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Abstract— On demand routing protocols that exploit local
caches have received a lot of attention lately in wireless ad-
hoc networking. In this paper, we specifically address cache
management, an issue that has been a main source of criticism
for the applicability of such protocols. In particular, we tackle the
problem of accessing the cache content efficiently. To this end,
we propose summarizing the cache content so that we achieve
efficient lookups. This not only saves both the restrictive resources
of the wireless devices such as computational power and energy
but also improves the overall protocol performance. We use
Bloom filters as summaries. Our experimental results using the
ns simulator show that both resource savings and performance
improvements are attained when such filters are integrated within
the DSR protocol which is one the most widely used instance of
an on demand protocol.

Index Terms— Wireless, mobile, ad-hoc, routing, Bloom filters,
cache memory

I. I NTRODUCTION

Advances in manufacturing of portable devices equipped
with wireless interfaces boost the widespread use of different
kinds of wireless networks. Ad-hoc connectivity has received
wide acceptance over the last years for meeting the commu-
nication needs of mobile users using wireless devices. Several
scenarios such as disaster relief, law enforcement, battlefield
operations and networking in conferences are possible ap-
plications of self organizing networks. However, their nature
imposes strict requirements on most aspects of their operation.
Mobility, distributed operation and absence of any infras-
tructure shape an extremely challenging context for network
management and especially for routing. Every mobile node
must operate as a router in a distributed fashion and overcome
frequent and sudden link failures that form a stochastically
varying network.

On-demand routing protocols provide a reliable solution
for coping with network variation and achieving efficient
operation [1],[2]. Contrary to table driven protocols, routing
information is discovered only when needed. Three basic
mechanisms are implemented, namely route request, route
reply and route maintenance. When a node in the network is in
need of a path to a specific destination, it broadcasts a request
packet. The destination then replies to the request packet with
a unicast reply packet to form the communication path. Since
routes are discovered only when needed, the overall overhead
induced by the routing algorithm is minimized [1],[2],[3],
in order to enhance network scalability. Several on-demand
protocols utilize caching of discovered paths [1]-[4],[5],[6] for
exploiting collected routing information in subsequent routing
operations. Use of local caches in each mobile node has been

proved to benefit network performance in terms of delivery
ratio [3]. Caching is also an important attribute for future
configurations that are foreseen to implement p2p systems over
ad-hoc networks [7]. Moreover, the cross layer architecture
proposed for such systems [8] merges application and network
layer routing and renders caching as an essential network
mechanism.

However, advantages of caching are not free of cost. Part
of the critique on routing protocols using caching has been
focused on implementation and feasibility issues related to
highly populated node caches and the cost for accessing their
contents [1],[2],[3]. Routing operation favors the increase of
cache population for augmenting the delivery ratio and at
the same time suppressing incurred routing overhead. A key
issue is the cost of accessing local caches and more specif-
ically the cost of searching in them. Many routing protocol
mechanisms necessitate frequent cache lookups. For example,
one of the most representative on-demand routing protocols
utilizing local caches, DSR [4], makes frequent use of cache
lookups in several of its mechanisms such as packet assembly,
route discovery, route establishment and route as well as cache
maintenance. Frequent lookup operations combined with the
increased size of node caches are known to drain system
resources such as computational power and energy reserves.
The situation is worst in the context of a mobile node
where both of those resources are restrained by technological
limitations. Furthermore, since cache access is involved in
protocol mechanisms, its impact on the the routing protocol
performance itself is also important.

In this paper, motivated by the observation that many cache
lookups end-up with a negative result, we propose using a
mechanism for quickly determining cache membership. In this
way, we can avert negative lookups and therefore ease the
computational burden. The cornerstone of our mechanism are
Bloom filters which provide summaries of the cache content
for efficient testing cache membership. Although extensively
used in the past [9], Bloom filters have never been used in
wireless ad-hoc routing.

