
Pervasive and Mobile Computing 4 (2008) 360–389
www.elsevier.com/locate/pmc

CoWSAMI: Interface-aware context gathering in
ambient intelligence environments

Dionysis Athanasopoulosa, Apostolos V. Zarrasa,∗, Valerie Issarnyb,
Evaggelia Pitouraa, Panos Vassiliadisa

a Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece
b INRIA - UR Rocquencourt - France

Received 18 April 2007; received in revised form 12 November 2007; accepted 11 December 2007
Available online 4 January 2008

Abstract

In this paper we present CoWSAMI, a middleware infrastructure that enables context awareness
in open ambient intelligence environments, consisting of mobile users and context sources that
become dynamically available as the users move from one location to another. A central requirement
in such dynamic scenarios is to be able to integrate new context sources and users at run-time.
CoWSAMI exploits a novel approach towards this goal. The proposed approach is based on
utilizing Web services as interfaces to context sources and dynamically updatable relational views for
storing, aggregating and interpreting context. Context rules are employed to provide mappings that
specify how to populate context relations, with respect to the different context sources that become
dynamically available. An underlying context sources discovery mechanism is utilized to maintain
context information up to date as context sources, and users get dynamically involved.

c© 2007 Elsevier B.V. All rights reserved.

Keywords: Ambient intelligence environments; Context awareness; Middleware; Web services

∗ Corresponding author.
E-mail addresses: dathanas@cs.uoi.gr (D. Athanasopoulos), zarras@cs.uoi.gr (A.V. Zarras),

Valerie.Issarny@inria.fr (V. Issarny), pitoura@cs.uoi.gr (E. Pitoura), pvassil@cs.uoi.gr (P. Vassiliadis).

1574-1192/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.pmcj.2007.12.004

http://www.elsevier.com/locate/pmc
mailto:dathanas@cs.uoi.gr
mailto:zarras@cs.uoi.gr
mailto:Valerie.Issarny@inria.fr
mailto:pitoura@cs.uoi.gr
mailto:pvassil@cs.uoi.gr
http://dx.doi.org/10.1016/j.pmcj.2007.12.004


D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 361

1. Introduction

Ambient Intelligence (AmI) refers to the development of environments that are aware
and responsive to the presence of people [1–3]. AmI relies on Weiser’s pioneer vision on
ubiquitous computing [4]. Ubiquitous or pervasive computing [5] foresees a digital world
consisting of interconnected electronic devices that support the quotidian activities of
people. AmI goes one step further from the aforementioned initiatives by putting a specific
focus on the users and their experience with the electronic facilities that surround them.
This focus augments ubiquitous computing and networking with additional requirements
for natural user-friendly interaction and context awareness.

Context in computing systems is defined as “a person, place, or object that is
considered relevant to the interaction between a user and an application, including
the user and the application themselves” [6]. Typical middleware infrastructures that
focus on context awareness provide basic programming means that allow defining
context models, consisting of basic notions (e.g. location, battery, temperature) that
affect the interaction between the user and the application. Based on these definitions,
they facilitate the gathering and interpretation of context information. To achieve this
goal, a layered architectural style [7,6,8] is typically employed. The lowest layer
comprises context sources, i.e. elements that hide details related to the acquisition of
raw context data (e.g. the use of sensors, GPS). The middle layer consists of context
aggregators, which collect raw context data provided by context sources. Finally, the
upper layer comprises context interpreters, which use context information to derive certain
conclusions and determine corresponding adaptation actions concerning the user and the
application.

The particular problem we are dealing with in this paper is the dynamic integration
of context sources in open AmI environments, i.e., environments consisting of mobile
context users and context sources which become available on-the-fly as the users move
from one location to another. In open AmI environments we must facilitate the fusion
of information offered through varying interfaces, provided by the context sources that
become dynamically available. The ISTAG AmI Car and Emergency Rescue scenarios give
typical examples of what we call open AmI environments [9]. Specifically, these scenarios
involve mobile users that move across different locations, possibly using intelligent
vehicles. The context that interests them may concern information related to their travel,
the weather, the traffic, medical care, etc. Such information may be offered by varying
sources in the form of services that are available in each location.

The dynamic nature of open AmI environments renders the use of existing
context-aware middleware infrastructures problematic towards the development of such
environments. The current practice on the integration of context users and context sources
in these infrastructures is focused around two different approaches: context information
is provided to the aggregators either on-demand (i.e. the aggregators contact the context
sources) [7,10], or on-update (i.e. the context sources contact the aggregators) [7,11–13].
Both of the previous approaches are realized by imposing specific functional dependencies
on the elements involved, i.e., either the aggregators must have prior knowledge of the
interfaces of context sources, or the inverse. In other words, the current state-of-the-art
assumes a tight coupling between context sources and context aggregators. Thus, there



362 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

is no sufficient answer to the issue of integrating loosely-coupled context sources and
aggregators at run-time.

Our vision towards a middleware infrastructure that enables context awareness in open
AmI environments can be summarized in the following requirements:

• Loose coupling & customization. To enable the dynamic integration of context sources
in an open AmI environment, the middleware infrastructure must impose the less
possible functional constraints to these sources. In particular, the infrastructure must
provide an easily customizable aggregator mechanism that adapts its behavior to the
users’ perception of context and to the interfaces of available context sources to facilitate
the gathering of context information.

• Dynamic discovery of context sources. Given that context sources become available
dynamically, the infrastructure must provide means for their discovery. The context
sources discovery should be completely distributed, to effectively support environments
that are formulated in a purely ad hoc manner and environments that span across wide
areas.

• User friendliness. The middleware infrastructure must provide friendly means that
would allow defining the users’ perception of context and map this perception to the
context sources that become dynamically available. Moreover, the infrastructure must
provide means that would allow one to easily gather and interpret context information.

In this paper, we propose CoWSAMI as a possible solution to the above issues.
CoWSAMI extends our previous work on WSAMI, a light-weight middleware platform
for the development of mobile Web services [14]. CoWSAMI, goes one step further by
facilitating the dynamic integration of context users and sources in open AmI environments
based on the following concepts:

• Interface-aware mapping of externally gathered context information to the internal,
user perception of context. The only requirement imposed by CoWSAMI on the context
sources of an open AmI environment is that they should export interfaces that comply
with the standard Web service architecture [15]. CoWSAMI further responds to the
requirement for loose coupling and customization by offering means for defining
dynamically updatable relational views that represent the users’ perception of context.
Moreover, CoWSAMI allows defining context rules that reflect the mapping between
the users’ perception of context and the interfaces of available context sources. A
corresponding context aggregator is provided for gathering context information. The
aggregator is interface-aware in the sense that it gathers context by tailoring its behavior
with respect to the aforementioned mapping.

• Multi-policy dynamic discovery of context sources. To meet the requirement for the
dynamic discovery of context sources, a completely distributed mechanism is provided
to maintain context information up to date as context sources and users get dynamically
involved. Given that the availability of context sources may evolve differently, the
discovery mechanism offers the flexibility of associating different discovery policies
with different categories of context sources.

• User-friendly, SQL-based querying. Typical database query languages provide a simple
declarative way for exploring information stored in a database. To satisfy the user-
friendliness requirement in CoWSAMI we follow the same direction. In particular,



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 363

CoWSAMI offers an easy-to-use SQL-based context interpreter, inspired by our
previous work on querying ad hoc communities of peers [16].

