: Example of XML data distributed at peers

ing the path expression against the tree nodes. Other ap-
proaches assume that the data follow an arbitrary graph
model. These indexes construct reduced graphs [36] that
summarize all paths in the original data graph, by collaps-
ing nodes that are equivalent (two nodes are equivalent if
the paths from the root to them are the same).

Next, we describe in detail how indexes are adopted in
some structured and unstructured p2p systems to support
XML. We shall use the simple example depicted in Fig. 2 of
8 peers and their data, where for example, peer N1 stores
2 documents D1 and D2 containing paths “device/printer/
postscript” and “device/camera” respectively.

3.2 XML indexes in structured p2p systems

The use of XML as the format for data representation
introduces additional problems in structured p2p systems.
Most current structured p2p systems use document names
as the data keys that are mapped to the underlying virtual
network. Recent research [44], [49] has extended structured
p2p systems by exploiting the content of documents for de-
termining the keys. In particular, a vector describing each
document is extracted and used as the key to map the doc-
uments to the virtual multi-dimensional space of the net-
work. These vectors, used in information retrieval applica-
tions, typically consist of the document’s keywords weighted
by the frequencies of their appearance. The extracted vec-
tor is of much higher dimension than the dimension of the
virtual space of the network. Thus, dimensionality reduc-
tion is required. This reduction should cause a minimal
distortion, that is, the distance of the initial vectors should
be approximated by the distance of the new vectors with
the reduced dimensions. Vectors consisting of keywords and
their corresponding weights are not suitable for represent-
ing XML data, since they do not capture the relationships
between the elements (hierarchical structure). Thus, the
challenge in this context is mapping the appropriate index
keys for XML (both value and path indexes) to the multi-
dimensional space created by distributed hashing.

In [15], a distributed catalog framework based on a struc-
tured p2p system is proposed. The system uses Chord [45]
as the overlay network. The distributed catalog stores sets
of key-summaries information for all the peers. The keys
for XML data are either element or attribute names. The
summaries that correspond to each key are either structural
or value summaries. The structural summaries of a key are
all possible paths leading to that key. The type of the value
summary depends on the domain of the key, i.e. histograms
are used for arithmetic keys. For each new peer that enters
the system, each key-summary pair is inserted in the sys-
tem by the Chord protocol according to the hash values of
the keys. The class of supported XPath queries are of the
form: p = ai[b1]/az[b2]/.../an[bn] op value, where each a; is
a key and each b; a path. The structural part of the query is
handled using the structural catalog information, while the

SIGMOD Record, Vol. 34, No. 2, June 2005

value predicates use the value summaries. For query rout-
ing, first all the simple paths (sp; = /ai1/ai2/.../aim: op
value) are extracted from the query. The peer responsible
for the next a;m: is found and the set of candidate peers
for sp; are retrieved using the catalog of that peer. The in-
tersection of all the candidate peers that are produced after
all the simple paths are processed is the set of peers that
should receive the query.

Figure 3 shows an example of routing in Chord and its
extension in [15]. The circles correspond to peers, while
dotted circles correspond to logical positions (nodes) in the
Chord ring that are not currently occupied by actual peers.
The numbers within the circles correspond to the identifier
of each logical node in the virtual space, while the labels next
to them show which peers occupy the positions. The system
has four peers N1 to N4 whose data are presented in Fig.
2. The table presents the index information that each peer
holds for both Chord and its extension. The first column
presents the finger tables of each peer, i.e.;, N1 knows that
the successor of identifier 2 is peer 3, of identifier 3 again
peer 3 and of identifier 5 peer 5. The finger tables are the
same for both systems. For Chord, the index keys are the
names of the files shared by the peers. Therefore, the second
column of the table shows which files are assigned to each
peer after the hash function is applied to their names. In
the extended Chord (third column of the table), the indexed
keys are the elements found in the documents along with
their structural summaries denoted by S;. Each S; contains
all the possible paths that lead to the corresponding indexed
key in the contents of peer Ni. Let us assume that N1 issues
the query: “local/printer”. This query is not supported in
Chord, therefore to retrieve this information the user must
know the names of the files that contain it and pose a query
using these names. On the other hand, the extended Chord
is designed to support exactly this kind of queries. The
arrows show the route of this query in the extended Chord.

XP2P [4] also extends Chord to support XML data. The
system assumes that each peer stores a set of XML frag-
ments (subtrees of XML data). In addition, each peer stores
the local content of the user’s fragments and their related
path expressions that are the lists of each fragment’s child
fragments (path expressions stored as PCDATA within sub-
tags in the fragment) and their super fragment (a path ex-
pression of the fragment which is the ancestor of the current
fragment). These expressions are hashed into the Chord
virtual space. The hashing technique used is different from
that used in Chord. In particular, a fingerprinting tech-
nique is proposed based on [37]. The produced fingerprints
are shorter than the hash keys used in Chord and support
a concatenation property that allows the computation of
the tokens associated with path expressions to proceed in-
crementally. Partial and full match lookups are supported,
where in the first case, a match to a fragment is returned
without unfolding its child fragments, while in the latter
case, all the sub tags of the fragment are unfolded and the
corresponding child fragments are retrieved. The queries
are fingerpinted as well and when the fingerprint of a query
(either in full or partial lookup) matches the fingerpint of a
data fragment, the results are located by the lookup func-
tionality of Chord. If the system cannot find a match, for in-
stance if some peers are temporarily unavailable, additional
techniques based on gradually pruning the query path are
deployed to provide the user with at least a partial match.

Peer | Finger Table |Keys (Chord) | Keys—Summaries (extended Chord)

N1 2:3,3:3,5:5
N2 4:5,5:5,7:1

N3 6:6, 5:5,7:1
7:1,0:1, 1:1

DI camera—S1{device}, S3{device}

D2, D3 printer—S1{device}, S2{device, device/local}
S4{device/network, device/local }

D4, D5 -

D6 postscript—S1{device/printer}

/\ N2 | N

Figure 3: Indexes in structured p2p systems

RDFPeers [6] are based on MAAN (Multi-Attribute Ad-
dressable Network) which extends Chord to answer multi-
attribute and range queries. Each RDF is viewed as a (sub-
ject, predicate, object) triple. Each triple is hashed and
stored for each of its values in the corresponding positions
in the Chord ring. For arithmetic attributes, MAAN uses
order preserving hash functions so as to place close values
to neighboring peers in the ring for the evaluation of range
queries. Each query is transformed into triples and each
value is searched as in Chord.