The rest of the paper is structured as follows. In Section II,
we formulate the problem of cache lookups in the context of an
on-demand routing protocol, present its implications on node
resource management and protocol performance and propose
the use of Bloom filters for alleviating the overhead of cache
access. Then in Section III, we address some implementation
issues. Results on feasibility and expected benefits of such
an implementation are presented in Section IV. Finally, useful
conclusions are drawn in Section V.
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II. PROBLEM FORMULATION AND PROPOSEDSOLUTION

Caching of discovered routes is utilized by some on-demand
protocols [4],[5],[6] to suppress the routing overhead and at
the same time maximize delivery ratio, by further exploiting
routing information collected in one route request-route reply
cycle. This is achieved by allowing intermediate nodes having
a cached path to destination, to reply to request packets. The
most representative routing algorithm of this category is the
DSR protocol [4]. DSR has been proved to outperform many
protocols in terms of both delivery ratio and routing overhead
confirming the benefits of caching. However, many concerns
are raised related to the growth of the cache size and of
the associated cost of cache accesses. Clearly, it is desirable
that caches contain as much information as possible for the
routing protocol to take advantage of it. The cache size is
also augmented by the spread of stale routing information
across the network [6],[3]. DSR manages the cache size by
imposing a strict upper limit on the number of paths that can
be cached. Newly discovered paths are added in the cache
only in the expense of older ones. This approach decreases the
cached routing information but provides a feasible solution for
implementation.

In this paper, we address the cost of cache accesses. Nearly
every mechanism of routing protocols accesses caches by
means of a search or lookup for a specific node. Specifically
in the case of DSR, cache lookups are performed in the
route request phase, in route insertions and deletions from
cache as well as in packet assembly since source routing
is implemented. Furthermore, search frequency is increased
since in a distributed environment each mobile node performs
cache lookups to serve its peers. Search frequency combined
with the cache size can be considered as an important factor
encumbering node operation. Implications of cache lookups
are twofold. On one hand, energy and computational power
consumption are of extreme importance in the context of a
mobile node where this kind of resources are in lack. On the
other hand, computational burden may increase the overall
processing time in a node and therefore affect the delay
involved in a single cache lookup. This delay is critical for the
protocol performance. For example, during packet assembly,
searching for the desired route to the destination increases
the packet delivery delay. Another important aspect of lookup
delay relates to the overall time needed by the protocol to
discover a route to destination. During a route request phase
the request packet is propagated through a number of nodes.
Each intermediate node is required to search for an available
cached path before forwarding the request packet. Therefore
the processing time of the packet in each intermediate node
is increased, affecting the overall discovery time. Route dis-
coveries are performed either for a new connection or for
fixing a broken route to destination. In the first case, the so-
calledpath set-up delay is increased. In fact path set-up delay
is considered the major disadvantage of reactive protocols
compared to proactive ones. In the case of route repair, delayed
route discovery may result in the drop of packets waiting in
buffers for a route to destination.

There are two approaches for alleviating the computational

burden involved in cache accesses. The first one is to derive
an efficient search algorithm for minimizing the cost involved
in each single lookup. The basic disadvantage of this approach
is that such an algorithm would depend on the cache structure
and since there is no relevant specification, its applicability
would be limited to a single routing protocol. The second
approach is to minimize, if possible, the number of performed
cache lookups. The on-demand behavior of routing protocols
and the mobility of nodes results in a large number of
performed lookups failing to locate a node. For example, when
a route to destination does not exist, the search performed
for finding the source route to be used by the data packet,
is negative. Furthermore, many studies [6],[3] have proved
that the number of route discoveries increases as a function
of network mobility and size. This confirms the significant
increase of negative result lookups. Therefore eliminating such
lookups may be beneficial to the network performance. Based
on the fact that every cache search is performed based on a
node id, we propose the implementation of a mechanism to
quickly and efficiently determine the membership of a node in
the set of nodes comprising a cache. It is clear that negative
membership decisions indicate that the related cache lookups
would have a negative result therefore their actual execution
can be avoided. Another advantage of the proposed solution
is that it does not depend on the routing protocol and the
cache structure. For implementing the described mechanism,
we propose using Bloom filters.