The remainder of this paper is structured as follows. Section 2 presents a reference
example, used for exemplifying the CoWSAMI approach. Section 3 details the architecture
of CoWSAMI. Section 4 details the interface-aware context gathering process, while
Section 5 discusses the dynamic context sources discovery process. Section 6 provides an
evaluation of the CoWSAMI approach. Section 7 discusses related work. Finally, Section 8
concludes this paper with a summary of our contribution and the future directions of this
work.

2. Reference example

The main goal of CoWSAMI is to enable the dynamic integration of mobile users
with context sources that become dynamically available in an open AmI environment. To
illustrate our approach, we specifically focus on the ISTAG Car scenario [9] that concerns
the development of intelligent transport environments. The vision of developing such
environments recently gained the attention of IEEE, which released the WAVE (Wireless
Access in Vehicular Environments) communications standards [17]. WAVE standards
extend the typical IEEE 802.11 to enable networking services amongst vehicles. According
to IEEE’s vision, drivers shall receive context information about road conditions, red lights,
and hazards from other vehicles up to 0.5 Km ahead in highways and up to 0.1 Km ahead
in cities. Emergency vehicles that may be useful in the ISTAG Emergency Rescue scenario
shall be equipped with longer range WAVE systems. What is important to note at this point
is that the WAVE standard leaves each vehicle manufacturer to decide upon the issues of
what sort of data will be provided and how. Therefore, different vehicle manufacturers are
free to come up with various different services that offer context information in vehicular
environments.

Into this context, our reference example extends the one used in [14], which has been
developed at INRIA for the OZONE IST project [18]. Our AmI environment is aimed at
supporting the city of Rocquencourt, near Versailles. The environment offers CyberCars1

to Rocquencourt citizens and tourists (Fig. 1). CyberCars are unmanned vehicles that can
be booked through the Web, towards moving across different sites of the city.

Each CyberCar is equipped with its own computing facilities. Moreover, it may
communicate with other entities through a wireless network. The embedded computers of
CyberCars offer Web services that provide context information regarding the CyberCars’
features (such as velocity, position, brand). As discussed earlier, the interfaces of these
services may depend on each different CyberCar manufacturer. The implementation
of the services also depends on the manufacturer [17] as it may involve gathering
information from manufacturer-specific embedded electronic devices through special
purpose command sets, offered by these devices (e.g. in [19] we discuss an approach
for developing Web interfaces for GSM/GPRS enabled mobile sensors). Realizing, for

1 http://www.cybercars.org.

http://www.cybercars.org


364 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

Fig. 1. CyberCars used at INRIA Rocquencourt.

instance, a Web service that reports the velocity of a CyberCar may involve gathering
the CyberCar’s previous and current position for a particular time interval, using an
embedded GPS tracker.2 The city of Rocquencourt further offers Web services that provide
information regarding the city’s hotels and restaurants. These services may also vary
depending on the different hotel and restaurant companies that offer them. Finally, in our
example we assume that the Rocquencourt city hall provides a Web service that reports the
location of various sites (such as monuments, organizations, hospitals, shopping centers).

Hence, in our environment the CyberCar, the hotel, the restaurant and the city-hall
services are context sources, while Rocquencourt citizens and tourists play the role of
mobile context users. In the open environment that we examine, the context information
that interests the CyberCars’ passengers may vary. Therefore, each passenger must be
provided with an aggregator mechanism that enables the definition of the context model
that interests him/her. Take, for instance, the case of an English speaking tourist who is
interested in the current status of the traffic and the available city hotels. Using his/her
PDA, he/she should be able to define a corresponding context model. Similarly, a French
speaking Rocquencourt citizen who is only interested in the current status of the city traffic
should be able to define a different context model.

One way to discover the current traffic situation for the English tourist and the French
citizen is by dynamically discovering the varying Web services of the CyberCars that

2 http://www.brickhousesecurity.com/gps-car-tracking-vehicle-logging.html.

http://www.brickhousesecurity.com/gps-car-tracking-vehicle-logging.html


D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 365

Fig. 2. CoWSAMI architecture.

circulate towards the direction where these users are heading. Information regarding the
velocity of these CyberCars must be gathered, using the aggregator. To achieve this loosely-
coupled integration, the aggregator must dynamically customize its behavior to the users’
specific context models and the manufacturer-specific Web service interfaces of the context
sources; in other words the aggregator must be interface-aware.

3. The CoWSAMI architecture

In our view, an AmI environment consists of networked entities, each one of which
includes an instance of the CoWSAMI infrastructure (Fig. 2). The CoWSAMI entities may
be connected through a LAN or WLAN. CoWSAMI also allows the formulation of pure ad
hoc environments where the entities communicate through technologies such as Bluetooth.
Finally, the environment may comprise entities located on the Internet. The entities vary
from typical stationary workstations and PCs, to handheld and embedded devices such as
PDAs, smart-phones and sensors.

In the open environments that we examine, every CoWSAMI entity may play the
role of a context user, the role of a context source, or both. A context source provides
one or more Web services that offer context information. The Web services are specified
using the WSAMI language, which extends standard WSDL [20] with features enabling
a more detailed behavioral description. A service specification consists of an abstract
and a concrete part. The abstract part describes the interface of the service in terms
of a WSDL document, whose URI (Uniform Resource Identifier) is included in the
abstract part. Multiple service specifications may have the same abstract part, as long
as they describe services providing the same interface. The concrete part of the service
specification contains binding information (e.g., the endpoint address of the service, the
communication protocol used, etc.).

Fig. 3(a) and (b) give examples of service specifications, for two different CyberCars.
The upper parts of the figures give the abstract specifications of these entities, while
the lower parts provide the WSDL interfaces referenced in these abstract specifications.
CyberFrogs (Fig. 3(a)) offer an homonymous Web service whose interface comprises
6 operations that can be invoked to obtain a unique identifier that characterizes each
CyberFrog, the CyberFrog’s brand, velocity, fuel, and coordinates. On the other hand,
CyberCabs (Fig. 3(b)) provide a Web service that comprises a single operation, which
can be invoked to obtain all the characteristics of a CyberCab (i.e., its identifier, brand,
velocity and coordinates).



366 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

(a) The CyberFrog interface.

Fig. 3. Different types of CyberCar interfaces.

In CoWSAMI, user context is specified in terms of context attributes (Fig. 4(a)).
The information that corresponds to a context attribute is a value provided by a Web
service. In general, the AmI environment may comprise multiple context sources that
report semantically equivalent information (e.g., two different CyberCars reporting their
current velocity). Moreover, a context source may provide values for more than one
context attribute (e.g., the velocity and the brand). Therefore, related context attributes
are organized into relations (Fig. 4(a)). A context relation is characterized by a name
and consists of a finite set of context attributes. The context information modeled by a
relation is a finite set of tuples, i.e., a finite subset of the cartesian product of the domains
of the attributes that constitute the relation. The relational-based approach we employ for
modeling context is also followed by other context-aware middleware infrastructures [8].
However, in most of these cases, context modeling is controlled in that there is a unified
model defined for the environment. In CoWSAMI we aim at supporting open AmI
scenarios in which different users may utilize different definitions of context relations.
The relational-based modeling of context information allows formulating queries against
relation instances, which are populated at run-time through the use of the CoWSAMI
infrastructure.



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 367

(b) The CyberCab interface.

Fig. 3. (continued)

In detail, the CoWSAMI infrastructure is structured as depicted in Fig. 2. Its lowest layer
comprises CSOAP (Compact SOAP), a light-weight communication mechanism, which al-
lows deploying, invoking and executing Web services on resource-constrained devices. The
same layer comprises a standard SLP (Service Location Protocol) server [21] which serves
for locating networked CoWSAMI entities in the environment. On top of the SLP server,
the Naming&Discovery service realizes a primitive Web service discovery protocol. On
top of the primitive Naming&Discovery service, a context sources discovery mechanism
is incarnated by the ContextSourcesDiscovery service. The same layer further comprises
a context aggregator mechanism, realized by the ContextAggregator service. Finally, the
upper layer of CoWSAMI comprises at least a simple context interpreter, realized by the
SQLContextInterpreter service. This service provides user-friendly means for gathering
context information through the use of its underlying aggregator and discovery services.