A DHT-based approach based on CAN is presented in
[63]. The system presumes that the schema of the data is
known by all peers. An overlay network similar to CAN is
built where each dimension in the virtual multi-dimensional
space corresponds to either a path level (a level of the path
expression corresponding to some element name) or a unique
attribute name on a specific path level. The dimensional-
ity of the virtual space depends on the maximum depth of
the path expressions and the number of distinct attributes
each path level has. The virtual space is viewed as a hyper-
rectangle and each distinct path corresponds to a logical
node in the overlay network. The overall hyper-rectangles
are disjointly partitioned among sub hyper-rectangles with
exactly one logical node corresponding to each one of them.
Each piece of XML data is mapped to a logical node ac-
cording to its coordinates that are derived by hashing each
element name and attribute that corresponds to each of the
dimensions. Each peer keeps catalog information about all
the paths that are mapped to it along with its own coordi-
nates and its corresponding hyper-rectangle. Additionally,
each peer keeps a routing table where it stores tuples of the
form (coordinate, hyper-rectangle, address) for its neigh-
bors in the virtual space. When a query is issued, it is
also hashed to provide the query coordinates. When the
queries consist of absolute location paths with only parent-
child axis, the routing can be easily done by using the CAN
routing mechanism which is enhanced in order to find the
closest neighbor for propagating the query (finding the clos-
est hyper-rectangle). If the query is more complex, it is
transformed into one or more absolute location paths and
the same mechanism is deployed.

In [34], a hybrid structured (non-DHT) p2p architecture
is presented. The superpeers are organized into a hyper-
cube topology that supports efficient broadcasting, while
(non-super) peers connect to superpeers in a star-like fash-
ion where each peer connects to only one superpeer. RDF
metadata are used to describe the content of peers and to
build routing indexes. Queries and answers to queries are
also represented using RDF metadata. Two kinds of indexes
are maintained at the superpeers: superpeer/peer indexes
(SP/P) and superpeer/superpeer (SP/SP) indexes. SP/P
indexes at a superpeer store information about metadata

10

usage at each peer connected to it. This includes schema
information such as schemas or attributes used, as well as
possibly conventional indexes on attribute values. SP/SP
indexes contain the same kind of information as SP/Ps,
but refer to the direct superpeer neighbors of a superpeer.
Queries are forwarded to superpeer neighbors according to
the SP/SP indexes and then sent to the connected peers
based on the SP/P indexes.

3.3 XML indexes in unstructured p2p systems

In unstructured p2p systems, research efforts focus on
building space efficient routing indexes for XML documents.
Most approaches build path indexes with the use of aggre-
gation and suitable encoding schemes for the paths.

Figure 4 shows an example of query routing when using
simple routing indexes such as in [10] and when XML-based
routing indexes are used. The peers N1 to N4 hold the same
data as in Fig. 2. Let us assume that the horizon is of radius
2. The gray circles represent the peers that are within peers
N1 horizon. The table shows the routing indexes of peers
N1 and N3 and their edges, for both simple routing indexes
and path-based ones. Assume that N1 issues the same query
as in the example of Fig. 3, that is “local/printer”. If path
indexes are not supported, the user must know the names
of the files that contain the requested path expression. The
arrows show the route the query follows when path-based
routing indexes are used.

Two architectures for distributing the routing indexes,
namely, the open and the agreement model, that differ in
the degrees of shared knowledge among the peers, are pro-
posed in [27]. In the open model, each peer is allowed to
know about and potentially communicate with every other
peer, while in the agreement model, each peer enters into
bilateral agreements with some other peers called its neigh-
bors. Path indexes are used as the internal organization
of the routing indexes which maintain pointers from each
path to the corresponding peers that contain it. Since the
information included in a path index can grow excessively,
aggregating paths with common prefixes is proposed to ac-
commodate the routing index in a given space overhead.

Processing of containment queries in p2p systems is pre-
sented in [16]. Containment queries exploit the structure
of XML data (i.e. book contains author contains name =
“John Smith”). XML elements and text words are treated
uniformly as index keys. Local indexes at each peer consist
of inverted lists, which map keywords to XML documents
stored at the peer. In addition to its local inverted lists, each
peer also maintains routing indexes, called peer inverted in-
dexes, that map keywords to the identifiers of remote peers.
A query is forwarded to remote peers by using the peer in-
verted index and set operations are used to minimize the
number of relevant destinations. Indexes are built when a

SIGMOD Record, Vol. 34, No. 2, June 2005

peer joins the system by exchanging information with other
peers. These indexes are smaller than local indexes, since
a peer only exchanges a small subset of its keywords, such
as words that are often found in queries or that are repre-
sentative of its local data. The result is a p2p system in
which each peer has a summary of important data of all
other peers. Horizons are used to limit the number of peers
for which a peer has summarized information. A peer maps
keywords outside of its horizon to peers on the boundary of
the horizon that are closer to them.

In [26], each peer maintains a local index, summarizing
its local content and one or more merged indexes summa-
rizing the contents of its neighbors. The peers form hier-
archies in which each peer stores summarized data for the
peers belonging to its subtree. The roots are interconnected
and store additional summaries for all other roots. Each
peer that receives a query first checks its local index for
any matches. Then, if it is an internal peer, it checks its
merged index and if there is a match it forwards the query
to its subtree. Furthermore, it sends the query to its parent
or if it is a root peer to the other matching roots. The in-
dexes used are based on Bloom filters that are compact data
structures for the representation of a set of elements. To sup-
port the evaluation of regular XPath expressions, multi-level
Bloom filters are introduced that preserve hierarchical rela-
tionships between the inserted elements. These relationships
are preserved by inserting the elements of the XML tree to
a different level of the filter according to their depth in the
tree (Breadth Bloom filters), or by using paths of different
lengths as keys and inserting them to the corresponding level
of the filter according to their length (Depth Bloom filters).