A. Bloom filters and Cache access

Bloom filters are small compact data structures for fast
membership decisions. Their applications range from rule-
based systems to text analysis [9]. Consider a setA = {a1,
a2,..., an} of n members. The Bloom filter is a vectorv of
N elements (bits), initially all set to 0. A numberMh of
independent hash functions,h1, h2, . . ., hMh

, are used, each
with range 1 toN. For each membera∈ A, the bits at positions
h1(a), h2(a), . . ., hMh

(a) in v are set to 1. A particular bit may
be set to 1 many times. Given a membership decision onb, the
bits at positionsh1(b), h2(b), . . ., hMh

(b) are checked. If any
of them is 0, then certainlyb /∈ A. Otherwise, we conjecture
that b is in the set although there is a certain probability that
we are wrong. This is called afalse positive.

In the proposed implementation, a Bloom filter is main-
tained in each mobile node (Fig. 1). This filter provides
a summary of the node’s cache content. The identification
number of each node in the cache is hashed, which may as well
be its IP address or any other identification supported by the
routing protocol. Each lookup request triggers a membership
test through the Bloom filter. If the decision is negative, the
search is not performed. Otherwise, the lookup is performed
in the way specified by the routing protocol. In particular, in
the proposed implementation, we do not use bit vectors, since
many instances of a node may reside in a cache memory and
the cache contents vary over time. Instead, we use counting
Bloom filters [10] where each element of the filter is a small
counter instead of a single bit. Each time an element of the
filter must be set, the default action is to increase the counter
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Fig. 1. Proposed Implementation

contained in the element. It can be proved that the analysis and
the design of Bloom filters with more complicated elements
is the same as that of simple Bloom filters [11]. Finally, note
that to support updates of the cache contents, the Bloom filter
must be accordingly maintained each time paths are added or
removed from the cache.

Apparently, the proposed solution imposes two tradeoffs.
The first is the cost of performing a membership test before a
lookup that will result in a positive outcome and the second is
the cost of maintaining the filter. These issues are addressed
in the next section along with some feasibility considerations.

III. T UNING THE FILTERS

Several issues arise regarding the proposed solution. The
implementation of Bloom filters comes at a cost, therefore the
following implementation aspects must be considered:
• Determination of the filter size
• Impact of false positive probability
• Cost of maintaining the filter
• Cost of performing the membership test

Regarding the filter size, suppose that the number of hash
functions used isMh, the number of elements in the filter is
N and the number of possible set members isn. It is clear that
in the worst casen is the number of nodes. To achieve optimal
filter performance in terms of false positive probability, the
following equation must be valid for the filter size [9]:

N =
Mhn

ln2
(1)

The corresponding false positive rate is then:

Pfp = 2−Mh (2)

Given the network sizes that current routing protocols support
and based on the previous equations, we can infer that the
filter size (in terms of the numberN of filter elements) can
be kept very low and at the same time achieve a very small
false positive rate. Assume that each of theN elements of
the filter is of sizesel. Based on the cache size limitations
imposed by the routing protocol and on the analysis presented
in [10], we can derive that values of 4 or 8 bits are adequate for
sel, thus resulting in a small overall filter size. Furthermore,
note that since false positives do not have a direct impact
on the protocol operation, we can relax the requirement for
small false positive probabilities. This allows each node to
easily trade off between filter size and time complexity which
depends on the number of used hash functions.