Fig. 4(b) gives the interface of the ContextAggregator service which allows performing
the following tasks: (1) Define the particular context relations that interest a user; (2)
define the context rules that customize the gathering of context information with respect
to the interfaces of the context sources that become dynamically available and the context
relations of interest; (3) compile the tuples that constitute the context relations of interest.



368 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

(a) Context structure.

(b) CoWSAMI services.

Fig. 4. Context structure and CoWSAMI service interfaces.

Fig. 4(b) further details the interface of the ContextSourcesDiscovery service. Through
this service a CoWSAMI entity that plays the role of a context source can perform the
following tasks: (1) Join the AmI environment, i.e., make itself available as a context
source to other CoWSAMI entities; (2) leave the AmI environment, i.e., resign from
playing the role of a context source. Through the same service, an entity that gathers
context information can perform the following tasks: (1) Discover the different Web
service interfaces offered by context sources that become dynamically available; (2)
populate a repository managed by the ContextSourcesDiscovery service with addressing
information concerning context sources that become dynamically available. Finally, the
ContextSourcesDiscovery service provides the ContextAggregator service with means for
acquiring addressing information concerning the available context sources that contribute
to a particular context relation of interest.

The repository of the ContextSourcesDiscovery service consists of a number of
categories (Fig. 5(a)). A category is characterized by the URI of the abstract service
description that specifies the particular interface provided by the context sources,
belonging to this category. The category contains URIs that identify service specifications,
whose abstract parts reference the URI that characterizes the category. The concrete parts
of these service specifications comprise specific addressing information for the available
context sources that offer the specified services. The category is further characterized by
the names of the context relations to which it contributes.

Returning to our reference example, Fig. 5(b) gives a possible snapshot of the repository,
managed by the ContextSourcesDiscovery service that is deployed on the French citizen’s
PDA. The repository comprises 2 categories for CyberCar URIs and a single category for
the Rocquencourt city-hall service. The first of the CyberCar categories is characterized
by the URI of the CyberFrog interface, given in Fig. 3(a). Similarly, the second category



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 369

(a) Repository structure.

(b) Repository instance.

Fig. 5. ContextSourcesDiscovery repository.

is characterized by the URI of the CyberCab interface, given in Fig. 3(b). The CyberFrog
category contains 2 URIs of available services, providing this interface. On the other hand,
the CyberCab category contains 3 URIs of available CyberCab services.

4. Interface-aware context aggregation

The distinctive feature of the context aggregation process as realized by the
ContextAggregator service is that it adapts itself to the varying Web service interfaces
offered by context sources that become dynamically available. Achieving this feature relies
on two XML schemas that serve for defining context relations and rules. These tasks are
further detailed in this section along with the overall context aggregation process.

4.1. Defining context

The ContextAggregator service accepts as input (through the SQLContextInterpreter
front-end), context definitions that follow the XML schema of Fig. 6(a). Context relations



370 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

(a) Context schema.

(b) Examples of context definitions.

Fig. 6. Context definition.

are specified using the ContextRelation tag. Within this tag, it is possible to define one or
more context attributes, using the ContextAttribute tag.

In our reference example, the English speaking tourist who is interested in the current
traffic situation and the available city hotels may use the three context relations showed on
the left part of Fig. 6(b). The first relation is named TRAFFIC and consists of 6 attributes
(ID, BRAND, VELOCITY, FUEL, XCOORD and YCOORD), characterizing CyberCars
that circulate in the environment. The second relation is named MAP and consists of three
attributes that correspond to the name and the coordinates of a site. The third relation
is called HOTELS and comprises attributes that characterize city hotels. Similarly, the
French speaking Rocquencourt citizen who is only interested in the city traffic may use
a simpler context definition consisting of the two relations given on the right side of
Fig. 6(b). The first relation is analogous to the TRAFFIC relation defined by the tourist; it
is named CIRCULATION and consists of 5 attributes (ID, MARQUE, VITESSE, XPOS
and YPOS). The second relation is named PLAN and it is similar to the MAP relation,
defined by the tourist.

Technically, a given context definition is parsed by the ContextAggregator service
towards finding the constituent context relations, which are persistently stored.

4.2. Defining context rules

A context rule must be provided to the ContextAggregator service, upon the discovery
(through the ContextSourcesDiscovery service) of a category of context sources that may
contribute in populating a context relation that interests the user. In principle, the context



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 371

(a) Context rule structure.

Fig. 7. Context rule definition.

rule associates the attributes of the context relation with the operations offered by the Web
services of the discovered category of context sources.

In general, the interface that characterizes a discovered category of context sources
consists of a number of PortType definitions (Fig. 3(a), (b)) [20]. A PortType, in turn,
consists of the definitions of the operations that can be called on the context sources of
this category. Each operation may specify an input and an output message. The former
element refers to the SOAP request message sent upon the operation invocation, while
the latter element refers to the SOAP message returned in response to the invocation. The
specification of a message consists of one or more parts. Each part is characterized by
a name and the particular type of datum exchanged between a service and an entity that
invokes the service.

Therefore, a context rule that describes how to populate a context relation, using a
discovered category of context sources is specified according to the schema given in
Fig. 7(b). In particular, the context rule is characterized by the name of the context relation
and the URI of the interface specification that characterizes the discovered category. The
rule comprises one or more ContextAttributeMapping elements. Each element describes
how to obtain a value for an attribute of the context relation, by invoking a corresponding
operation of the specified interface. The ContextAttributeMapping element comprises
two constituent parts. The first part (specified using the ContextInputMessage tag) is
characterized by the type of the request message that should be sent upon the operation
invocation and a sequence of values that should be included in the message. The second
part (specified using the ContextOutputMessage tag) is characterized by the type of the
response message, received after the operation invocation. Moreover, the second part of
the mapping specifies the name of the actual part of the response message that contains
the value of the context attribute.

Every rule given to the ContextAggregator service is parsed and its encapsulated
ContextAttributeMapping elements are grouped with respect to the operations that have to



372 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

(b) Context rule schema.

Fig. 7. (continued)

be called to fill up the values of context attributes. This grouping is necessary for optimizing
the collection of context information in cases where the values of multiple attributes are
obtained by calling a single operation (e.g., Fig. 8(b)). Finally, every context rule is stored
persistently in the device where the ContextAggregator service is deployed.

Moving on to our reference example, Fig. 8(a) gives a part of the rule that describes
how to populate the TRAFFIC relation, employed by the English tourist (Fig. 6(b)),
using context sources that offer the CyberFrog interface. The rule specifies a context
attribute mapping for each one of the ID, BRAND, VELOCITY, FUEL, XCOORD and
YCOORD attributes. To obtain a value for the VELOCITY attribute, for instance, the
getVelocity() operation must be invoked. No input message is needed for this invocation
since the operation accepts no input parameters. The actual value of VELOCITY is stored



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 373

(a) Context rules for the CyberFrog interface.

(b) Context rules for the CyberCab interface.