A secure service discovery protocol for p2p systems is de-
scribed in [12]. Service providers use the Service Discovery
Service (SDS) to advertise descriptions and metadata of ser-
vices expressed in XML. Clients use the SDS to locate the
services they are interested in. The SDS servers are orga-
nized into hierarchies, which can be modified according to
each server’s workload. Each server is responsible for a par-
ticular domain; it receives advertisements and queries from
a specific part of the network. When a server becomes over-
loaded, one or more child servers are spawned and assigned
part of their parent domain. Each internal peer of the hier-
archies stores summaries of the descriptions of its children,
which are used for query routing. Summaries consist of a
single Bloom filter. To insert a description in the filter, the
description is divided to all possible subsets of the elements
and attributes up to a certain threshold. Each query is split
to all possible subsets and each one is checked in the index.
The system emphasizes on security and access control issues
and uses cryptography and authentication to ensure them.

4. CLUSTERING

Data clustering refers to grouping data items together to
form clusters (groups) of items with common attributes or
properties. In centralized systems, query performance may
be improved by an appropriate placement of clustered data
or indexes in main memory or in disk so that the I/O cost
during query evaluation is minimized. In a distributed set-
ting, clustering may improve query performance by reduc-
ing the communication cost through placing similar data
at neighboring nodes. In a p2p setting, we further distin-
guish between (i) clustering similar data items (or indexes of
similar data items) so that similar data (or indexes of simi-

SIGMOD Record, Vol. 34, No. 2, June 2005

® o
NP
SN 1

Keys (XML-based)

Peer | Edge | Keys

el D3, ... device/local/printer, device/camera, ...
NI device/camera, device/local/printer,
e2 D4, D5, D6, ... X .
device/network/printer ...
N3 e3 D5, D6, ... device/local/printer, device/netwrok/printer, ...

Figure 4: Indexes in unstructured p2p systems

lar data) are placed in neighboring peers and (ii) clustering
peers with similar data items, so that their distance in the
overlay network is small. By grouping similar peers, a query
that reaches a peer in the cluster finds all other peers with
relevant data nearby. KEach form of clustering provides a
different degree of storage autonomy. Data (or index) clus-
tering violates storage autonomy, since it enforces peers to
store specific items.

In structured p2p systems, if the hash function is order-
preserving, similar documents are stored at the same or
neighboring peers. Order preserving hash functions are those
hash functions that for similar inputs produce outputs close
in the identifier space. Then, content-based clustering can
be achieved by using as input to the hash function not just
the name of the document but a semantic vector describing
its content and structure.

Clustering the peers affects the topology of the p2p over-
lay. Issues of interest are how the peers within a cluster
are interconnected (intra-cluster organization) and how the
clusters are connected to each other (inter-cluster organiza-
tion). Usually, query routing proceeds in two steps: first
the appropriate cluster is identified and then the query is
routed inside the cluster. Different mechanisms for intra-
cluster and inter-cluster routing are often required.

In hybrid clustered p2p systems, superpeers act as cluster
representatives. Each cluster contains at least one super-
peer, which is in charge of the management of the cluster:
query processing and peer information management. The
superpeers collect their peers’ schemas and communicate
with each other for query evaluation.

Figure 5 illustrates the two techniques for clustering in
p2p systems, data or index clustering (Fig. 5(a)) and peer
clustering (Fig. 5(b)). The documents stored at each peer
are described in Fig. 2. In Fig. 5(a), the peers form a struc-
tured p2p system that follows a ring topology. We assume
that the vectors extracted from each of the documents are
given as input to an order preserving hash function. The
output of the hash function maps each document to the vir-
tual ring. The table shows which documents are mapped
to each peer. Documents with the same or similar content
are mapped to the same or neighboring peers. For exam-
ple, documents D2 and D4 that have the same content are
both mapped to logical node 0, while documents D3 and
D5 that share some content (i.e., the path expression “de-
vice/local /printer”) are mapped to neighboring peers. On
the other hand, in Fig. 5(b) where peers clustering is per-
formed what is affected is the overlay network. In particu-
lar, two peers that have similar content are connected in the
overlay network. For example, peer N3 is connected to both

11

Peer

N1

Keys (Chord) @ .

N2

D2, D4 @
D7

N3

N4

D1, D3 /
‘ O

D5

N5

D6, D8

N6

»)

N7

e

N8

(b)

Figure 5: (a) Data (index) clustering and (b) peer clustering

N1 and N5 with which it has similar content (document D2
of N1 has the same content with D4 of N3, while document
DT of N5 shares a common path expression with D4).

When compared to distributed clustering, the autonomy
of the peers makes the application of distributed clustering
in a p2p context challenging. Peers may join and leave the
system or change their content very often. The clusters in
the system must adapt to reflect the new setting without
requiring the application of the clustering procedure from
scratch. Thus, the allocation of similar data to neighboring
peers must be dynamic and incremental. Furthermore, clus-
tering algorithms for centralized applications rely on having
global knowledge of the data or the schema that the data fol-
low and use this information to define the clusters or the cat-
egories to group or classify the data. However, the changing
environment and the lack of global knowledge in p2p sys-
tems prohibits the use of predefined clusters or categories
and clustering must be applied as an adaptive distributed
procedure among peers using only partial knowledge about
the data and the system’s topology. Moreover, using a fixed
number of clusters creates unbalanced clusters that cannot
cope with changes in the system workload. Thus, load-
balancing should also be taken into account in the clustering
procedure, since some clusters may become over-populated
and assume most of the query workload, while others may
be almost empty.

In most current research, with regards to peer cluster-
ing, the number or the description of the clusters is pre-
defined and fixed while global knowledge of this informa-
tion is required. With Semantic Overlay Networks (SONs),
peers with semantically similar content are logically linked
to form overlay networks based on a classification hierarchy
of their documents, which is defined a priori [11]. Queries
are processed by identifying which SONs are better suited
to answer them. In [52], clusters of peers are again formed
based on the semantic categories of their documents. So-
phisticated procedures are proposed for both inter-cluster
and intra-cluster load balancing. Similarly in [3], peers are
partitioned into topic segments based on their documents.
A fixed set of C clusters is assumed, each one corresponding
to a topic segment. Knowledge of the C' centroids is global.