As mentioned previously, the implementation of Bloom
filters involves two tradeoffs. The first one is related to the
filter maintenance, that is, the time needed for inserting and
deleting members in the filter. These operations require just
the computation ofMh hash transforms and therefore require
O(Mh) time, where Mh is a small constant.The second
tradeoff refers to the time needed to perform a membership
test before each cache lookup. Assume that the cache size
is Ncache, then the time for a cache lookup isO(Ncache).
The membership test involves the computation ofMh hash
transforms. If the test is positive, the time for the test (O(Mh))
is added to the time needed for the actual lookup (O(Ncache)).
On the other hand, if the test is negative, the actual cache
lookup is skipped. In this case only two hash transforms
are required on average for rejecting a non-member [9]. As
mentioned before the sizeNcache is desired to be large. On the
contrary the number of used hash functions can be very small
even for large networks. Therefore it is better to economize
on lookups rather than filter operations. It is clear that the
overall performance of the proposed solution is determined by
the actual number of negative and positive searches performed
and the frequency of update operations on the filter. In the next
section, we will present some simulation results to evaluate in
more detail the benefits of utilizing the use of Bloom filters
in the context of an on-demand routing protocols.

IV. SIMULATION RESULTS

A. Simulation Model and Evaluation framework

This section is devoted in analyzing and evaluating the
benefits of the proposed solution. To this end we simulated
the performance of DSR, the most popular on-demand protocol
employing caching. The simulation results were obtained using
the well-known Ns simulator [12]. Various simulation scenar-
ios were studied by varying parameters related to geometry
and mobility of network nodes. The simulation time for each
scenario was 900 secs. The parameters adopted for simulating
each aspect of the network are common in the literature [3],[6].
For the network geometry we used two different cases. The
first one concerns 50, 75 or 100 nodes moving randomly in
an area of 670x670m2. In the second one, the same number
of nodes move randomly in an area of 1500x300m2. These
two configurations provide the capability of comparing DSR
behavior in networks with different sizes, same node density
and different mean path length. It is clear that in the area of
1500x300m2 the paths formed are in principal longer than in
the case of the 670x670m2 area. The nominal communication
range of each host was 150m. We simulated 25 connections,
each one emerging from different hosts. Constant bit-rate
sources were used for the generation of data packets with rate
of 1 packet/sec for each connection. The channel capacity was
set to 2 Mbits/s, while the packet size was 512 bytes. Host
movement was based on Random Waypoint algorithm [3]. The
maximum speed (umax) was varied from 5 to 20 m/sec while
the pause time of a host was set to 0 secs which corresponds
to maximum mobility.

The suitability of the proposed solution depends on: a) the
assessment of cache size and therefore the Bloom filter size,
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Fig. 2. Distribution of mobile nodes over the cache size

and b) the evaluation of the cost for maintaining the filter. Two
different experiments were conducted. The first one assesses
the performance in different mobility levels and the second for
different number of nodes in the network. The cache size used
through out these experiments was set to 30 paths. However,
the size of the path is not limited.

B. Cache Content

The first objective of the study was to evaluate the mean
cache size in a node. This size is necessary for determining
the Bloom filter size based on Eq. 1 and 2. In particular, it
must be clear that many instances of a node may reside in
a cache. Therefore we evaluate size based on the number of
different nodes and the total number of nodes in a cache. The
first metric is the one to be used directly in Eq. 1 and 2 as
n. The second one can be used in conjunction with the first
to determine the size of the filter elements. Simulation results
prove that the total number of nodes is clearly greater than the
different nodes in cache (≈70-100 and≈25-40 respectively).
The ratio of the two metrics justify the assumption that only
two or three bits are adequate for filter elements (sel ≈ 2− 3
bits). Furthermore, based on Eq. 1 it is clear that even for
the value of 40 nodes (maximum of different nodes recorded)
we can construct filters of some bytes and at the same time
achieve false positive rates of less than10−3. Both metrics
present stability over the entire mobility range. This result is
expected since mobility only affects the rate at which the cache
is updated and not its actual content since the mean path length
is the same regardless of mobility. We must note that the cache
content is greater in the case of the second geometry scenario
(1500x300m2) since the average path length is greater. Cache
size (both different and total nodes) presents a slight increase
over network size. This is owned to the increased network
density. Each node has more neighbors and therefore is able
of snooping more discovered paths that consist of more nodes.
The stability of cache size over mobility and its slight increase
with the number of network nodes present a useful attribute
. It allows for the choice of filter parameters able to provide
satisfactory performance in different network conditions. The
latter conclusion is enhanced by Fig. 2 which shows that the
majority of network nodes have similar cache size (in terms of

Fig. 3. Parameterρ vs speed

Fig. 4. Parameterρ vs number of nodes

different nodes in cache). This allows for a common strategy
in the choice of the filter parameters.