Fig. 8. Examples of context rules.

in the getVelocityReturn part of the getVelocityResponse message (see Fig. 3(a) for the
definitions of these WSDL elements), returned upon the invocation on the aforementioned
operation. Fig. 8(b) gives a part of the rule that describes how to populate the same relation,
using context sources that belong to the CyberCab category (Fig. 3(b) gives the interface



374 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

Fig. 9. Examples of queries issued against context relations.

specification that characterizes this category). To obtain a value for the VELOCITY
attribute, the getState() operation must be invoked. The value of VELOCITY is now stored
in the Velocity part of the getStateResponse message. Similarly, to obtain a value for the
ID attribute, the same operation must be called. The value of the attribute is stored in
the ID part of the aforementioned message. Fig. 8(a) and (b) further highlight the main
differences between the rules defined for the English tourist’s TRAFFIC relation and the
rules that should be given for the French citizen’s CIRCULATION relation (Fig. 6(b)).

4.3. Collecting context information

Collecting context information amounts to providing an SQL query to the
SQLContextInterpreter service (Fig. 9). For every context relation specified in the FROM
clause of the query, the ContextAggregator service is invoked to gather related tuples
(Fig. 10 step 1). The ContextAggregator retrieves from the repository maintained by the
ContextSourcesDiscovery service the different categories of context sources that contribute
to the compilation of these tuples, along with the context rules that correspond to these
categories (Fig. 10 steps 2–3). The operations prescribed in the rules are invoked on
the context sources, using dynamic JAXRPC Web service invocations3 and the response
messages are parsed to obtain the raw context data that serve as values of the context
attributes that constitute the context relation (Fig. 10 steps 4–7). Certain transformations
(e.g. miles to Km, s to ms, etc) may be further applied on the data by intercepting the
JAXRPC Web service invocations with WSAMI customizers [14].

Once the tuples of the context relations involved in the query are assembled, the
results are returned to the SQLContextInterpreter service, which processes them and
results are returned back to the user. The processing of the tuples is performed differently,
depending on whether CoWSAMI is deployed on a resource-constrained device or not.
Specifically, for the case of resource-constrained devices, the SQLContextInterpreter
comprises a simple set of main memory relational operators that directly process the

3 http://java.sun.com/webservices/jaxrpc/index.jsp.

http://java.sun.com/webservices/jaxrpc/index.jsp


D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 375

Fig. 10. Collaboration among the CoWSAMI middleware services towards gathering context.

incoming tuples. In this case, the tuples that constitute a context relation are stored in
the device storage memory, in files characterized by the name of the relation and the user
that defined it. A possible alternative for storing and processing the compiled tuples is
through the integration of the SQLContextInterpreter with existing DBMS support for
resource-constrained devices (e.g., Oracle Lite [22], IBM DB2 Everyplace [23]). For non-
resource-constrained entities, the SQLContextInterpreter can be integrated with a full-
blown relational engine. In any of these cases, the contents of the storage media (device
storage memory, or DBMS) are updated with respect to a given freshness threshold.

In our reference example, the SQLContextInterpreter accepts as input, queries such
as the ones given in Fig. 9. The left part of Fig. 9 shows a query issued by the English
tourist against the TRAFFIC relation (Fig. 6(b)). The query returns the average velocity
of the CyberCars that circulate in an area defined by the current position of the tourist’s
CyberCar and the position of the tourist’s destination. Similarly, the right part of Fig. 9
shows the query that is issued by the French citizen to check for the current status of the
traffic towards the citizen’s destination. This query is issued against the CIRCULATION
relation (Fig. 6(b)) Answering any of the two queries amounts to collecting the velocity of
all the different CyberCars that can be accessed. The job of collecting this information is
performed by the ContextAggregator service of each user, with respect to the context rules
(Fig. 8) specified for the two different Web service interfaces of Fig. 3, which characterize
the CyberCars that are currently available.

5. Multi-policy context sources discovery

Dynamic context sources discovery is the second essential feature provided by
CoWSAMI to enable context awareness in open AmI environments consisting of mobile
users and context sources that become dynamically available as the users move from one



376 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

location to another. Given that certain environments may be formulated in a completely ad
hoc manner we employ a distributed discovery protocol that extends the one realized by
the basic WSAMI Naming&Discovery service. The modus operandi of this service along
with the required extensions that enable the dynamic discovery of context sources is further
detailed in the remainder of this section.

5.1. The Naming&Discovery service

In CoWSAMI, a Naming&Discovery service is deployed on every entity along with
a standard SLP (Service Location Protocol) server [21], which periodically broadcasts
the URI of the Naming&Discovery service. Based on the previous mechanism, the
Naming&Discovery service is aware of other reachable Naming&Discovery services. The
Naming&Discovery service manages a catalog, named local, which contains the URIs of
the Web services offered by the CoWSAMI entity. The service further manages a catalog,
named remote, which acts as a local cache that contains URIs of Web services, deployed
on other reachable CoWSAMI entities; these Web services were discovered at some point
in the past by the CoWSAMI entity.

The overall service discovery process starts with a request for a particular Web service
interface, made by the CoWSAMI entity on its locally deployed Naming&Discovery
service, which takes charge of forwarding this request to all other reachable
Naming&Discovery services. Each one of them, checks its local and remote repositories
for Web services that offer the required interface and replies back to the requesting entity
with the URIs of these services.

5.2. The ContextSourcesDiscovery service

The context sources discovery builds upon the generic service discovery protocol
discussed in the previous subsection and involves performing the following tasks. The
ContextSourcesDiscovery service, on the side of a context user, discovers other reachable
ContextSourcesDiscovery services and contacts them to find out about the different
categories of context sources that are available in the environment. Alternatively, the user
may find out about the different categories of context sources by contacting a universal
repository (if there is one available) [14] that maintains these categories with respect
to a standardized ontology, employed for the particular environment. Following this,
the user selects the categories that can contribute to the context relations that interest
him/her. Finally, the user utilizes the ContextSourcesDiscovery service to populate the
ContextSourcesDiscovery repository with URIs of Web services that belong to the selected
categories.

The ContextSourcesDiscovery repository can be managed with respect to three
alternative policies, configured by the user per different category. Specifically, the
alternative policies are: (1) Update-On-Demand, i.e., the repository contents are updated
upon a request issued by the user towards the ContextSourcesDiscovery service; (2)
Periodic-Update, i.e., the repository contents are updated periodically, with respect to a
period specified by the user to the ContextSourcesDiscovery service; (3) Always-Update,
i.e., the repository contents are updated whenever a context source of interest joins or
leaves the environment. Associating different categories of context sources with different



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 377

Fig. 11. Collaboration among the CoWSAMI middleware services towards discovering context sources.

update policies is useful considering that the availability of certain categories of services
may change faster than the availability of certain others. In our reference example, for
instance, it is reasonable to assume that tourists select the Update-On-Demand policy for
hotel and restaurant services, since their availability is expected to change rather slowly.
On the other hand, the Periodic-Update or the Always-Update policies seem to be more
suitable for discovering CyberCars.

The Update-On-Demand policy is activated (through the SQLContextInterpreter front-
end), by providing as input to the ContextSourcesDiscovery service a category of context
sources that interest the user. In Fig. 11, for instance, the discovery process is activated
towards the discovery of CyberFrogs. Following this, the service uses the interface that
characterizes the given category as input to the Naming&Discovery service, which takes
charge of locating URIs of Web services, providing this interface, as detailed in the
previous subsection (Fig. 11 steps 2–3). At this point, it should be noted that some of
the URIs that result from the Naming&Discovery service discovery protocol may not be
valid. As discussed in the previous subsection, some of the URIs were possibly found in
the remote catalogs of other reachable Naming&Discovery services. These catalogs act
as local caches. Hence, it is probable that some of the cached URIs correspond to Web
services offered by context sources that are no longer available. Using such services for
gathering context implies an unnecessary waste of time and resources. To deal with this
issue, the ContextSourcesDiscovery service checks the validity of the retrieved URIs by



378 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

randomly selecting and invoking an operation on the corresponding Web services (Fig. 11
step 4).