To perform clustering in a p2p system that uses XML as
the underlying model, we need to identify which peers have
similar content or which XML documents are similar and
therefore should be grouped together. Thus, we need to
define appropriate similarity measures for XML documents.
Clustering for XML documents in centralized applications
mostly relies on structural information. For the classifica-
tion of schema-less data, the authors of [51] combine text

12

terms, structural information in the form of twigs and paths
and also ontological knowledge (WordNet [14]) to construct
more expressive feature spaces that are then used for the
classification. XRules [55] assigns the documents to cate-
gories through a rule based classification approach that re-
lates the presence of a particular structural pattern in an
XML document to its likelihood of belonging to a particular
category. S-GRACE [29] is a hierarchical algorithm for clus-
tering XML documents with a distance metric based on the
notion of a structure graph, which is a minimal summary of
edge containment in the data. Finally, XClust [28] addresses
clustering when schema information in the form of DTDs is
available in contrast with the previous methods that can be
applied to schema-less data. XClust clusters DTDs based
on the semantics, immediate descendants and leaf-context
similarity of DTD elements. These centralized methods for
XML clustering cannot be directly applied to p2p systems
since they require global knowledge of the data or of their
schema. They need to be adapted to work with incomplete
local knowledge acquired by the cooperation of the peers.

In [26], a form of peer clustering is applied to an unstruc-
tured p2p system of XML peers. The peers are organized
into hierarchies according to their content similarity. Con-
tent similarity is derived from the similarity of their routing
indexes. Similarity takes into account both the structure
and the content of data and is efficiently calculated from
the routing indexes without requiring any knowledge of the
schemas or the data of the other peers. Upon entering the
system, each peer sends its index to the roots of the hier-
archies that compare it with their own indexes. The peer
attaches to the most similar hierarchy, so that peers with
similar content are organized into the same hierarchy. The
number of the hierarchies, i.e. clusters, is not fixed and
changes according to the content of the new peers that en-
ter the system. An adaptation of this clustering procedure
for non-hierachical architectures is presented in [25].

The systems we describe next, assume that schema infor-
mation is available. In structured p2p systems this infor-
mation can be used to provide for an appropriate mapping
of data items or peers to the virtual space. If the schema
is known a priori, the virtual address space can be split to
sub-spaces each one corresponding to a different part of the
global schema. Then, upon entering the system, each peer
(or data item) can be mapped to the sub-space of the virtual
space that corresponds to its schema, thus creating clusters
of peers that follow the same schema.

Along this line, in [43], the system assumes that all peers
share a common topic ontology, and organizes them into
concept clusters that are described by a logical combination

SIGMOD Record, Vol. 34, No. 2, June 2005

of ontology concepts. These concept clusters are organized
into a hypercube topology. A hypercube topology is followed
within the concept clusters as well. In particular, a peer in
an ontology-based hypercube carries an address, which con-
catenates a set of concept coordinates (outer hypercube) and
a set of storage coordinates (inner hypercube). In [35], the
assumption is that the data of the peers belong to some cat-
egorization hierarchies relevant to a domain, called a multi-
hierarchic namespace. Each hierarchy is called a dimension.
The coordinates of a data item in the system are expressed
as n-tuples. Groups of peers choose what data to host based
on their own interests, thus defining their interest areas. In-
terest areas are defined as subsets of the cross product of
some dimensions and are divided into interest cells. The
interest areas describe index coverage of other groups’ data
and are encoded into URNs. The associated index servers
to each interest area are contacted to find relevant data.

The next three systems are hybrid clustered p2p systems
that use global schema information to organize peers into
clusters. In SQPeer [24], peers are grouped based on their
RDF-schema similarity. The peers that hold RDF descrip-
tions conforming to the same RDF schema are clustered to-
gether. The system uses active schemas that are fine-grained
schema advertisements that contain only information about
what is actually stored in a peer. In XPeer [42], peers are
logically organized into clusters that are also formed on a
schema-similarity basis, whenever this is possible. Super-
peers are organized to form a tree, where each peer hosts
schema information about its children; superpeers having
the same parent form a group. In both SQPeer and XPeer,
the procedure that creates the clusters is not described and
the authors focus on the exploitation of the clusters when
such clusters exist. The system in [30], is based on RDF
schemas that are assumed to be globally known. Rule-based
clustering is used. Peers are registered and grouped in clus-
ters based on cluster specific rules that describe the proper-
ties that each peer in the cluster should possess. These rules
are provided by the cluster’s administrator.

5. REPLICATION

The goals of replication in a p2p system do not differ
much from those in a non p2p distributed system. Repli-
cation is basically used to improve system performance and
to increase data availability in case of peer failures. Per-
formance can be improved with replication either through
balancing the load among the peers or by increasing locality,
i.e. placing copies of data closer to their requestors. Repli-
cation refers either to the data items or their indexes. Issues
of interest in both p2p and non p2p distributed systems in-
clude determining which items to replicate, where to place
the replicas and how to keep them consistent. However,
replication in p2p systems creates new requirements. The
lifetime autonomy of the peers makes replication essential
for keeping data available even when some of the peers stor-
ing them go offline. On the other hand, this makes enforcing
consistency very difficult in p2p systems. In traditional dis-
tributed systems, we have either eager or lazy replication.
Eager replication keeps all replicas exactly synchronized at
all nodes. Lazy replication propagates updates asynchro-
nously. Most applications of p2p systems do not require
strict consistency, thus only lazy replication is usually ap-
plied, because of the high cost of eager replication. Further-
more, the lack of any central administration and of global

SIGMOD Record, Vol. 34, No. 2, June 2005

knowledge of both the data and the query workload make
the decision of which items to replicate and where much
more complicated. Handling these issues depends both on
the overlay topology and the routing mechanism in use.

With regards to the number of replicas, there are various
approaches. At one extreme, uniform replication creates the
same number of replicas for all data items irrespectively of
their popularity. At the other extreme, proportional repli-
cation creates for each data item a number of C replicas,
where C' is proportional to its popularity, i.e. the number of
queries that concern the given item, assuming that the pop-
ularity, i.e. the query workload, is globally known. While in
proportional replication, popular queries are satisfied very
efficiently since a large number of copies for the requested
data is available across the system, unpopular data require
many search steps thus compromising the overall system
performance. On the other hand, with uniform replication,
a large portion of the system resources is wasted in replicat-
ing data that appear in queries very rarely. Between these
two extremes, square-root replication [8] creates copies so
that for any two data items the ratio of replication is the
square root of the ratio of their query rates. Square-root
replication provides better results by leveraging the efforts
for finding popular and unpopular data items.