C. Maintenance Cost and Implementation Benefits

From the analysis presented in Section III it is clear that the
disadvantage of the proposed implementation is the need of
performing a number (SM ) of insertions and deletions from
the filter and a membership test for each of the successful
lookups (SP ). All these operations require the same time
TC which is O(Mh). The advantage is that for each of the
negative lookupsSN we economize on timeTG which is
O(Ncache). The proposed solution is suitable only ifk =
SNTG/[(SM + SP )TC ] > 1. Let us introduce the metric
1/ρ = SN/(SM + SP ). ThenTG/TC > ρ must be valid in
order for the Bloom filter implementation to be meaningful. In
Fig. 3 and 4 we present parameterρ for different mobility rates
and for different network sizes, respectively. In the worst case
ρ reaches up to the value of 12. That means that timeTG for
performing a lookup must be twelve times greater than time
TC for performingMh hash transforms. This requirement can
be easily fulfilled sinceTG is O(Ncache) andTC is O(Mh).
Mh is usually a small integer (see Section IV-B). On the
contrary,Ncache which is the cache size at the time of the
lookup, is usually a much greater number. This is confirmed in
Fig. 5 where this size is presented for different network sizes.
Over the entire range the cache size is over 75. Moreover, in
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Fig. 5. Cache size at the time of a negative lookup vs number of nodes

the case of the 1500x300m2 scenario the average path length
is greater than in the 670x670m2 scenario. Therefore paths
are less resilient to mobility. As a result more route requests,
which produce lookups in intermediate nodes, are performed,
raising the mean cache size. Indeed in the 1500x300m2

scenario the increase on performed route requests is up to
380% contrary to the 670x670m2 scenario where the same
value is 30%. Over the mobility range the cache size is stable
around the value of 75. This stability is owned to the same
reasons mentioned in Section IV-B.

Based on Fig. 3 and 4 we can conclude that the advan-
tages of the proposed implementation tend to become more
important for increased mobility and large networks, which
is a very important characteristic. The requirement forρ can
be as low as≈1 when network size and mobility increase.
In other words Bloom filters are suitable even ifTG = TC ,
that is even if the cost of a cache lookup is as cheap as
performing Mh hash transforms. It must be noted that in
the more demanding scenario of the 1500x300m2 area the
proposed implementation is favored. These results combined
with Fig. 5 further justify the suitability of Bloom filters. The
behavior presented in Fig. 3 and 4 results from the degraded
performance of routing protocols in challenging environments
of large networks of high mobility. Routing information is not
efficiently spread to node caches and negative lookups grow.
This is confirmed in Fig. 6 where the percentage of lookups
that resulted in a negative outcome is presented for different
network sizes. The same behavior is present also over the
entire mobility range.d to node caches and negative lookups
grow. This is confirmed in Fig. 6 where the percentage of
lookups that resulted in a negative outcome is presented for
different network sizes. The same behavior is present also over
the entire mobility range.

V. CONCLUSION

In this paper we proposed a new technique for accessing
cache memories in on-demand routing protocols utilizing
caching of routing information. The proposed technique is
based on the implementation of Bloom filters. Although such
filters have been extensively used in the past in various
applications, they have never been proposed for augmenting

Fig. 6. Percentage of negative lookups vs number of nodes

the operation of a routing protocol in the context of a MANET.
Specifically, in our implementation we take advantage of fast
membership decisions that a Bloom filter can provide to
eliminate cache lookups that induce computational and time
overhead in every node implementing the routing protocol.
We evaluated the impact of such an implementation through
extensive simulation results, using the DSR protocol which
is the most representative of those utilizing caching. The
presented results sufficiently justify the feasibility of the
proposed approach as well as its beneficial impact on the
protocol performance.
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