The Periodic-Update policy works similarly. In particular, the user activates this policy,
by providing a category of context sources and a time period T in ms. Enabling the policy
results in the creation of a thread, which resumes its execution every T ms. At this point,
the thread performs the steps of the Update-On-Demand policy (Fig. 11) to update the
repository contents of the given category.

Finally, the Always-Update policy is also activated by providing a category of
context sources as input to the ContextSourcesDiscovery service. After the policy
activation, the service performs the basic steps that realize the Update-On-Demand policy
(Fig. 11). Following this, the service listens for notifications coming from joining and
leaving entities, until the user deactivates the policy. More specifically, whenever a
CoWSAMI entity joins the environment as a context source, it uses its locally deployed
ContextSourcesDiscovery service for registering the URIs of its Web services to the locally
deployed Naming&Discovery service. Then, the ContextSourcesDiscovery service notifies
all other reachable ContextSourcesDiscovery services about the entity’s intention to join as
a context source. On the side of the notified services, it is checked whether some of the Web
services offered by the joining entity belong to categories for which the Always-Update
policy is enabled. The URIs of such services are stored in the corresponding categories.
The ContextSourcesDiscovery service of a leaving entity is also obliged to notify all other
reachable ContextSourcesDiscovery services about the entity’s intention. Following this,
the notified services modify the contents of their repositories accordingly.

6. Evaluation

The assessment of CoWSAMI concerns 3 different aspects. First, we discuss the issue
of user-friendliness. Following this, we investigate the memory requirements of the main
CoWSAMI services. Finally, we examine the performance of these services.

6.1. CoWSAMI and context users

CoWSAMI has been developed while keeping in mind two main target groups: (1)
developers that customize the basic CoWSAMI mechanisms towards the realization of
context-aware applications for a particular AmI environment and (2) end-users that utilize
CoWSAMI applications.

To simplify the work of the developers’ target group, we employed the service-oriented
paradigm towards the dynamic integration of context sources in open AmI environments. In
typical service-oriented environments, information is gathered by orchestrating primitive
Web services into composite ones (e.g. through BPEL,4 or WSFL5). These technologies,
along with the flexibility of SQL querying and the programmable service-oriented

4 http://www.ibm.com/developerworks/webservices/library/ws-bpel/.
5 http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

http://www.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf


D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 379

(a) Context definition.

(b) Context sources discovery.

Fig. 12. CoWSAMI user interfaces.

interfaces of the basic CoWSAMI mechanisms facilitate the development of context-
aware applications over CoWSAMI. As a proof of concept, we developed simple user
interfaces on top of the basic CoWSAMI services that facilitate the definition of context
relations and rules, the formulation of SQL queries and the customization of the context
sources discovery process (e.g. Fig. 12(a), (b)). Using the interface of Fig. 12(a), a user
can add/remove/modify context relations and attributes in a quite straightforward way. The
interface of Fig. 12(b) serves for the discovery of available categories of context sources.
The discovery can be done either in the user’s vicinity, or through the universal repository,
using the corresponding interface buttons shown in the figure. Following this, the user may
specify a particular category of context sources in the drop-down list of the interface and
associate this category with a particular update policy, using the check-box that lies below
the drop-down list.

Nevertheless, results from the OZONE IST project [18] with end-users of varying
ages (20–60 years), education and socio-economic backgrounds, suggested that the
unfamiliarity with the Web service technology imposes certain difficulties on using
infrastructures that rely on this technology. In an open AmI environment, the end-users
will not be sitting comfortably in front of their workstation, having the ability to write
down BPEL or WSFL code. Moreover, the typical context users will not be experienced
developers. Dealing with the previous issues amounts to developing environment-specific
CoWSAMI applications and user interfaces such as the ones given in Fig. 12. Moreover,



380 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

Table 1
Summary of memory requirements for CoWSAMI

Middleware Required memory (MB)

WSAMI <=3.9

CoWSAMI ContextSourcesDiscovery (Update Policies) ContextAggregator
On-Demand Periodic Always
<=0.75 <=0.85 <=0.75 <=0.6

the work of the users can be simplified by offering them pre-defined context relations,
rules and SQL queries, which can be easily developed by the CoWSAMI developers’
group of the target AmI environment. Finally, the development of CoWSAMI interfaces
and applications involves further interesting issues such as trans-rendering for different
types of user devices and multilingual support.

6.2. CoWSAMI memory requirements

Currently, resource-constrained devices come with various technical characteristics
(CPU, OS, memory, autonomy, etc.).6 The available memory in the most recent models
of PDAs ranges from 8 MB to 256 MB. However, there still exist few PDA models with
less than 4 MB of RAM. Similarly, the memory provided by the most recent smart-phones
ranges from 8 MB to 32 MB, while there still exist few models with less than 4 MB of
RAM. The overall memory footprint of the WSAMI platform is 3.9 MB [14]. Therefore, it
is suitable for CoWSAMI entities that execute on top of devices that have at least 8 MB of
memory.

The additional memory requirements of the ContextAggregator and the Con-
textSourcesDiscovery services vary, depending on the operations that were performed by
these services (Table 1). Regarding the ContextAggregator service, the context relations
and the context rule definitions are quite cheap since they do not involve any additional
invocations on Web services provided by available context sources. On the other hand,
the context gathering operation involves contacting context sources towards collecting the
information provided by these sources. Hence, its memory requirements are higher. How-
ever, even the execution of this operation requires less than 600 kB of memory. Joining
or leaving an environment using the ContextSourcesDiscovery service requires less than
750 kB of memory. The realization of the Update-On-Demand and the Always-Update
policies also requires less than 750 kB. The realization of the Periodic-Update policy is
slightly more expensive, requiring less than 850 kB. The extra overhead of this policy is
due to the use of the additional thread that periodically executes the basic steps of the
Update-On-Demand policy (Section 5.2).

At this point, it should be mentioned that the aforementioned values were obtained after
the optimizations which were performed in the early versions of the ContextAggregator
and the ContextSourcesDiscovery services. In the early version of the ContextAggregator

6 http://www.palmzone.net.

http://www.palmzone.net


D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 381

service, we observed that the amount of memory required for collecting context
information depends on the number of available context sources and the interface of these
sources. To keep the memory used by the ContextAggregator constant and independent
from the interface of the context sources we explicitly invoke the Java garbage collector
right after each Web service invocation which was performed on the context sources. In the
early version of the ContextSourcesDiscovery we observed a similar problem; the amount
of memory required for updating the repository contents of the service increased with the
number of context sources that were available in the environment. The reason behind this
was that the ContextSourcesDiscovery service invokes operations on each context source to
validate its presence. To avoid this problem and stabilize the amount of memory required to
a value that does not depend on the number of available context sources we also explicitly
call the Java garbage collector after every Web service invocation which was performed on
the context sources.

6.3. CoWSAMI performance

To assess the performance of CoWSAMI we performed two different sets of
experiments (inspired by our reference example) towards measuring the execution time
of basic operations performed by the CoWSAMI services. In the first set we configured an
environment consisting of a maximum number of 9 CoWSAMI entities (3 P-IV 256 MB, 5
P-IV 512 MB, 1 P-IV 1 GB), communicating through a typical IEEE 802.11g WLAN. One
of the entities played the role of a context user, while the others played the role of context
sources. In the second set of experiments we scaled up the number of available users
and context sources in a simulated environment whose parameters (i.e. average execution
times for: (1) discovering a context source, (2) querying a context source, (3) joining the
environment and (4) leaving the environment) resulted from the first set of experiments.