In unstructured p2p systems, two different strategies are
mainly used for placing replicas: path and owner replication.
With owner replication, whenever a peer issues a successful
query about a specific data item, a replica of the item is
created at that peer. With path replication, copies of the
requested data are stored at all peers along the path in the
overlay network from the requestor peer to the provider peer
[31]. Although path replication outperforms owner replica-
tion, it tends to replicate data items to peers that are topo-
logically along the same path, which somewhat hurts the
system performance. For updating the copies, the authors
in [41] propose an investment policy where each individual
peer propagates an update only if it estimates a benefit from
doing so, i.e., an investment return.

For structured p2p systems, the issue that is addressed
by replication is mostly load balancing and data availabil-
ity. Bringing the data items closer to the requestors is not an
issue since these systems already require only a small num-
ber of search steps to locate each item. Distributed hashing
that assigns data items to peers does not take into consider-
ation the popularity of each item, thus some peers may be
assigned with many popular items. Such peers are burdened
with satisfying most of the query workload and become hot
spots. CAN [38] tries to solve this problem by using mul-
tiple hash functions to assign each item to more than one
peers or by creating multiple coordinate spaces. As far as
data availability is concerned, if a peer in a structured p2p
system fails, all the items assigned to it become inaccessi-
ble even if they are stored at other peers, since the routing
protocol cannot operate correctly. For this reason, in Chord
[45], each peer stores a list of k of its successor peers, so if
its successor fails, it can contact the first available successor
in its list. Finally, an additional requirement for structured
p2p systems that map indexes of data items to peers and
replicate items instead of indexes, is that the index entries
must be extended to maintain the identifiers of all the peers
that hold copies of the indexed item.

The problem of replicating XML data or indexes in p2p
systems has not received much attention yet. An important

13

issue that arises is the granularity of replication and distri-
bution for XML. The issue is discussed in [5] but for a non
p2p distributed XML repository. There, a global concep-
tual schema is used by a simplified structure called Repos-
itoryGuide, which is a tree-structured index that resembles
a DataGuide [18]. The system supports XML-path and tree
pattern queries. The fragmentation scheme decomposes the
RepositoryGuide into a disjoint and complete set of tree-
structured fragments that preserve data semantics. A sub-
language of XPath is used for data fragmentation that sup-
ports vertical fragmentation, which is solely based on the
selection of node types through path properties. The lan-
guage can also be extended to support horizontal fragmen-
tation, which includes conditions and branching, although
some consistency issues arise. The allocation phase con-
sists of three steps: determining which fragments to allocate
at which system nodes, placing schema structures at local
nodes and suitable instances of fragments at each node. For
the first step, existing methods from distributed databases
are used. For the second step, the RepositoryGuide is fully
distributed among the nodes. Finally, for the third step,
the global context of each fragment is kept by storing the
data path from the global root node to the root of the lo-
cal fragment. To this end, three indexes are used: a path
index that encodes the global context of local fragments,
a term index that allows processing of queries that include
conditions on terms and an address index that stores the
physical addresses of the fragments. Space efficient path in-
dexes are constructed with the use of a path identification
scheme. Because of their small size, path indexes are repli-
cated at all system nodes, while term and address indexes
are distributed among them.

The replication of XML indexes in structured p2p systems
for load balance is described in [15]. Since some objects may
be more popular, thus creating a considerable load to the
peers that store them, two methods are proposed for split-
ting this load with other peers, namely the split-replicate
and the split-toss methods that split catalog information
among peers. A peer increases the level of a popular index
key, where level is the number of XML-tree path steps con-
tained in the key (initially set to 1), and either replicates
the new keys at the corresponding peers (according to the
hash function) in the Chord ring (split-replicate), or only
sends them there and then discards them (split-toss). The
peer also creates a mapping in its catalog for the new loca-
tions of the key, which it hands over to peers that request
it. Once they obtain these mappings, they query one of the
new locations in a round-robin fashion.

In [2], in contrast with [15], the actual XML documents,
called dynamic XML documents, and not their indexes are
replicated or distributed in an unstructured p2p system. Dy-
namic XML documents are XML documents that contain
materialized XML data that are part of the document and
intentional data that can be produced by service calls. Since
dynamic documents may contain calls to services on other
peers, some form of distribution is inherently part of the
model. External edges are added to the XML document
to point to peers that store other parts of the documents
to allow for a higher form of distribution. A cost model is
introduced and used for query processing and for deciding
whether to replicate some parts of other peers’ documents
to increase the efficiency of query execution.

14

6. QUERY PROCESSING

Query processing in traditional distributed systems can
be divided into four phases: query decomposition, data lo-
calization, global and local query optimization. Firstly, a
relational query is decomposed into an algebraic query on
global relations using techniques from centralized databases.
Secondly, data distribution information is exploited to local-
ize the algebraic query. The global query optimization phase
receives an algebraic query on data fragments and finds an
optimal strategy for its execution taking into account se-
lectivity estimations and communication costs. At the last
phase, each node receiving a query subplan tries to opti-
mize it locally using centralized algorithms. The first three
phases are performed centrally with global knowledge, while
the fourth one is executed on each participating node with
the knowledge available locally. For scalability reasons and
to preserve autonomy, query processing in p2p systems must
be coordination free. Furthermore, the lifetime autonomy of
peers suggests that the execution plan must be constructed
dynamically, since the number of participating peers and the
available data changes with time.

We consider two generic approaches to this issue. The first
approach is based on evaluating the query incrementally. A
peer initiates the execution of a query, and the query is
routed among the peers using the indexes. The execution
plan evolves by accumulating partial results evaluated at
each peer and locating the next peer with relevant data that
needs to process the query. The other approach resembles
the traditional approach with the known four phases but lo-
calization of data is achieved by using the indexes placed at
each peer. In particular, the initiator of a query transforms
the query into a path list and sends this list to remote peers
where with the use of index-joins (similar to semi-joins) be-
tween the list and the peers’ path indexes, the peers that
store data relevant to the query are retrieved. In a way, this
method relies on index shipping rather than query or data
shipping that is common in traditional distributed systems.
If the system is a hybrid p2p system, the queries may be
sent to the superpeers that are responsible for constructing
the execution plan and coordinating query evaluation.