6.3.1. 1st set of experiments
In this set of experiments first we measured the time required for gathering context

information for a context relation that consisted of 6 attributes (we assumed the TRAFFIC
relation of our reference example). Specifically, we examined the impact of the increasing
number of context sources that contribute to the relation. We used different configurations
where the number of context sources ranged from 2 to 8. The context user entity performed
the SELECT * FROM TRAFFIC query. For every different configuration, we produced 3
variations, corresponding to 3 different categories of context sources. In the first variation
a single operation is called on each source to compile the relation tuples. Similarly, in the
remaining two variations 2 and 3 operations were called on each source to compile the
relation tuples. To realize the 3 variations we used corresponding sets of context rules.
As expected, the overhead of the context gathering operation linearly increases, according
to the number of reachable context sources and the nature of their interfaces (Fig. 13(a)).
Specifically, the measured times in the most complex case where 3 operations were called,
arise up to 1000 ms, which is considered to be reasonable.

Regarding the discovery of context sources, the Periodic-Update and the Always-
Update policies rely on the realization of the Update-On-Demand policy (Section 5.2).
Based on this remark, we examined the impact of the increasing number of reachable



382 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

(a) Gathering context.

(b) Updating the repository.

(c) Joining and leaving the environment.

Fig. 13. Performance results — 1st set of experiments.



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 383

context sources in the realization of these policies. The number of reachable context
sources in this experiment ranged from 2 to 8. All the context sources belonged to the same
category, which was given as input to the ContextSourcesDiscovery service deployed on
the user entity. In this experiment we examined two different scenarios. In the first one, the
validation checks performed by the ContextSourcesDiscovery service on the side of the
user were enabled, while in the second one they were disabled. Fig. 13(b) summarizes the
results we obtained. We can observe that the overhead of the Update-On-Demand policy
increases with the number of context sources. The overhead is partially due to the use
of the Naming&Discovery service. As discussed in Section 5.1, the Naming&Discovery
service that is deployed on an entity forwards requests for service discovery to all other
reachable Naming&Discovery services. The overhead is further due to the validation calls,
performed after the discovery of reachable context sources. The comparison between the
two scenarios that we examined shows that the impact of the validation checks in the
performance of the context sources discovery process is greater than the impact of the
Naming&Discovery service.

Fig. 13(c) gives the time spent by a context source for joining and leaving the
environment. In this particular experiment, we assumed a scenario where the entities may
use any of the three update policies discussed in Section 5.2 and a restricted scenario
where the entities may use only the Periodic-Update or the Update-On-Demand policies.
The overhead of the joining/leaving entity in the first scenario linearly increases with the
number of entities that constitute the environment. This increment is expectable given that
all of the aforementioned entities are notified whenever a context source joins or leaves the
environment. As discussed in Section 5.2, the notifications are necessary for the realization
of the Always-Update policy that may be activated by the entities. The Always-Update
policy has a significant impact on the performance of our environment even if the policy is
disabled, since the notifications are sent by the joining/leaving entity blindly to all the
other entities in the environment, independently from the update policy used by these
entities. The reason behind this is that in a completely open AmI environment we consider
impractical to assume that every entity knows about the update policies used by the other
entities. In our restrictive scenario the performance significantly improves. Actually, we
obtain a constant overhead for the joining/leaving entity.

6.3.2. 2nd set of experiments

In the second set of experiments we used various configurations where the maximum
numbers of context users and sources ranged from 16 to 128. During each one of the
experiments, context sources arbitrarily joined and leaved the environment. The numbers
of the joining and leaving sources were randomly generated with the constraint that they
never exceeded the 20% of the maximum number of context sources assumed. The context
users arbitrarily queried the context sources that were available. For each configuration of
context users and sources we examined two different scenarios. In the first scenario, the
discovery of context sources could be performed with any of the three policies described
in Section 5.2. In the second scenario, we assumed that only the Update-On-Demand and
the Periodic-Update policies were used. Moreover, the validity checks were disabled for
these policies.



384 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

(a) 1st scenario.

(b) 2nd scenario.

Fig. 14. Performance results — 2nd set of experiments.

Fig. 14(a) and (b) summarize the results that we obtained for the aforementioned
scenarios. Specifically, Fig. 14(a) and (b) give the average execution times spent by the
users for discovering and querying context sources and the average execution times spent
by the sources for joining and leaving the environment. As expected, the observations made
in the first set of experiments are still valid. The average execution times increase linearly
with the size of each configuration. The average execution times that concern the discovery
of context sources in the second scenario are much better than the ones obtained in the case
of the first scenario due to the fact that the validity checks were disabled. Interestingly, the
average execution times of the queries in the second scenario are slightly worse compared
to ones obtained in the first scenario. The previous observation is the price to pay for not
using the Always-Update policy and for disabling the validity checks in the Update-On-
Demand and the Periodic-Update policies; certain context users performed useless Web
service invocations (which resulted in corresponding exceptions) on context sources that
were no longer available in the environment.

Summarizing the results of the 1st and the 2nd sets of experiments, we can reach the
following conclusions. The performance of CoWSAMI scales gracefully with respect to
the number of mobile users and context sources that get dynamically involved. Moreover,
the choices of (1) not using the Always-Update policy and (2) disabling the validity checks



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 385

performed by the Update-On-Demand and the Periodic-Update policies, significantly
improve the performance of the context sources discovery process, while slightly slowing
down the performance of the context gathering process. On the other hand, (1) using the
Always-Update policy and (2) enabling the validity checks, optimize the context gathering
process with a higher expense for the performance of the discovery process. Balancing the
trade-off that relates to the configuration of the previous choices is a solution to the issue of
meeting the efficiency requirements of the users of a particular AmI environment. Tuning
the aforementioned technical choices towards coping with the performance issues of
CoWSAMI is a responsibility of the CoWSAMI developers’ target group. Nevertheless, we
further consider solutions that would allow the users themselves to tune the performance
of CoWSAMI according to their efficiency requirements. Specifically, in [24] we proposed
SQLp, an extension to SQL that allows users to query ad hoc communities of services,
while setting up various attributes, such as the maximum tolerable query execution time
and the maximum number of services to be contacted. Integrating an SQLp interpreter in
CoWSAMI is under consideration in the CoWSAMI future work agenda.

7. Related work

Various infrastructure-based approaches to context-aware computing have been
proposed in the past. In this section, we discuss the main features of the prominent ones.

In [25] the authors presented CASS, a middleware infrastructure for context-aware
mobile applications. In CASS context aggregation was realized by a context server
deployed on a stationary workstation. Context information is stored in a database and SQL
queries can be used for manipulating this information. This aspect bears some similarity
with our approach where we model context in terms of relations. CASS further provides
a rule-based interpreter, which is also deployed on the context server. In CoBrA [26] the
context aggregation and interpretation elements are also deployed on a shared server, called
context broker. In Hydrogen [10], context aggregation and interpretation take place on
a context management element, which can be shared by more than one application that
execute on a mobile device.

With regard to open AmI environments, the aforementioned infrastructures do not
satisfy the requirement for dynamic context sources discovery as they do not provide such a
support. In comparison with the aforementioned infrastructures, CoWSAMI further aims at
autonomous context aggregation and interpretation. For that reason, any CoWSAMI entity
may comprise and customize its own services for context aggregation and interpretation.
We consider this approach to be more suitable for open AmI environments. However,
CoWSAMI may also be used for shared context aggregation and interpretation. The fact
that the CoWSAMI aggregation and interpretation mechanisms were build as Web services
makes it possible to deploy them in a central entity that plays the role of a shared context
server.