Figure 6 illustrates the different scenarios for the distrib-
uted processing of the query illustrated in Fig. 6(a) issued
by peer N1. The query asks for all the printers in a build-
ing that have printing quality larger than 600x450 dpi. Let
us assume that the information about the available print-
ers in the building is stored in peer N4 and the informa-
tion about various printers characteristics in peer N2. The
query can then be decomposed in @1 that retrieves all the
printers with the desired quality from N2 and Q)2 that re-
trieves all the available printers in the building from N4.
The lines between nodes correspond to overlay network con-
nections, while the arrows show the route the query takes. In
Fig. 6(b), we illustrate the traditional client-server scenario
where the query is forwarded to a central server that has
the available information for decomposing, localizing and
optimizing globally the query. The server constructs the
distributed query plan and forwards the two sub-queries to
the corresponding peers for local optimization and evalu-
ation. The results are returned to N1 that performs the
final join. In Fig. 6(c), the superpeer based scenario is il-
lustrated. Peer N1 sends the query to the superpeer it is
connected to, namely SP;. SP; interacts with the other su-
perpeers in the network (dotted arrows) and gathers the re-

SIGMOD Record, Vol. 34, No. 2, June 2005

Q (prrinters in the building with quality larger than 600x450 dpi)

Central Server

Join printer name

Qz‘/ \Ql

Decomposition: Q—> QI, Q2

Localization: Q1->N1, Q2 —> N4

Q|

{ Printers in the ! Select
quality > 600X450 dpi @ @ @

{building |

i
i Prmlers i
| characteritics !

(a) (b)

@\

N2: Decomposition: Q1, Qr
Evaluate Q1
Attach result

SP1: Decompoition
Localization

0 — "\,
AR

(d)

N4: Evaluate Qr
Attach result

(©)

Figure 6: Distributed query processing scenarios

quired information to construct the distributed query plan.
It then forwards the sub-query @1 to N2 that is attached
to it, and Q2 to S P> that in turn forwards the query to N4.
The results are returned to SP; that performs the final join.
Finally, in Fig. 6(d) we demonstrate the fully-distributed
incremental query evaluation strategy. N1 issues the query
and forwards it to its neighbors, following a flooding-based
approach. When N2 receives the query, it realizes that it can
evaluate a part of it (Q1). It evaluates this part and attaches
to the query plan the computed result. It then forwards the
query further to its own neighbor N4. N4 evaluates the re-
maining part of the query and it either performs the final
join itself or just attaches its own partial result and forward
sit to V1 for the evaluation of the final join.

In the non p2p distributed XML repositories of [47], distri-
bution is implemented by having links from the local XML
data to XML objects at remote nodes. The data is repre-
sented by a rooted labeled graph. The model distinguishes
between local links that point to local objects and cross-
links that point to remote objects. Every node determines
which of its data have incoming edges from other nodes (in-
put data nodes) and which have outgoing edges to remote
objects (output data nodes). Copies of the external data
nodes are added to the node’s graph. Given a query, an
automaton is computed and sent to every node. Each node
traverses only its local graph starting at every input data
node and with all the states in the automaton. When the
traversal reaches an output data node, it constructs a new
output data node with the given state. Similarly, new input
data nodes are also constructed. Once the result fragments,
which consist of an accessibility graph that has the input
and output data nodes and edges between them if and only
if they are connected in the local fragment, are computed
they are sent to the origin of the query. The client at the ori-
gin of the query assembles these fragments by adding missing
cross-links, and computes all the data nodes accessible from
the root. The algorithm requires only four communication
steps and the size of the data exchanged depends only on
the number of cross links and the size of the query answer.

Optimizing the cost of communication in answering XPath
queries over distributed data based on the client-server model
is considered in [48]. Minimal views that describe a query’s
results are used to avoid the redundancy met in such results
where the same data may appear many times. The system
leaves part of the evaluation of the query to the client that
may have to extract all the answers from the minimal view
to obtain the results to the initial queries.

Query processing in [5] is based on shipping index entries
among nodes and efficiently evaluating chains of local joins
of indexes. The node that issues a query determines the
partitions of the query into path indexes lists that need to
be sent to other nodes and instructs these nodes to compute

SIGMOD Record, Vol. 34, No. 2, June 2005

the intermediate results. Then, the index results produced
at the first node are sent to the second one to compute the
join, and the resulting index is send to the third and so on.
The final result is sent to the initial node where with the
help of the RepositoryGuide the nodes that store the XML
fragments defined by the resulting path index are retrieved.
Similarly in the distributed RDF repository of [46], the main
issue is to find the optimal ordering for a chain of joins of
simple path expressions that are extracted from each query.

Mutant Query Plans (MQPs) [35] extend the weak query
capabilities and limitations in index scalability and result
quality of current p2p systems. A mutant query plan is an
algebraic query plan graph, encoded in XML that may also
include verbatim XML-encoded data, references to resource
locations (URLs), and references to abstract resource names
(URNSs). Each MQP is tagged with a target, the peer that
needs the results. An MQP starts as a regular query opera-
tor tree at the client peer and is then passed around among
peers accumulating partial results, until it is fully evaluated
into a constant piece of XML data. A peer can choose to
mutate an MQP either by resolving a URN to one or more
URLs, or a URL to its corresponding data. The peer can
also reduce the MQP by evaluating a subgraph of the plan
that contains only data at the leaves, and substituting the
results in place of the subgraph. Resolving URLs is done
either by connecting to the specified peer or by sending the
MQP to it. For the URN the system’s catalog is used. The
cost model introduced in [2] for dynamic XML documents,
is also used by a peer to decide on a query execution plan
that minimizes its own observed cost. Each query is split
to subqueries. A peer tries to satisfy locally as much of the
query as it can and then forwards the remaining subqueries
to the associated peers that follow the same procedure.

In [50], data is represented in XML and peers schemas
in XML Schema. Query evaluation is incremental with an
additional logical-level search where data are located based
on schema-to-schema mappings. Instead of a local index,
each peer maintains mappings between its own schema and
the schemas of its immediate neighbors. Mappings are de-
scribed as query expressions using a subset of XQuery. Peers
are considered as connected through semantic paths of such
mappings. Peers may store mappings, data or both. Query
processing starts at the issuing peer and is reformulated
over its immediate neighbors, which, in turn, reformulate
the query over their immediate neighbors and so on. When-
ever the reformulation reaches a peer that stores data, the
appropriate query is posed on that peer, and additional re-
sults may be appended to the query result. Various opti-
mizations are considered regarding the query reformulation
process such as pruning semantic paths based on XML query
containment, minimizing reformulations and precomputing
some of the semantic paths.

15

Table 1: Issues and challenges in p2p management of XML

Structured P2P

Unstructured P2P

Non P2P

Mapping of paths onto the

Use of space efficient routing

Pure P2P multi-dimensional virtual network path indexes through aggregation
Indexing [15], [6], [44], [49], [4], [53] and encoding [26], [16], [27] Less strict autonomy
Superpeers responsible for routing hold all index requirements,
Hybrid P2P information and propagate the queries to their peers smaller scale
(superpeers) Different routing protocols and index structures between
superpeers and between superpeers and peers [34], [12]
Clustered index Formation of peer clusters
DHT-based clustering of peers based based on schema or
on their content by adopting the input content similarity, with
Pure P2P of the hash function to split the the use of routing indexes

multi-dimensional space into regions
of peers with similar content [35], [43]

Different mechanism used
for inter-cluster and intra-

Centralized techniques

Clustering Non-DHT clustering based
on schema similarity

cluster routing [26] assume global knowledge

Hybrid P2P Clustered index built only
(superpeers) upon superpeers

Superpeers used as cluster
representatives
Inter-cluster communication
between superpeers [42], [24], [30]

Data allocation with the use
Pure P2P of distributed hashing

Replication increases data

Replication requires additional availability and Fragmentation-allocation

Replication mappings among peers responsible performance [2] of XML [5]

Hybrid P2P for the data (or indexes) and the

(superpeers) peers that hold the replicas [15]

Coordination-free based on the type of index Distinct phases: query
Pure P2P No clear distinction among query processing phases decomposition,
Query Dynamic construction of the execution plan localization, global and local

Processing Query passed around the peers accumulating partial results [35], [2], [50] optimization [47], [48]

Hybrid P2P Superpeers responsible for the construction and the Index shipping [5]

(superpeers) coordination of the execution plan [42], [24] Ordering of joins [46]

In XPeer [42], peers export a tree-shaped DataGuide de-
scription of their data, which is automatically inferred by
a tree search algorithm. The query language supported is
the FLWR subset of XQuery without universally quantified
predicates and sorting operations. Query compilation is per-
formed in two phases by the superpeers. First, the peer that
issues the query translates it into a location-free algebraic
expression. Then, the query is sent to the superpeer network
for the compilation of a location assignment. After the lo-
cation assignment is completed, the query is passed back to
the peer that issued it for execution to minimize the load of
the superpeer network. The peer applies common algebraic
rewriting and then starts the query execution: the query
is split into single-location subqueries that are sent to the
corresponding peers. Subqueries are locally optimized and
the results are returned to the initial peer which executes
operations such as joins involving multiple sources.

In SQPeer [24], queries are posed in RQL, according to the
RDF schemas that are known to each peer. When a peer
receives a query, it parses it and by obtaining the involved
path creates the corresponding query pattern graph, which
describes the schema information employed by the query.
For each path pattern, the peers that contain the required
data to answer it are discovered. If the schema of the peer is
subsumed by the selected query path, then this query path is
annotated with the name of the given peer. This is done for
all known schemas that belong to remote peers. The result
is an annotated query pattern graph with information for all
peers that need to be contacted to answer the query. The
query processing algorithm receives as input the annotated
query graph and outputs the execution plan according to
the underlying data distribution. Channels are used by the
peers to exchange query plans and results.

16

7. CONCLUSIONS

In this paper, we present data management issues that
arise in p2p systems that use XML as the underlying data
model. Table 1 summarizes related issues and challenges
in handling XML data. Regarding indexing, the main chal-
lenge is handling both value and path indexes. In structured
p2p systems, the central problem is deriving appropriate
mappings of documents to peers, while in unstructured p2p
systems, the main issue is constructing space and update ef-
ficient routing indexes. Clustering in p2p refers to both (i)
clustering index and data items and (ii) clustering peers with
similar data so that their distance in the overlay network
is small. Since most centralized XML clustering approaches
assume global knowledge and relatively static environments,
clustering in p2p systems poses new challenges. For replicat-
ing XML data in p2p systems, research is needed to cross-
fertilize recent research results in (non XML) p2p replication
and (non p2p) methods for XML fragmentation. Finally,
processing XML queries in p2p systems is still an open is-
sue. Techniques that handle the autonomy, decentralization,
scale and dynamicity of p2p systems are required.

8. REFERENCES
[1] K. Aberer, P. Cudre-Mauroux, A. Datta, Z. Despotovic,

M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: a

Self-Organizing Structured P2P System. SIGMOD Record,

32(3), 2003.

S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and

T. Milo. Dynamic XML Documents with Distribution and

Replication. In SIGMOD, 2003.

[3] M. Bawa, G. S. Manku, and P. Raghavan. SETS: Search
Enhanced by Topic Segmentation. In SIGIR, 2003.

[4] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain.
XPath Lookup Queries in P2P Networks. In WIDM, 2004.

2

SIGMOD Record, Vol. 34, No. 2, June 2005

(5]

[6]

[7]
(8]
(9]
(10]

(11]

(12]

(13]

14]

(15]

[16]
(17]

(18]

19]
20]

(21]

(22]

23]

[24]

[25]

(26]
27]

(28]

29]

(30]

(31]

J. M. Bremer and M. Gertz. On Distributing XML
Repositories. In WebDB, 2003.

M. Cai and M. Frank. RDFPeers: A Scalable Distributed
Repository based on a Structured Peer-to-Peer Network. In
WWW, 2004.

D. Chamberlin. XQuery: An XML query language. IBM
System Journal, 41, 2003.

E. Cohen and S. Shenker. Replication Strategies in
Unstructured Peer-to-Peer Networks. In SIGCOMM, 2002.
S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: A
semantic Search Engine for XML. In VLDB, 2003.