MobiPADS [27] is another interesting approach to context awareness. Context
aggregation relies on event composition, while context interpretation is based on event-
condition-action rules. In CORTEX [12,13], context aggregation relies on an hierarchical
model of attributes and context interpretation is based on event-condition-action rules.



386 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

In CARISMA [28] the main focus is on context interpretation in the presence of conflicts.
The authors proposed an interesting approach that deals with this issue based on a
microeconomic conflict resolution mechanism. In Context Toolkit [7] the authors discussed
the need for a discovery service that allows locating available context sources. In line
with the previous one, SOCAM [29] provides dynamic context sources discovery, based
on an ontological approach which has been further employed for context aggregation
and interpretation. Specifically, a tree-structured configuration of SLS (Service Location
Service) servers is employed. In Gaia [11] context aggregation and interpretation rely on
first order logic and boolean algebra [30]. Gaia further provides a discovery mechanism
that senses the presence of both digital and physical entities.

In comparison with the previous infrastructures that account for the requirement for
dynamic context sources discovery, CoWSAMI follows a completely distributed approach
that is suitable even for open AmI environments that are formulated in a purely ad hoc
manner; in such cases it is not possible to assume the existence of a central discovery server
(or a fixed configuration of discovery servers such as the one used in SOCAM). Moreover,
the requirement for loose coupling and customization is not taken into consideration by
any of the infrastructures discussed in this section. In all cases, infrastructure-specific
abstractions must be developed to enable the integration of context sources with the rest of
the middleware elements. As opposed to the previous one, CoWSAMI only requires that
the context sources offer interfaces that conform to a widely accepted standard (i.e. the
Web service architecture).

In a sense, the CoWSAMI perception of open AmI environments is closer to the one
employed in the LAICA [31] and the PICO [32] projects. The role of the middleware
in LAICA comprises knowing the location of required data and services and translating
data provided by heterogeneous agents. PICO aims at the creation of mission-oriented
communities of autonomous entities that perform tasks on behalf of the users. However,
even in LAICA and PICO, the issues of loose coupling and customization are not taken
into consideration.

8. Conclusion

In this paper we proposed CoWSAMI, a middleware infrastructure that allows
context awareness in open AmI environments consisting of mobile users and context
sources that become dynamically available. CoWSAMI allows the mapping of externally
gathered context information to the internal, user perception of context. CoWSAMI
is interface-aware in the sense that it gathers context by tailoring its behavior with
respect to the aforementioned mapping. Moreover, CoWSAMI facilitates the discovery
of context sources based on a completely distributed mechanism that allows the
maintenance of context information based on multiple policies. Context information can be
subsequently exploited through easy-to-use SQL-based facilities. We have experimented
with CoWSAMI and our findings indicate that (1) it requires reasonable amounts of
memory resources for its operation and (2) its scale-up with respect to the number of
involved context users and sources is graceful. Finally, CoWSAMI provides the developers
of AmI environments with a means for balancing the performance trade-off that involves
the context sources discovery and the context gathering processes.



D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 387

CoWSAMI takes us one step closer to the realization of open AmI scenarios. However,
several other challenging issues are also involved to this end. Specifically, a commonly
agreed ontology that models the different categories of context sources involved in a
particular AmI environment can be used as an intermediate representation for simplifying
the definitions of context relations and context rules. Up until now, such an ontology has
only been considered for the discovery of different categories of context sources. The users’
interaction with CoWSAMI can be further improved through pre-defined context relations,
rules and queries. Moreover, we investigate solutions that would allow the users to tune
the performance of CoWSAMI according to their particular QoS requirements [24]. We
particularly focus on the quality dimensions of reliability, performance and trust and we
plan to introduce in CoWSAMI, previous work that we had already performed in these
fields [33–36].

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. We
would also like to thank K. Georgoulas for his contribution to CoWSAMI.

References

[1] E. Aarts, R. Harwig, M. Schuurmans, Ambient intelligence, in: The Invisible Future: The Seamless
Integration of Technology into Everyday Life, McGraw-Hill, 2001, pp. 235–250 (Chapter).

[2] E. Aarts, R. Roovers, IC design for ambient intelligence, in: Proceedings of the 6th IEEE Design Automation
and Test in Europe Conference and Exhibition, DATE’03, 2003, pp. 2–7.

[3] W. Weber, C. Braun, R. Glaser, Y. Gsottberger, M. Halik, S. Jung, H. Klauk, C. Lauterbach, G. Schmid,
X. Shi, T.F. Sturm, G. Stromberg, U. Zschieschang, Ambient intelligence — key technologies in the
information age, in: Proceedings of the IEEE International Electron Devices Meeting, IEDM’03, 2003,
pp. 1.1.1–1.1.8.

[4] M. Weiser, The computer of the twenty-first century, Scientific American 135 (3) (1991) 94–104.
[5] M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE Personal Communications 8 (4)

(2001) 10–17.
[6] A.K. Dey, Understanding and using context, Personal and Ubiquitous Computing 5 (1) (2001) 4–7.
[7] A.K. Dey, G.D. Abowd, A Context-based Infrastructure for Smart Environments, in: Proceedings of the

International Workshop on Managing Interactions in Smart Environments, MANSE ’99, 1999, pp. 114–128.
[8] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context aware systems, Journal of Ad-Hoc and

Ubiquitous Computing 2 (4) (2007) 263–277.
[9] IST Advisory Group (ISTAG). Software technologies, embedded systems and distributed systems

— A European strategy towards ambient intelligent environment. Technical Report, IST, 2002.
http://www.cordis.lu/ist/istag.html.

[10] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. Altmann, Context-awareness on mobile devices
— the hydrogen approach, in: Proceedings of 36th IEEE Hawaii International Conference on System
Sciences, HICSS’02, 2002, pp. 292–302.

[11] M. Roman, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, K. Nahrstedt, Gaia: A middleware
infrastructure to enable active spaces, IEEE Pervasive Computing 1 (4) (2002) 74–83.

[12] G. Biegel, V. Cahill, A framework for developing mobile, context-aware applications, in: Proceedings of
2nd IEEE Conference on Pervasive Computing and Communications, Percom’04, 2004.

[13] T. Sivaharan, G. Blair, A. Friday, M. Wu, H. Duran-Limon, P. Okanda, C-F. Sorensen, Cooperating sentient
vehicles for next generation automobiles, in: Proceedings of ACM MobiSys International Workshop on
Applications of Mobile Embedded Systems, 2004.

http://www.cordis.lu/ist/istag.html


388 D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389

[14] V. Issarny, D. Sacchetti, F. Tartanoglou, F. Sailhan, R. Chibout, N. Levy, A. Talamona, Developing ambient
intelligence systems: A solution based on web services, Journal of Automated Software Engineering 12 (1)
(2005) 101–137.

[15] W3C. Web Services Architecture, Technical Report, W3C, 2004. http://www.w3.org/TR/ws-arch/.
[16] A. Zarras, P. Vassiliadis, E. Pitoura, Query management over ad-hoc communities of web services, in:

Proceedings of the 2nd IEEE International Conference on Pervasive Services, ICPS’05, 2005, pp. 261–270.
[17] I. Berger, Standards for car talk, The Institute 31 (1) (2007) 1, 6.
[18] OZONE Consortium. New Technologies and Services for Emerging Nomadic Societies. Technical Report,

IST, 2002. http://www.extra.research.philips.com/euprojects/ozone/.
[19] Z. Plitsis, I. Fudos, E. Pitoura, A. Zarras, On accessing GSM-enabled mobile sensors, in: Proceedings of the

2nd IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing,
ISSNIP’05, 2005, pp. 223–228 (in press).

[20] W3C. Web Services Description Language (WSDL) v2.0, Technical Report, W3C, 2005.
http://www.w3.org/TR/wsdl20/.

[21] E. Guttman, C. Perkins, J. Veizades, Service location protocol, Version 2. Technical Report, Network
Working Group, 1999. http://www.ietf.org/rfc/rfc2608.txt.

[22] ORACLE. Oracle Database Lite In Depth, Technical Report, ORACLE, 2004.
http://www.oracle.com/technology/products/lite/lite technical InDepth.pdf.

[23] J.S. Karlsson, A. Lal, C. Leung, T. Pham, IBM DB2 everyplace: A small footprint relational database
system, in: Proceedings of the 17th IEEE International Conference on Data Engineering, ICDE’01, 2001,
pp. 230–232.

[24] N. Folinas, P. Vassiliadis, E. Pitoura, E. Papapetrou, A. Zarras, Context-aware query processing in ad-hoc
environments of peers, Journal of Electronic Commerce in Organizations (JECO) 6 (1) (2007) 62–88.

[25] P. Fahy, S. Clarke, CASS — Middleware for mobile context-aware applications, in: Proceedings of the 2nd
ACM SIGMOBILE International Conference on Mobile Systems, Applications and Services, MobiSys’04,
2004.

[26] H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, D. Chakraborty, Intelligent agents meet the semantic web
in smart spaces, IEEE Internet Computing (11) (2004) 2–12.

[27] A.T. Chan, S.-N. Chuang, MobiPADS: A reflective middleware for context-aware mobile computing, IEEE
Transactions on Software Engineering 29 (10) (2003) 1072–1085.

[28] L. Capra, W. Emmerich, C. Mascolo, CARISMA: Context — Aware reflective middleware system for
mobile applications, IEEE Transactions on Software Engineering 29 (10) (2003) 929–945.

[29] T. Gu, H.-K. Pung, D.-Q. Zhang, A service-oriented middleware for building context-aware services, Journal
of Network and Computer Applications 28 (2005) 1–18.

[30] A. Ranganathan, R.H. Campbell, An infrastructure for context-awareness based on first order logic,
Pervasive and Ubiquitous Computing Journal 7 (6) (2003) 353–364.

[31] G. Cabri, L. Ferrari, F. Zambonelli, The LAICA project: agent-based middleware for urban ambient
intelligence, in: Proceedings of the 14th IEEE Wetice Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises, 2005.

[32] M. Kumar, B.A. Shirazi, S.K. Das, B.Y. Sung, D. Levine, M. Singhal, PICO: A middleware framework for
pervasive computing, IEEE Pervasive Computing 2 (3) (2003) 72–79.

[33] F. Sailhan, V. Issarny, Cooperative cashing in ad-hoc networks, in: Proceedings of the 4th IEEE International
Conference on Mobile Data Management, MDM’03, 2003, pp. 13–28.

[34] J. Liu, V. Issarny, QoS-aware service location in mobile ad-hoc networks, in: Proceedings of the 5th IEEE
International Conference on Mobile Data Management, MDM’04, 2004, pp. 224–235.

[35] F. Papadopoulos, A. Zarras, E. Pitoura, P. Vassiliadis, Timely provisioning of mobile services in critical
pervasive environments, in: R. Meersman, Z. Tari, et al. (Eds.), Proceedings of the 7th International
Symposium on Distributed Objects and Applications, DOA’2005, in: LNCS, vol. 3760, 2005, pp. 864–881.

[36] J. Liu, V. Issarny, An incentive compatible reputation mechanism for ubiquitous computing environments,
International Journal of Information Security 6 (5) (2007) 297–311.

http://www.w3.org/TR/ws-arch/
http://www.extra.research.philips.com/euprojects/ozone/
http://www.w3.org/TR/wsdl20/
http://www.ietf.org/rfc/rfc2608.txt
http://www.oracle.com/technology/products/lite/lite%5Ftechnical%5FInDepth.pdf


D. Athanasopoulos et al. / Pervasive and Mobile Computing 4 (2008) 360–389 389

Dionysis Athanasopoulos received his B.Sc. in Computer Science in 2005 from the
Computer Science Department, University of Ioannina. From November 2005 till now,
he is a M.Sc. degree student at the same Department. His interests include Middleware,
Distributed Systems and Pervasive Computing.

Dr. Apostolos V. Zarras received his B.Sc. in Computer Science in 1994 from the
Computer Science Department, University of Crete. From the same department he
received his M.Sc. in Distributed Systems and Computer Architecture. In 1999 he
received his Ph.D. in Distributed Systems and Software Architecture from the University
of Rennes I. From 2004 till now he holds a lecturer position at the Department of
Computer Science of the University of Ioannina. Apostolos Zarras has to his credit over
20 papers in international conferences, journals and magazines. He is currently a member
of the IEEE computer society. His research interests include middleware, model-driven
architecture development, quality analysis of software systems and pervasive computing.

Dr. Valerie Issarny received her Ph.D. in computer science from the Université de
Rennes 1, in November 1991, where she proposed an exception handling model for
concurrent programming. During her Ph.D., she was a member of the LSP (Languages
space operating system). From 1993 to 2001, she was an INRIA researcher in the Solidor
group, examining solutions to the construction of robust and efficient distributed systems.
Since 2002, she has been a Research Director, leading the ARLES group at INRIA
Rocquencourt., which investigates solutions to the architecture-based development of
ambient intelligence environments.

Dr. Evaggelia Pitoura received her B.Sc. from the University of Patras, Greece in 1990
and her M.Sc. and Ph.D. in computer science from Purdue University in 1993 and 1995,
respectively. Since June 2005, she has been an associate professor at the Department of
Computer Science of the University of Ioannina, Greece where she leads the distributed
data management group. Her publications include more than 70 articles in international
journals and conferences and a book on mobile computing. She has also co-authored two
tutorials on mobile computing for IEEE ICDE 2000 and 2003. She is the recipient of the
best paper award of IEEE ICDE 1999 and two “Recognition of Service Awards” of ACM.

Dr. Panos Vassiliadis obtained his Diploma in Electrical Engineering and his Ph.D.
from the Department of Electrical and Computer Engineering, of the National Technical
University of Athens (NTUA) in 1995 and 2000, respectively. He joined the Department
of Computer Science of the University of Ioannina in 2002. So far, Dr. Vassiliadis’
research has focused on Data Warehouse technology, with particular interest on issues like
data warehouse metadata repositories and metadata modeling, data warehouse quality,
On-Line Analytical Processing (OLAP), and Extraction-Transformation-Loading (ETL).
Apart from the data warehousing field, his on-going research includes topics like (a) the
modeling of the architecture & evolution of databases & information systems, (b) web
services and (c) pattern management (mainly referring to patterns that are the results of

data mining algorithms).


	CoWSAMI: Interface-aware context gathering in ambient intelligence environments
	Introduction
	Reference example
	The CoWSAMI architecture
	Interface-aware context aggregation
	Defining context
	Defining context rules
	Collecting context information

	Multi-policy context sources discovery
	The Naming&Discovery service
	The ContextSourcesDiscovery service

	Evaluation
	CoWSAMI and context users
	CoWSAMI memory requirements
	CoWSAMI performance
	1st set of experiments
	2nd set of experiments


	Related work
	Conclusion
	Acknowledgements
	References