A. Crespo and H. Garcia-Molina. Routing Indices for
Peer-to-Peer Systems. In ICDCS, 2002.

A. Crespo and H. Garcia-Molina. Semantic Overlay
Networks for P2P Systems. Technical report, Computer
Science Department, Stanford University, 2002.

S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph,
and R. H. Katz. An Architecture for a Secure Service
Discovery Service. In Mobicom, 1999.

N. Daswani, H. Garcia-Molina, and B. Yang. Open
Problems in Data-Sharing Peer-to-Peer Systems. In ICDT,
2003.

C. Fellbaum. WordNet: An Electronic Lexical Database.
MIT Press, 1998.

L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating
Data Sources in Large Distributed Systems. In VLDB,
2003.

L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Processing
Queries in a Large Peer-to-Peer System. In CA:SE, 2003.
Knowbuddy’s gnutella faq.
http://www.rixsoft.com/Knowbuddy /gnutellafaq.html.

R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured
Databases. In VLDB, 1997.

S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu.
What Can Databases Do for P2P? In WebDB, 2001.

A. Y. Halevy, Z. G. Ives, and D. Suciu. Schema Mediation
in Peer Data Management Systems. In ICDE, 2003.

V. Hristidis, Y. Papakonstantinou, and A. Balmin.
Key-word Proximity Search on XML Graphs. In ICDE,
2003.

A. Kementsietsidis, M. Arenas, and R. Miller. Mapping
Data in Peer-to-Peer Systems: Semantics and Algorithmic
Issues. In SIGMOD, 2003.

M. Klein. Interpreting XML via an RDF Schema. Chapter
in Knowledge Annotation for the Semantic Web. I0S
Press, Amsterdam, 2003.

G. Kokkinidis. and V. Christophides. Semantic Query
Routing and Processing in P2P Database Systems:
ICS-FORTH SQPeer Middleware. In EDBT Workshop on
P2P and DB, 2004.

G. Koloniari, Y. Petrakis, and E. Pitoura. Content-Based
Overlay Networks for XML Peers Based on Multi-level
Bloom Filters. In DBISP2P, 2003.

G. Koloniari and E. Pitoura. Content-Based Routing of
Path Queries in Peer-to-Peer Systems. In EDBT, 2004.

N. Koudas, M. Rabinovich, D. Srivastava, and T. Yu.
Routing XML Queries. In ICDE, 2004.

M. L. Lee, L. Yang, W. Hsu, and X. Yang. XClust:
Clustering XML Schemas for Effective Integration. In
CIKM, 2002.

W. Lian, D. Cheung, N. Mamoulis, and S. Yiu. An Efficient
and Scalable Algorithm for Clustering XML Documents by
Structure. IEEE TKDE, 16(1), 2004.

A. Loser, W. Siberski, M. Wolpers, and W. Nejdl.
Information Integration in Schema-Based Peer-To-Peer
Networks. In CAiSE, 2003.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In ICS,
2002.

SIGMOD Record, Vol. 34, No. 2, June 2005

(32]

33]
(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

42]

[43]

[44]

[45]

(46]

(47]
(48]

(49]

[50]

(51]

[52]

(53]

[54]

[55]

D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,

J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-Peer
Computing. Technical report, HP Laboratories Palo Alto,
TR HPL-2002-57, 2002.

Napster. http://www.napster.com/.

W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz,

M. Schlosser, I. Brunkhorst, and A. Loser.
Super-Peer-Based Routing and Clustering Strategies for
RDF-Based Peer-to-Peer Networks. In WW W, 2003.

V. Papadimos, D. Maier, and K. Tufte. Distributed Query
Processing and Catalogs for Peer-to-Peer Systems. In
CIDR, 2003.

N. Polyzotis and M. Garofalakis. Structure and Value
Synopses for XML Data Graphs. In VLDB, 2002.

M. Rabin. Fingerprinting by Random Polynomials.
Technical report, CRCT TR-15-81, Harvard University,
1981.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A Scalable Content-Addressable Network. In
SIGCOMM, 2001.

‘World-Wide Web Consortium: Resource Description
Framework. http://www.w3.org/RDF.

J. Risson and T. Moors. Survey of Research Towards
Robust Peer-to-Peer Networks: Search Methods. Technical
report, University of New South Wales,
UNSW-EE-P2P-1-1, September 2004.

M. Roussopoulos and M. Baker. CUP: Controlled Update
Propagation in Peer-to-Peer Networks. In USENIX, 2003.
C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer:
A Self-organizing XML P2P Database System. In EDBT
Workshop on P2P and DB, 2004.

M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A
Scalable and Ontology-Based P2P Infrastructure for
Semantic Web Services. In P2P, 2002.

C. Schmidt and M. Parashar. Flexible Information
Discovery in Decentralized Distributed Systems. In HPDC,
2003.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM, 2001.

H. Stuckenschmidt, R. Vdovjak, G. Houben, and

J. Broekstra. Index Structures and Algorithms for
Querying Distributed RDF Repositories. In WW W, 2004.
D. Suciu. Distributed Query Evaluation on Semistructured
Data. TODS, 27(1), March 2002.

K. Tajima and Y. Fukui. Answering XPath Queries over
Networks by Sending Minimal Views. In VLDB, 2004.

C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer
Information Retrieval Using Self-Organizing Semantic
Overlay Networks. In SIGCOMM, 2003.

I. Tatarinov and A. Halevy. Efficient Query Reformulation
in Peer Data Management Systems. In SIGMOD, 2004.
M. Theobald, R. Schenkel, and G. Weikum. Exploiting
Structure, Annotation, and Ontological Knowledge for
Automatic Classification of XML Data. In WebDB, 2003.
P. Triantafillou, C. Xiruhaki, M. Koubarakis, and

N. Ntarmos. Towards High Performance Peer-to-Peer
Content and Resource Sharing Systems. In CIDR, 2003.
Q. Wang and M. Oszu. A Data Locating Mechanism for
Distributed XML Data over P2P Networks. Technical
report, CS-2004-45, University of Waterloo, School of
Computer Science, Waterloo, Canada, October 2004.
World Wide Web Consortium. Extensible Markup
Language (XML) 1.0 (Second Edition).
http://www.w3.org/TR/REC-xml.

M. J. Zaki and C. Aggarwal. XRules: An Effective
Structural Classifier for XML Data. In SIGKDD, 2003.

17

